369 research outputs found

    Compact versus noncompact LP formulations for minimizing convex Choquet integrals

    Get PDF
    AbstractWe address here the problem of minimizing Choquet Integrals (also known as “Lovász Extensions”) over solution sets which can be either polyhedra or (mixed) integer sets. Typical applications of such problems concern the search of compromise solutions in multicriteria optimization. We focus here on the case where the Choquet Integrals to be minimized are convex, implying that the set functions (or “capacities”) underlying the Choquet Integrals considered are submodular. We first describe an approach based on a large scale LP formulation, and show how it can be handled via the so-called column-generation technique. We next investigate alternatives based on compact LP formulations, i.e. featuring a polynomial number of variables and constraints. Various potentially useful special cases corresponding to well-identified subclasses of underlying set functions are considered: quadratic and cubic submodular functions, and a more general class including set functions which, up to a sign, correspond to capacities which are both (k+1)−additive and k-monotone for k≥3. Computational experiments carried out on series of test instances, including transportation problems and knapsack problems, clearly confirm the superiority of compact formulations. As far as we know, these results represent the first systematic way of practically solving Choquet minimization problems on solution sets of significantly large dimensions

    Optimal Reallocation under Additive and Ordinal Preferences

    Get PDF
    Reallocating resources to get mutually beneficial outcomes is a fundamental problem in various multi-agent settings. In the first part of the paper we focus on the setting in which agents express additive cardinal utilities over objects. We present computational hardness results as well as polynomial-time algorithms for testing Pareto optimality under different restrictions such as two utility values or lexicographic utilities. In the second part of the paper we assume that agents express only their (ordinal) preferences over single objects, and that their preferences are additively separable. In this setting, we present characterizations and polynomial-time algorithms for possible and necessary Pareto optimality.nonouirechercheInternationa

    Line-Up Elections: Parallel Voting with Shared Candidate Pool

    Full text link
    We introduce the model of line-up elections which captures parallel or sequential single-winner elections with a shared candidate pool. The goal of a line-up election is to find a high-quality assignment of a set of candidates to a set of positions such that each position is filled by exactly one candidate and each candidate fills at most one position. A score for each candidate-position pair is given as part of the input, which expresses the qualification of the candidate to fill the position. We propose several voting rules for line-up elections and analyze them from an axiomatic and an empirical perspective using real-world data from the popular video game FIFA.Comment: Accepted to SAGT 202

    Ocular lesions in hereditary hemorrhagic telangiectasia: genetics and clinical characteristics

    Get PDF
    Background: The aim of our study is to study the association between eye lesions in Hereditary Hemorrhagic Telangiectasia (HHT) and other signs of the disease, as well as to characterize its genetics. Methods: A cross-sectional study was conducted of a cohort of 206 patients studied in the HHT Unit of Hospital de Sierrallana, a reference centre for Spanish patients with HHT. Odds ratios for several symptoms or characteristics of HHT and ocular lesions were estimated using logistic regression adjusting for age and sex. Results: The ocular involvement was associated with being a carrier of a mutation for the ENG gene, that is, suffering from a type 1 HHT involvement (OR = 2.09; 95% CI [1.17–3.72]). p = 0.012). In contrast, patients with ocular lesions have less frequently mutated ACVRL1/ALK1 gene (OR = 0.52; 95% CI [0.30–3.88], p = 0.022). Conclusions: In conclusion, half of the patients with HHT in our study have ocular involvement. These eye lesions are associated with mutations in the ENG gene and ACVRL1/ALK1 gene. Thus, the ENG gene increases the risk of ocular lesions, while being a carrier of the mutated ACVRL1/ALK1 gene decreases said risk

    Bi-allelic GAD1 variants cause a neonatal onset syndromic developmental and epileptic encephalopathy.

    Get PDF
    Developmental and epileptic encephalopathies are a heterogeneous group of early-onset epilepsy syndromes dramatically impairing neurodevelopment. Modern genomic technologies have revealed a number of monogenic origins and opened the door to therapeutic hopes. Here we describe a new syndromic developmental and epileptic encephalopathy caused by bi-allelic loss-of-function variants in GAD1, as presented by 11 patients from six independent consanguineous families. Seizure onset occurred in the first 2 months of life in all patients. All 10 patients, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight patients had joint contractures and/or pes equinovarus. Seven patients presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1-/- mouse model. Four patients died before 4 years of age. GAD1 encodes the glutamate decarboxylase enzyme GAD67, a critical actor of the γ-aminobutyric acid (GABA) metabolism as it catalyses the decarboxylation of glutamic acid to form GABA. Our findings evoke a novel syndrome related to GAD67 deficiency, characterized by the unique association of developmental and epileptic encephalopathies, cleft palate, joint contractures and/or omphalocele

    The comparison of cytotoxicity of the anticancer drugs doxorubicin and ellipticine to human neuroblastoma cells

    Get PDF
    Ellipticine is an antineoplastic agent, whose mode of action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts mediated by cytochromes P450 and peroxidases. Here, the cytotoxicity of ellipticine to human neuroblastoma derived cell lines IMR-32 and UKF-NB-4 was investigated. Treatment of neuroblastoma cells with ellipticine was compared with that of these cancer cells with doxorubicin. The toxicity of ellipticine was essentially the same as that of doxorubicin to UKF-NB-4 cells, but doxorubicin is much more effective to inhibit the growth of the IMR-32 cell line than ellipticine. Hypoxic conditions used for the cell cultivation resulted in a decrease in ellipticine and/or doxorubicin toxicity to IMR-32 and UKF-NB-4 neuroblastoma cells

    Disruption of PHF21A causes syndromic intellectual disability with craniofacial anomalies, epilepsy, hypotonia, and neurobehavioral problems including autism

    Get PDF
    BACKGROUND: PHF21A has been associated with intellectual disability and craniofacial anomalies based on its deletion in the Potocki-Shaffer syndrome region at 11p11.2 and its disruption in three patients with balanced translocations. In addition, three patients with de novo truncating mutations in PHF21A were reported recently. Here, we analyze genomic data from seven unrelated individuals with mutations in PHF21A and provide detailed clinical descriptions, further expanding the phenotype associated with PHF21A haploinsufficiency. METHODS: Diagnostic trio whole exome sequencing, Sanger sequencing, use of GeneMatcher, targeted gene panel sequencing, and MiSeq sequencing techniques were used to identify and confirm variants. RT-qPCR was used to measure the normal expression pattern of PHF21A in multiple human tissues including 13 different brain tissues. Protein-DNA modeling was performed to substantiate the pathogenicity of the missense mutation. RESULTS: We have identified seven heterozygous coding mutations, among which six are de novo (not maternal in one). Mutations include four frameshifts, one nonsense mutation in two patients, and one heterozygous missense mutation in the AT Hook domain, predicted to be deleterious and likely to cause loss of PHF21A function. We also found a new C-terminal domain composed of an intrinsically disordered region. This domain is truncated in six patients and thus likely to play an important role in the function of PHF21A, suggesting that haploinsufficiency is the likely underlying mechanism in the phenotype of seven patients. Our results extend the phenotypic spectrum of PHF21A mutations by adding autism spectrum disorder, epilepsy, hypotonia, and neurobehavioral problems. Furthermore, PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. CONCLUSION: Deleterious nonsense, frameshift, and missense mutations disrupting the AT Hook domain and/or an intrinsically disordered region in PHF21A were found to be associated with autism spectrum disorder, epilepsy, hypotonia, neurobehavioral problems, tapering fingers, clinodactyly, and syndactyly, in addition to intellectual disability and craniofacial anomalies. This suggests that PHF21A is involved in autism spectrum disorder and intellectual disability, and its haploinsufficiency causes a diverse neurological phenotype

    Epilepsy is an important feature of KBG syndrome associated with poorer developmental outcome

    Get PDF
    OBJECTIVE: To describe the epilepsy phenotype in a large international cohort of patients with KBG syndrome and to study a possible genotype-phenotype correlation. METHODS: We collected data of patients with ANKRD11 variants by contacting University Medical Centers in the Netherlands, an international network of collaborating clinicians, and study groups who previously published about KBG syndrome. All patients with a likely pathogenic or pathogenic ANKRD11 variant were included in our patient cohort and categorized into an 'epilepsy group' or 'non-epilepsy group'. Additionally, we included previously reported patients with (likely) pathogenic ANKRD11 variants and epilepsy from the literature. RESULTS: We included 75 patients with KBG syndrome of whom 26 had epilepsy. Those with epilepsy more often had moderate to severe intellectual disability (42.3% vs 9.1% , RR 4.6 (95% CI 1.7-13.1)). Seizure onset in patients with KBG syndrome occurred at a median age of four years (range 12 months - 20 years) and the majority had generalized onset seizures (57.7%)with tonic-clonic seizures being most common (23.1%). The epilepsy type was mostly classified as generalized (42.9%) or combined generalized and focal (42.9%), not fulfilling criteria of an electroclinical syndrome diagnosis. Half of the epilepsy patients (50.0%) were seizure free on anti-seizure medication (ASM) for at least one year at the time of last assessment, but 26.9% of patients had drug-resistant epilepsy (failure of ≥ 2 ASM). No genotype-phenotype correlation could be identified for the presence of epilepsy or epilepsy characteristics. SIGNIFICANCE: Epilepsy in KBG syndrome most often presents as a generalized or combined focal and generalized type. No distinctive epilepsy syndrome could be identified. Patients with KBG syndrome and epilepsy had a significant poorer neurodevelopmental outcome compared to those without epilepsy. Clinicians should consider KBG syndrome as a causal etiology of epilepsy and be aware of the poorer neurodevelopmental outcome in individuals with epilepsy

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome

    Get PDF
    BACKGROUND: Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening
    corecore