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a b s t r a c t

We address here the problem of minimizing Choquet Integrals (also known as ‘‘Lovász Ex-
tensions’’) over solution sets which can be either polyhedra or (mixed) integer sets. Typical
applications of such problems concern the search of compromise solutions in multicriteria
optimization. We focus here on the case where the Choquet Integrals to be minimized are
convex, implying that the set functions (or ‘‘capacities’’) underlying the Choquet Integrals
considered are submodular. We first describe an approach based on a large scale LP formu-
lation, and show how it can be handled via the so-called column-generation technique.We
next investigate alternatives based on compact LP formulations, i.e. featuring a polynomial
number of variables and constraints. Various potentially useful special cases correspond-
ing to well-identified subclasses of underlying set functions are considered: quadratic and
cubic submodular functions, and amore general class including set functionswhich, up to a
sign, correspond to capacities which are both (k+ 1)−additive and k-monotone for k ≥ 3.
Computational experiments carried out on series of test instances, including transportation
problems and knapsack problems, clearly confirm the superiority of compact formulations.
As far as we know, these results represent the first systematic way of practically solving
Choquet minimization problems on solution sets of significantly large dimensions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The purpose of the present paper is to investigate various linear programming-based formulations for the problem of
minimizing the so-called Choquet integralw.r.t. a given capacity or, equivalently, the Lovász extension of a given set function.
We mainly focus on the convex case, which corresponds to submodular set functions (referred to as concave capacities in
the field of Decision Theory). In such a case, and assuming that we want to optimize on a polyhedron in Rn (represented by
a given linear equality/inequality system), the problem reduces to minimizing a convex function Rn

→ R given through
an oracle providing the value of the function and an associated subgradient in any x ∈ Rn; it is well known that such
a problem can be reformulated as a large scale linear program (LP) with exponentially many constraints (we call this a
‘‘noncompact ’’ formulation) which is solvable using a polynomial number of calls to the oracle via the ellipsoid algorithm
(see [12]). In practice, these large scale (‘‘noncompact’’) linear programs are solved by applying the well-known column-
generation approach to their duals.

However, aswill be confirmed by the computational experiments reported in Section 5, the column-generation approach
is computationally demanding, and thus only practicable for problems of limited size. In view of this, one is naturally led to
investigating the possibility of deriving alternative formulations, with the objective of coming up with LP models featuring
polynomial number of variables and constraints, referred to here as compact LP models.
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The main contribution of the present paper is to propose such compact formulations for various cases of interest, both
theoretically and practically, in particular the case of degree 2 and degree 3 submodular set functions (2-additive and
3-additive capacities respectively); more general classes of set functions will also be investigated.

It is worth mentioning that all the results in the present paper would readily apply to the symmetric problem of
maximizing a Choquet integral with respect to a supermodular set function (convex capacity).

The paper is organized as follows: Section 2 recalls themain definitions and basic properties related to Lovász extensions
and Choquet integrals. In Section 3, a first (large scale) linear programming (LP) formulation for the problem of minimizing
a Choquet integral is proposed, and it is shown how the column-generation principle can be applied, based on polynomial
solvability of submodular function minimization. As possible alternatives to this column-generation approach, several
compact formulations are investigated in Section 4, in connection with various classes of underlying set functions. The
cases of quadratic and cubic submodular functions are addressed in Sections 4.2 and 4.3. Section 4.4 is then devoted to a
more general class of submodular set functions (with degree higher than 3) which can be recognized in polynomial time
and for which Choquet minimization can still be expressed in compact formulation. The results in Section 4.4 are shown to
apply, in particular, to the whole subclass of problems of maximizing a Choquet integral w.r.t. any capacity which is both
(k + 1)-additive and k-monotone (for k ≥ 3). Section 5 reports on computational experiments carried out on series of test
instances of the transportation problem and of the knapsack problem, both in their continuous and discrete versions. The
results obtained clearly confirm the attractiveness of compact formulations, both in terms of computational efficiency and
of easy handling of possible integrality requirements on decision variables.

2. Definitions and basic properties

In the field of combinatorial optimization, the so-called Lovász extension of a set function has been introduced [16] in
connection with the study of some remarkable polyhedra associated with submodular functions (polymatroids) and their
links to the so-called ‘‘greedy algorithm’’ [6]. Almost the same concept was (independently) investigated in the field of
Decision Analysis under the name of Choquet integral (CI). One of the important applications of the Choquet integral is in
multicriteria decision making (MCDM) since it provides a systematic way of aggregating multiple criteria enjoying various
nice properties (see [8]). Among others, it includes several other aggregators as particular instances (Min, Max and any
order statistics, weighted sums and ordered weighted averages like OWA [38] andWOWA [35]); it can handle both positive
and negative interactions among criteria [9], it offers the possibility to control andness or orness in aggregating values [18]
which can be used to control the type of compromise looked for [7]. We also mention that Choquet integrals appear in the
literature on decision making under risk or uncertainty, in models known as Yaari’s model [37], ‘‘Rank-Dependent Expected
Utility’’ (RDEU, [25]) and ‘‘Choquet Expected Utility’’ (CEU, [29]). These models generalize the so-called Savage’s Expected
Utilitymodel and provide enhanced descriptive possibilities [30,4].

The close connections between the Lovász extension of a pseudo-Boolean function and the Choquet integral w.r.t. the
associated set function have been observed by many authors (cf. e.g. [17]). Here we first introduce definitions and basic
properties related to Lovász extensions, and then provide the corresponding terminology related to the Choquet Integral,
commonly in use in the field of Decision Theory.

Let E = {1, 2, . . . , n} a given n-element set (‘‘ground set’’) and suppose that we are given a set function or pseudo-
Boolean function v : {0, 1}E → R. Considering any subset S ⊆ E, and denoting 1S ∈ {0, 1}E the characteristic vector of S,
the simplified notation v(S) will be frequently used in the sequel instead of v (1S). The Lovász extension of the set function
v is the function Lv : [0, 1]n → R defined as follows.

For any x ∈ [0, 1]n, we denote x↑
= (x↑

1 , x
↑

2 , . . . , x
↑

n ) the n-vector the components ofwhich are those of x sorted according
to nondecreasing order: x↑

1 ≤ x↑

2 ≤ · · · ≤ x↑

n . Also, for any i ∈ E, we denote X↑

i the set {j ∈ E, xj ≥ x↑

i }.
The Lovász extension is then defined as

Lv(x) =

n−1
i=1

x↑

i [v(X↑

i ) − v(X↑

i+1)] + x↑

nv(X↑

n ). (1)

It can be observed that Lv is the unique function: [0, 1]n → R which takes on the same values as v on {0, 1}n and which
linearly interpolates v on each canonical simplex Sσ involved in the standard triangulation of [0, 1]n. We recall that the
canonical simplex associated with any permutation σ of {1, 2, . . . , n} is

Sσ = [0, 1]n ∩

x/xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)


.

Since the main focus of the present paper is on efficient algorithms for minimizing Lovász extensions (or Choquet
integrals), we will restrict to the special case when Lv(x) in (1) is convex in x. The fact that this special case corresponds to
the subclass of submodular set functions is a well-known result due to Lovász [16] (see also [33]).

In view of formula (1), assuming that for any subset S ⊆ V , v(S) can be computed in time polynomial in n = |E|, it is clear
that for any x ∈ Rn

+
the value Lv(x) can be computed in polynomial time. Now, assuming v submodular such that v(∅) = 0,
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we recall below how a subgradient of Lv(x) can be derived. For that, we use the so-called base-polyhedron associated with
v which is defined as

B(v) =

y ∈ RE/y(S) ≤ v(S) ∀S ⊂ E; y(E) = v(E)


(where, ∀y ∈ RE, y(S) =


i∈S yi) and the following property:

Property 2.1 (Lovász [16], Murota [20]).

Lv(x) = sup
y∈B(v)


yT x

. (2)

From expression (2) it follows that a subgradient of Lv(x) in any x such that Lv(x) < +∞ is obtained as

y∗
= argmax

y∈B(v)


yT x

. (3)

Now it is well known (see [6]) that, for submodular v, the maximization in (2) can be carried out in polynomial time using
the so-called Greedy Algorithm recalled below.
Greedy algorithm for (2).

(a) Sort the components of x according to non-increasing order:
xk1 ≥ xk2 ≥ · · · ≥ xkn .

(b) Compute
y∗

k1 = v ({k1}) − v(∅)

y∗

k2 = v ({k1, k2}) − v ({k1})
...
y∗

kn = v ({k1, k2, . . . , kn}) − v ({k1, k2, . . . , kn−1}) .

We note that, since x↑

i = xkn−i+1 and X↑

i = {k1, k2, . . . , kn−i+1}, the expression of Lv(x) in (1) can be identified withn
i=1 xkiy

∗

ki
= (y∗)T x, i.e. the maximum value in (2).

As a consequence of the work by Grötschel et al. [12] it is well-known that minimizing a convex function f : Rn
→ R

on a given polyhedron in Rn can be done in polynomial time using the so-called ‘‘Ellipsoid Algorithm’’ [14] (assuming that
computing f (x) and a corresponding subgradient y ∈ ∂ f (x) in any x ∈ Rn can be carried out in polynomial time).

Thus, for submodular v : {0, 1}E → R we know that, when X is a given nonempty polyhedron in Rn (specified by a given
linear equality/inequality system) the problem:

(P)

Minimize Lv(x)
s.t. :
x ∈ X

can be solved in polynomial time.
Wenote that in the literature onDecision Theory, (see e.g. [29,37,25,8,10]) the formula defining Cv(x), the Choquet integral

of x ∈ Rn with respect to a given set function v (referred to as a ‘‘capacity’’ in this context) is exactly the same as (1), the
only difference being that Cv(x) is possibly defined for any x ∈ Rn

+
instead of being restricted to x ∈ [0, 1]n. This difference

is not really significant. The following straightforward property of the Choquet integral indeed shows that, when bounded
domains for x are considered, it is always possible to scale the feasible set to [0, 1]n, leading to an equivalent problem with
a Lovász extension.

Property 2.2. For any x ∈ Rn
+
, let Cv(x) =

n−1
i=1 x↑

i [v(X↑

i ) − v(X↑

i+1)] + x↑

nv(X↑

n ). Then, for any pair of reals α > 0 and
β, Cv (αx + β1E) = αCv(x) + βv(E).

Proof. Follows directly from the definition. �

In view of this, if Cv(x) has to be minimized over x ∈ X ⊂ [ℓ, u]n then carrying out the variable redefinition:

y =
1

u − ℓ
(x − ℓ1E)

the problem is reduced to minimizing Cv(y) where y ∈ [0, 1]n, which is exactly the Lovász extension of v. So, in all the
developments to follow, it will be assumedw.l.o.g. that the solution sets X over which Cv(x) is to be minimized are bounded
polyhedra or MIP sets included in the nonnegative orthant RE

+
. Also we note that, in Decision Theory, applications involving

the Choquet integral as an aggregation function often introduce several additional restrictions on the set-function v, in
particular: (i) monotonicity (v(A) ≤ v(B) for all A ⊆ E, B ⊆ E, A ⊆ B), (ii) the normalization condition v(E) = 1 and
sometimes (iii) the submodularity of v. Set functions satisfying (i) and (ii) are called capacities in this context. Also in Decision
Theory, a capacity is called convex (resp. concave) if and only if the associated set function is supermodular (resp. submodular).
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The rationality of conditions (i)–(iii) can easily be explained in the context of multicriteria optimization. Assuming that
x = (x1, . . . , xn) represents a cost vector where xi is the cost of solution x with respect to criterion i for any i ∈ E, a cost
vector x is preferred to a cost vector y if and only if Cv(x) ≤ Cv(y). In this context, it can easily be shown from Eq. (1) that
condition (i) is equivalent to Pareto-monotonicity which reads as follows:

∀x, y ∈ Rn
+
, [∀i ∈ E, xi ≤ yi ⇒ Cv(x) ≤ Cv(y)].

Moreover, assuming that (i) holds, (ii) is only a normalization condition ensuring that Cv(1E) = 1 and ∀x ∈ Rn
+
,

Mini∈Exi ≤ Cv(x) ≤ Maxi∈Exi. Now, assuming that (i) and (ii) hold, imposing (iii), i.e. submodularity of the capacity in
the Choquet integral is equivalent to imposing the following property (see [4,7]):

∀x1, . . . , xp ∈ Rn
+
, ∀k ∈ {1, . . . , p}, ∀λ ∈ Rp

+ s.t.
p

i=1

λi = 1,

Cv(x1) = · · · = Cv(xp) ⇒ Cv


p

i=1

λixi


≤ Cv(xk). (4)

Property (4) named preference for well-balanced solutions in [7]means that any compromise cost vector obtained by a convex
combination of p equivalent cost vectors (i.e. vectors having the same Cv value) improves these vectors. Due to this property,
whenever we are indifferent between (20, 0) and (0, 20), we should prefer (10, 10) = 0.5(20, 0) + 0.5(0, 20) to the
two initial vectors. This is a way of enforcing equity of solutions minimizing Cv(x). Let us also mention that, in the field
of cooperative games, the base polyhedron B(v) has also emerged as a central concept, referred to as the core of the game
associated with the capacity v̄ (v̄, the so-called dual capacity, is defined by v̄(S) = 1−v(E \S), ∀S ⊆ E). For any submodular
(concave) capacity v, the dual capacity v̄ is supermodular (convex) and the core of v̄ is known to be nonempty (see [32]).

In the developments to follow restrictions such as (i) and (ii) will not be assumed and general submodular set functions
will be considered.

3. Large scale (noncompact) LP formulation and the column-generation approach

Keeping in mind that v is assumed to be submodular and v(E) = 1, the first formulation proposed here makes use of the
LP duality theorem applied to the problem defining Cv(x) for given x:

(I)



Cv(x) = max xT · y
s.t. :
i∈S

yi ≤ v(S) ∀S ⊆ E
i∈E

yi = 1

y unconstrained in sign.

The LP dual to (I) reads

(D)



Min

S⊆E

v(S)λS

s.t. :
∀i = 1, . . . , n :


S/i∈S

λS = xi

λS ≥ 0, ∀S ⊂ E,
λE ≶ 0

where there is one variable λS associated with each subset S ⊆ E.
Using the standard convention that (D) has optimal solution value +∞ whenever its solution set is empty, then Cv(x) is

equal to the optimal dual solution value, therefore problem (P) can equivalently be stated as the (large scale) LP problem:

(II)



Minimize

S⊆E

v(S)λS

s.t. :
S/i∈S

λS − xi = 0 (i = 1, . . . , n)

λS ≥ 0 ∀S ⊂ E
λE ≶ 0
x ∈ X

(5)

(minimization in (II) is with respect to variables λ and x). It turns out that the above can be solved exactly (and efficiently
in practice) by applying the so-called column-generation procedure because of the following property:
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Property 3.1. Let (II)′ any restricted version of problem (II), where only a restricted number of variables λS are allowed to
be nonzero. Let π = (π1, . . . , πn) denote the optimal simplex multipliers (optimal dual variables) corresponding to the
constraints (5) in (II)′. Then the problem of determining a subset S∗

⊆ E achieving minimum reduced cost:

γ

S∗


= v

S∗

−


i∈S∗

πi = Min
S⊆E

{γ (S)} = Min
S⊆E


v(S) −


i∈S

πi


can be solved in polynomial time, assuming that v is computable via a polynomial-time oracle.

Proof. v being submodular, the set function γ representing the reduced costs of the λS variables is also submodular as
the sum of a submodular function and of a modular function: S →


i∈S πi. The result then follows from the existence of

efficient, strongly polynomial algorithms for minimizing submodular functions; see e.g. [23]. �

Computational results obtainedwith the column-generation approachwill be discussed in Section 5, and comparedwith
those obtained using the compact formulations presented in the next section.

4. Compact LP formulations

In the present section, we investigate the possibility of deriving alternative LP models for the problem of minimizing a
convex Choquet integral over a given solution set (polyhedron or mixed integer set). More precisely the main focus is on
exhibiting conditions under which it is possible to come up with compact formulations i.e. LP models requiring numbers of
extra variables and constraints polynomially bounded in n (the cardinality of the ground set E) and K (the size of an explicit
description of the set function v).

The various compact formulations proposed below rely on the availability of an explicit multilinear polynomial
expression of the set function v of manageable size, i.e. featuring a number of terms polynomial in n = |E|. This amounts to
assuming that we are given an expression of v of the form:

∀u ∈ {0, 1}n : v(u) =

P
p=1

µp


i∈Sp

ui

 (6)

where, ∀p = 1, . . . , P, µp ∈ R and Sp ⊆ E are given. We recall here the well-known fact (see [13]) that any set function or
pseudo-Boolean function v : {0, 1}n → R has a unique multilinear polynomial representation of the form (6).

4.1. Choquet integral and Möbius transforms

Consider a set function v and its associated pseudo-Boolean representation given by (6). Let m : P (E) → R be the set
function defined as

m(Sp) = µp ∀p = 1, . . . , P
m(S) = 0 ∀S ∈ P (E) \ {S1, . . . , SP} .

(7)

Then (6) shows that an equivalent expression of v in terms ofm is

∀A ⊆ E : v(A) =


B⊆A

m(B). (8)

The set functionm : P (E) → R defined by (7) is called theMöbius transform of v (see [28,1,10]). Indeed, to any set function
v, it is possible to let correspond its Möbius transformm defined as

∀A ⊆ E : m(A) =


B⊆A

(−1)|A\B]v(B)

and conversely, givenm, v can be ‘‘reconstructed’’ via formula (8). The valuesm(A) associatedwith the subsets of E are called
Möbius masses, and in view of (7), it is seen that the coefficients µp involved in the multilinear polynomial expression (6)
can be interpreted as the Möbius masses of the subsets Sp(p = 1, . . . , P).

So, in this section, we will restrict to considering set functions featuring a polynomial number P of nonzero Möbius
masses. Alsowewill investigate special cases of interest corresponding to set functions for which this associatedmultilinear
polynomial expression (6) has small degree: k = 2 (see Section 4.2) or k = 3 (see Section 4.3).

Remark 1. In the literature onDecisionAnalysis, a set function having nonzeroMöbiusmasses only for subsets of cardinality
≤ k is called k-additive (see e.g. [11]).
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The following result, which can be traced back to Rosenmüller [27], Smets [34], Dubois and Prade [5], Chateauneuf and
Jaffray [3], is key to the developments to follow. It applies to arbitrary set functions, not only to submodular ones, and
provides a simple expression of Cv(x), the value of the Choquet integral (or Lovász extension) in any x ∈ RE

+
in terms of the

Möbius transforms of v:

Property 4.1. Let v : P (E) → R and m : P (E) → R its Möbius transform. Then, ∀x ∈ RE
+
:

Cv(x) =


A⊆E

m(A) Min
i∈A

{xi}. (9)

In view of Property 4.1 the value of the Choquet integral w.r.t. a set function v specified by its multilinear polynomial
expression (6) is given for any x ∈ R+ by

Cv(x) =

n
i=1

µixi +
P

p=n+1

µp Min
i∈Sp

{xi} (10)

where it is assumed w.l.o.g. that Si = {i} for i = 1, . . . , n. The terms indexed p = n + 1, . . . , P thus correspond to the
nonlinear terms in expression (6).

4.2. First compact formulation (CF1): the case of quadratic submodular v and of ‘‘belief functions’’

In this section, we exhibit a first compact formulation for the problem:
Minimize Cv(x)
x ∈ X ⊂ RE

+

for the whole class of submodular set functions in the subclass B− defined as follows:

Definition 1. A set function v is said to belong to the classB− (resp.B+) if and only if its multilinear polynomial expression
(6) contains a number of terms polynomial in n, only featuring:

(i) linear terms of the form αiui without sign restriction on the αi coefficients;
(ii) nonlinear terms of the form µS


i∈S ui with µS < 0 (resp. µS > 0).

WedenoteB−

K (resp.B+

K ) the subclass ofB− (resp.B+) of set functions havingmultilinear polynomial expressions featuring
nonlinear terms of degree at most K .

We note that the class B− includes as a special case quadratic submodular set functions for which the n linear terms
(corresponding to Si = {i}, for i = 1, . . . , n) are not sign-restricted, and the quadratic terms (indexed p = n+ 1, . . . , P) are
strictly negative.

We also note that set functions in the class B− are sometimes referred to as Rhys functions or ‘‘positive–negative’’
pseudo-Boolean functions in the OR literature, and arise in connection with some interesting applications (see e.g. [26]).
On the other hand, note that the class B+ includes all set functions for which all coefficientsµP in (6) are nonnegative; such
set functions, whose Möbius masses are non-negative, are called belief functions [31] in Artificial Intelligence and Decision
Theory. So the compact formulation (CF1) discussed below directly applies in particular to the problem of maximizing
Choquet integrals with respect to belief functions.

In the sequel please keep in mind that the linear terms in expression (6) are indexed i = 1, . . . , n and the nonlinear
terms are indexed p = n + 1, . . . , P .

In view of Property 4.1, and if we assume that v ∈ B−, for any fixed x ∈ Rn
+
, the value Cv(x) is the minimum value of the

linear program in y variables:
Minimize

n
i=1

µixi +
P

p=n+1

µpyp

s.t. :
0 ≤ yp ≤ xi ∀p = n + 1, . . . , P, ∀i ∈ Sp.

(11)

Observe that in the above LP, there are P−n continuous variables y, one for each nonlinear termof themultilinear polynomial
expression (6).

Now, the correctness of the above follows from the fact that µp < 0 for p = n+ 1, . . . , P , and therefore the minimum in
the second term of expression (11) is obtained when each yp takes its maximum possible value, which is exactly Minj∈Sp{xj}.
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In view of this, the problem of minimizing Cv(x) over a polyhedron X ⊂ Rn
+
described by a set of m linear constraints of

the form Ax ≤ b, x ≥ 0 can be stated as

(CF1)



Min
(x,y)

n
i=1

µixi +
P

p=n+1

µpyp

s.t. :
yp ≤ xi ∀p = n + 1, . . . , P, ∀i ∈ Sp
Ax ≤ b
x ≥ 0, y ≥ 0

which is an ordinary linear program featuring P variables and O(m + n(P − n)) constraints (in the case of quadratic
submodular v, the number of constraints, not including nonnegativity conditions, is exactly m + 2(P − n)). This problem
can therefore be solved in polynomial time, using an interior-point algorithm (see e.g. [39,36]). In practice, if polynomiality
is not explicitly required, one can also consider the use of a state-of-the art implementation of the simplex algorithm.

It should be observed that the same model can also be used to minimize Cv(x) over amixed integer set of the form:

X ′
= X ∩ {x/xi ∈ Z, ∀i ∈ I}

or

X ′′
= X ∩ {x/xi ∈ {0, 1}, ∀i ∈ I}

where I denotes the index subset of those variables which are subject to integrality restrictions. Of course, in such cases,
polynomial solvability is lost in general. Part of the computational experiments discussed in Section 5 concern instances
featuring such integrality requirements.

4.3. Second compact formulation (CF2): the case of general cubic submodular v

We now address a more complex situation when the set function v under consideration is cubic submodular. In this case,
all the coefficients of the nonlinear terms in the multilinear expression (6) are not necessarily negative, and the technique
shown in Section 4.2 does not apply anymore. As an example of this, consider the cubic pseudo-Boolean function:

v(u) = 6u1 + 3u2 + u3 + 4u4 − 5u1u2 − 3u1u3 − 2u2u3 − 3u1u4 − 4u2u4 − u2u3u4 + 2u1u2u3 + 3u1u2u4.

Indeed this function, which includes positive as well as negative nonlinear terms, is submodular because it satisfies the
following characterization of cubic submodular functions:

Property 4.2 (Billionnet and Minoux [2]). A cubic pseudo-Boolean function v : {0, 1}n → R given by its multilinear expres-
sion (6) is submodular if and only if, for any p such that |Sp| = 2:

µ̃p = µp +


p′∈L+p

µp′ ≤ 0 (12)

with L+
p =


p′/Sp ⊂ Sp′ , µp′ > 0


.

Condition (12) can easily be checked for the example:
For Sp = {1, 2}, µp = −5, there are two Sp′ with positive µp′ strictly containing {1, 2}, namely: {1, 2, 3}, with weight 2

and {1, 2, 4} with weight 3; so (12) holds in this case.
For Sp = {1, 3}, µp = −3, {1, 2, 3} is the only Sp′ with positive weight 2 strictly containing {1, 3}, and (12) again holds.
The same conclusion would be obtained for Sp = {1, 4}{2, 3}{2, 4} and {3, 4}, implying that v is indeed submodular.

Remark 2. There are close connections between Property 4.2 and the concept of k-monotonicity investigated in [3]: v is
k-monotone if and only if its Möbius transformm satisfies

L:A⊆L⊆B

m(L) ≥ 0, ∀A, B ⊆ E, A ⊆ B, 2 ≤ |A| ≤ k. (13)

Property 4.2 is exactly the one above for k = 2 and the reverse inequality. Therefore, the results of this section are directly
applicable to maximizing Choquet integrals with respect to capacities which are both 3-additive and 2-monotone.

Now, we are going to show how Property 4.2 can be used to derive a compact LP formulation (CF2).
The first step consists in transforming the expression of Cv(x) given by (10) according to the following result.
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Proposition 1. Let v cubic submodular given by (6), and denote: Q2 ⊂ {n+1, . . . , P} the subset of indices p such that |Sp| = 2;
Q+

3 (resp. Q−

3 ) the subset of indices in {n + 1, . . . , P} such that |Sp| = 3 and µp > 0 (resp. |Sp| = 3 and µp < 0). Then an
equivalent expression for (10) is

Cv(x) =

n
i=1

µixi +

p∈Q2

µ̃p Min
i∈Sp

{xi} +


p∈Q−

3

µp Min
i∈Sp

{xi} −


p∈Q+

3

µp


Min
i∈Sp

{xi} + Min2
i∈Sp

{xi}


(14)

where µ̃p has been defined in (12) and Min2 denotes the operator which selects the second minimum value among a finite set of
real values.
Proof. Given any three real values z1, z2, z3 it is easily checked that:

Min{z1, z2} + Min{z1, z3} + Min{z2, z3} = 2Min{z1, z2, z3} + Min2{z1, z2, z3}.

It follows that, for any p ∈ Q+

3 , assuming Sp = {j, k, l}, the term µp Min{xj, xk, xl} can be replaced with the expression:

µp

Min{xj, xk} + Min{xj, xl} + Min{xk, xl} − Min{xj, xk, xl} − Min2{xj, xk, xl}


.

Suppose we carry out this substitution for every p ∈ Q+

3 . We note that in the new resulting expression for Cv(x),
there are three quadratic terms originating from a cubic term of the form µp Min{xj, xk, xl} such that µp > 0, namely:
µp Min{xj, xk}; µp Min{xj, xl}; µp Min{xk, xl}.

Because v is submodular, Property 4.2 guarantees that each such ‘‘new’’ quadratic term involves a pair of variables
corresponding to some existing quadratic term µq Mini∈Sq{xi} in the original expression (10).

Moreover, in the transformed expression, the new coefficient of the term Mini∈Sq{xi} is equal to µ̃q = µq +


p∈L+q
µq,

and µ̃q ≤ 0 in view of (12) (because of the submodularity property). So the quadratic part of the transformed expression
reduces to:


p∈Q2

µ̃p Mini∈Sp{xi} with all µ̃p ≤ 0. In addition to this, each cubic term µp Mini∈Sp{xi} with µp > 0 gives rise

to the term −µp


Mini∈Sp{xi} + Min2

i∈Sp
{xi}


therefore resulting in expression (14). �

We observe that in expression (14), if we ignore the last summation:

−


p∈Q+

3

µp


Min
i∈Sp

{xi} + Min2
i∈Sp

{xi}


we find the right structure for applying the compact formulation (CF1), since all coefficients µ̃p for p ∈ Q2 andµp for p ∈ Q−

3
are nonpositive.

The second step now consists in building a LP formulation for handling each of the terms of the form:

−µp


Min
i∈Sp

{xi} + Min2
i∈Sp

{xi}


for p ∈ Q+

3 .
Proposition 2 shows how this can be done.

Proposition 2. For µp > 0 any term of the form:

−µp

Min{xj, xk, xl} + Min2{xj, xk, xl}


can be represented as the optimal value of the linear program (in variables λ0, λ1, λ2, λ3):

(III)



Min2µpλ0 + µpλ1 + µpλ2 + µpλ3
s.t. :
λ0 + λ1 ≥ −xj
λ0 + λ2 ≥ −xk
λ0 + λ3 ≥ −xl
λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0
λ0 ≶ 0 (i.e. without sign restriction).

Proof. For any fixed xj, xk, xl ≥ 0 let α = Min{xj, xk, xl} + Min2{xj, xk, xl}. Thus α represents the sum of the two smallest
values among xj, xk, xl and therefore is equal to the optimal solution value of the continuous knapsack problem in bounded
variables uj, uk, ul:

Minxjuj + xkuk + xlul
s.t. :
uj + uk + ul = 2
0 ≤ uj ≤ 1, 0 ≤ uk ≤ 1, 0 ≤ ul ≤ 1.
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Equivalently −α is equal to the optimal solution value to:

(IV)


Max − xjuj − xkuk − xlul
s.t. :
uj + xk + ul = 2
uj ≤ 1; uk ≤ 1; ul ≤ 1
uj ≥ 0 uk ≥ 0 ul ≥ 0.

Denoting λ0, λ1, λ2, λ3 the dual variables associated with the constraints of (IV), and using the LP duality theorem, α is
also equal to the optimal solution value of the dual:

(V)


Min2λ0 + λ1 + λ2 + λ3
s.t. :
λ0 + λ1 ≥ −xj
λ0 + λ2 ≥ −xk
λ0 + λ3 ≥ −xl
λ0 ≶ 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

which proves the claim. �

In view of Proposition 2, for any fixed x ≥ 0, it is possible to express the last summation in (14) as the minimum value of
a linear program deduced from (V) by associating with each p ∈ Q+

3 four continuous variables λ
p
0, λ

p
1, λ

p
2, λ

p
3, which reads:


p∈Q+

3

µp

2λp

0 + λ
p
1 + λ

p
2 + λ

p
3


s.t. :
λ
p
0 + λ

p
1 ≥ −xα[p]

λ
p
0 + λ

p
2 ≥ −xβ[p]

λ
p
0 + λ

p
3 ≥ −xγ [p]

 ∀p ∈ Q+

3

λ
p
0 ≶ 0, λ

p
1 ≥ 0, λ

p
2 ≥ 0, λ

p
3 ≥ 0

where α[p], β[p], γ [p] denote the three indices in the subset Sp.
We can now summarize the resulting compact LP formulation (CF2) proposed for minimizing the Choquet integral Cv(x)

over a given set X ⊂ Rn
+
as follows:

(CF2)



Minimize
n

i=1

µixi +

p∈Q2

µ̃pyp +


p∈Q−

3

µpyp +


p∈Q+

3

µp

2λp

0 + λ
p
1 + λ

p
2 + λ

p
3


s.t. :
yp ≤ xi ∀p ∈ Q2 ∪ Q−

3 , ∀i ∈ Sp
λ
p
0 + λ

p
1 ≥ −xα[p]

λ
p
0 + λ

p
2 ≥ −xβ[p]

λ
p
0 + λ

p
3 ≥ −xγ [p]

 ∀p ∈ Q+

3

λ
p
0 ≶ 0, λ

p
1 ≥ 0, λ

p
2 ≥ 0, λ

p
3 ≥ 0

x ∈ X ⊂ Rn
+
.

If we assume that X is a polyhedron described by a set ofm linear equality/inequality constraints we have the following:

Proposition 3. The compact formulation (CF2) involves P + 4|Q+

3 | variables and m + 2|Q2| + 3|Q3| equality/inequality
constraints. It is thus solvable in polynomial time using interior point algorithms.

Additional integrality conditions on the decision variables are readily handled within (CF2). Computational experiments
illustrating this capability are provided in Section 5.

4.4. Third compact formulation (CF3) for a class of submodular v extending the cubic case

We now turn to show that the approach described in the previous section for the cubic submodular case can be extended
to awider class of submodular set functions v including set functions of degree higher than 3. This extension originates from
the following basic remark. If we refer to the proof of Proposition 1, we observe that the transformation carried out on each
positive cubic term of the form

µp Min
i∈Sp

{xi} with µp > 0
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consists in rewriting it as a sumof positive quadratic terms (eventually ‘‘absorbed’’ by the already existing negative quadratic
terms) with a new term popping up, of the form:

−µp


Min
i∈Sp

{xi} + Min2
i∈Sp

{xi}


with µp > 0.

Proposition 2 then shows how this last term can be ‘‘linearized’’, i.e., represented as the optimal value of a small associated
linear programwith the x variables (the variables with respect to which the Choquet integral has to be minimized) involved
linearly in the constraints.

In the generalization proposed in the present section we will address the case of submodular set functions v belonging
to the class CK defined as follows:

Definition 2. A set function v is said to belong to the class CK if and only if the associated Choquet integral Cv(x) can be
expressed as a sum of

(i) linear terms of the form αixi without sign restriction on the αi coefficients,
(ii) nonlinear terms of the form −βS Mini∈S{xi} with S ⊂ E, |S| ≤ K and βS > 0,
(iii) nonlinear terms of the form −qSpL

S
p(x) where S ⊂ E, |S| ≤ K , p ≤ |S|, qSp > 0 and LSp(x) =

p
i=1 x

↑

i (S) where
x↑

i (S) , Mini
j∈S

{xj} is the ith minimum value among the set {xj : j ∈ S}.

Remark 3. Submodularity of the set functions in CK , though not immediately obvious, will appear as a consequence of the
analysis to follow; see Proposition 7. Additional comments on the relevance of the CK class will be given later (Remark 4)
where an interesting and well-characterized subclass is identified.

Observe that B−

K introduced in Definition 1 is the subclass of CK satisfying only (i) and (ii). Also observe that for K = 3,
the class C3 as defined above includes all cubic submodular set functions, since expression (14) is indeed a special case of
(i)–(iii) involving subsets S of cardinality no greater than 3, and only terms of the form LS2. Also we note that LSp(x) can be
interpreted as the pth coordinate of the so-called Lorenz vector [15] associated with components xj, j ∈ S (see [19,24]).

Of course, a basic issue in connection with the practical usefulness of class CK is the recognition problem. We are going to
show that both testing membership in CK of a set function v, given as a multilinear polynomial expression of the form (6),
and constructing an equivalent expression of its Choquet integral Cv(x) complying with Definition 2 reduces to checking
feasibility of a linear inequality system of size polynomial in n, for fixed maximum degree K . To achieve this, we need a few
preliminary results. For any C ⊂ E = {1, 2, . . . , n} and for any k ≤ |C | let:

σ C
k (x) =


S⊆C,|S|=k

Min
j∈S

{xj}.

We note that σ C
k (x) is a sum of terms only involving the Min operator. The following result shows that any term of the

form LCp (x) arising from Definition 2-(iii) can also be expressed as a sum of terms only involving the Min operator applied to
subsets S of C .

Proposition 4. For p ≤ |C | − 1, LCp (x) ,
p

i=1 Mini
j∈C

{xj} can be rewritten as

LCp (x) =

p
k=1

(−1)k−1


|C | − p − 2 + k
|C | − p − 1


σ C

|C |−p+k(x). (15)

For p = |C |, LC
|C |

(x) = σ C
1 (x).

Proof.
First we observe that for i ≤ |C | and k ≤ |C | − i + 1, the number of subsets B ⊆ C of size k such that: argminj∈B{xj} =

argmini
j∈C

{xj} is


|C |−i
k−1


. So for k ≤ |C |, k ≥ 1 we can write:

σ C
k (x) =


S⊆C,|S|=k

Min
j∈S

{xj}

=


|C | − 1
k − 1


x↑

1 (C) +


|C | − 2
k − 1


x↑

2 (C) + · · · +


k − 1
k − 1


x↑

|C |−k+1(C).

By choosing k = |C | − p + 1, we can therefore express x↑

p (C) as

x↑

p (C) = σ C
|C |−p+1(x) −


|C | − 1
|C | − p


x↑

1 (C) − · · · −


|C | − p + 1

|C | − p


x↑

p−1(C).
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Similarly, x↑

p−1(C) can be expressed as

x↑

p−1(C) = σ C
|C |−p+2(x) −


|C | − 1

|C | − p + 1


x↑

1 (C) − · · · −


|C | − p + 2
|C | − p + 1


x↑

p−2(C)

and so on until:

x↑

2 (C) = σ C
|C |−1(x) −


|C | − 1
|C | − 2


x↑

1 (C).

Eq. (15) then follows by a sequence of substitutions using the above relations. �

For any C ⊆ {1, 2, . . . , n} and p ≤ |C |, let us denote ϕC
p the set function P (E) → R having nonzero Möbius masses only

for subsets S ⊆ C of cardinality |S| in the range [|C | − p + 1; |C |], with the Möbius masses of all subsets having the same
cardinality |S| = k being equal tomk = (−1)k−|C |+p−1


k−2

|C |−p−1


.

Corollary 1. LCp (x) is the Choquet integral of x with respect to the set function ϕC
p .

Proof. By definition of the set function ϕC
p and using Eq. (9), the Choquet integral with respect to ϕC

p is

CϕC
p
(x) =

|C |
k=|C |−p+1


S⊆C,|S|=k

mk Min
j∈S

{xj}

=

|C |
k=|C |−p+1

mk


S⊆C,|S|=k

Min
j∈S

{xj}

=

|C |
k=|C |−p+1

mkσ
C
k (x).

So

CϕC
p
(x) =

|C |
k=|C |−p+1

(−1)k−|C |+p−1


k − 2
|C | − p − 1


σ C
k (x).

By setting k = |C | − p + k′, the above can be rewritten as

CϕC
p
(x) =

p
k′=1

(−1)k
′
−1


|C | − p − 2 + k′

|C | − p − 1


σ C

|C |−p+k′(x)

= LCp (x). �

Now, let us consider a set function v of given maximum degree K ≥ 4 given in the form (6) with µp ≤ 0 for all p such
that |Sp| = 2 and µp > 0 for some p such that 3 ≤ |Sp| ≤ K . Thus its Choquet integral given by (10):

Cv(x) =

n
i=1

µixi +
P

p=n+1

µp Min
i∈Sp

{xi}

cannot be readily linearized using the techniques of Section 4.2 or 4.3. The main result of this section is to show that
linearization is nevertheless possible for set functions belonging to the class CK .

Proposition 5. A set function v belongs to the class CK if and only if we can find nonnegative weights qCi such that:

v +


C⊆E

2≤|C |≤K

|C |−1
i=2

qCi ϕ
C
i ∈ B−

K (16)

where we recall that B−

K is the subclass of set functions complying with Definition 1.
Proof. In view of the straightforward property Cv+v′(x) = Cv(x) + Cv′(x) for any two set functions v and v′ and using
Corollary 1, (16) is equivalent to

Cv(x) = Cw(x) −


C⊆E

2≤|C |≤K

|C |−1
i=2

qCi L
C
i (x)

for some set function w ∈ B−

K . The result follows. �
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For any S ⊆ E, |S| ≤ K , letm(S) denote, consistently with (7), the Möbius mass of S for set function v.
Now, for S ⊂ E, 2 ≤ |S| ≤ K , the Möbius mass of S for set function


C⊆E

2≤|C |≤K

|C |−1
i=2 qCi ϕ

C
i is

ΦS(q) =


C⊆E,C⊇S
3≤|C |≤K

|C |−1
i=|C |−|S|+1

(−1)|S|−|C |+i−1


|S| − 2
|C | − i − 1


qCi . (17)

Expression (17) is a linear function of the (unknown) coefficients qci which we denote ΦS(q). We therefore deduce the
following:

Proposition 6. A given set function v belongs to the class CK if and only if the linear system:

m(S) + ΦS(q) ≤ 0 (18)

for all S ⊆ E such that 2 ≤ |S| ≤ K , has a nonnegative solution in the qCi variables.

For fixed K such that 4 ≤ K < n, the linear system (18) has a polynomial number of variables and constraints. We can
therefore deduce the following:

Corollary 2. Testing whether a given set function v of maximum degree K belongs to the class CK and constructing an equivalent
expression for its Choquet integral Cv(x) fitting Definition 2 can be done in time polynomial in n for fixed K .

We note that, for fixed K ≥ 4, polynomial-time recognition is a remarkable property of the class CK in view of the
well-known fact that recognizing submodularity for general set functions of degree greater or equal to 4 is NP-complete.

Proposition 7 below generalizes Proposition 2 and shows how any term of the form −qCp L
C
p (x) (with qCp > 0) can be

linearized. It is interesting to remark that such terms also appear in the linearization of OWA andWOWA operators (which
are particular instances of the Choquet integral) proposed by Ogryczak and Sliwinski [21,22].

Proposition 7. Any term of the form −LCp (x) can be represented as the optimal value of the linear program
Minimize pλ0 +


j∈C

λj

s.t. :
λ0 + λj ≥ −xj (j ∈ C)
λ0 ≷ 0, λj ≥ 0 (j ∈ C).

As a consequence, −LCp (x) is convex in x and the set functions in the class CK are submodular.

Proof. For any fixed x ≥ 0, LCp (x) is the optimal solution value of the following continuous knapsack problem in bounded
variables uj (j ∈ C)

(VI)



Min

j∈C

xjuj = −Max


−


j∈C

xjuj


s.t. :
j∈C

uj = p

0 ≤ uj ≤ 1 (j ∈ C).

Denoting λ0 and λj(j ∈ C) the dual variables, we can see that −LCp (x) is equal to the optimal solution value of the dual:
Min pλ0 +


j∈C

λj

s.t. :
λ0 + λj ≥ −xj (j ∈ C)
λ0 ≷ 0, λj ≥ 0 (j ∈ C)

which proves the claim. Now, the above shows that −LCp (x) can be interpreted as the perturbation function of a linear
minimization problem, from which convexity follows. Since −LCp (x) is the Choquet integral (Lovász extension) of the set
function −ϕC

p , submodularity of the latter is deduced (see [16]). Now (16) shows that any v ∈ CK is submodular, since it is
the sum of a submodular function w ∈ B−

K and a weighted sum (with nonnegative weights) of submodular set functions of
the form −ϕC

i . �
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Let q̄ = (q̄Ci ) be the solution to system (18) obtained after checking membership of v in CK . For any 2 ≤ |S| ≤ K , denote
θ(S) = m(S) + ΦS(q̄). Note that θ(S) ≤ 0, ∀S ⊆ E. Minimizing the Choquet integral Cv(x) for v ∈ CK can be reformulated
as minimizing over x ∈ X the function:

n
i=1

µixi +


2≤|S|≤K

θ(S) Min
j∈S

{xj} −


C⊆E

2≤|C |≤K

|C |−1
i=2

q̄Ci L
C
i (x). (19)

The new compact formulation (CF3) is then deduced as follows:

– Each term in (19) of the form θ(S) Minj∈S{xj} is linearized using the same technique as for (CF1);
– Each term in (19) of the form −q̄Ci L

C
i (x) is linearized using Proposition 7.

We provide below an example of recognition of a submodular degree 4 set function admitting positive and negative
Möbius masses.

Example 1. Consider the submodular degree 4 set function v, defined on a 5-element set (n = 5) having Möbius massesm
with values:

m({5}) = 3
m({1}) = m({4}) = m({1, 2, 4, 5}) = 2
m({2}) = m({3}) = m({1, 2, 3}) = m({1, 3, 4}) = m({2, 3, 4}) = m({2, 3, 5}) = 1
m({1, 5}) = m({1, 2, 4}) = m({1, 3, 5}) = m({3, 4, 5}) = 0
m({1, 2, 3, 5}) = m({1, 3, 4, 5}) = m({2, 3, 4, 5}) = m({1, 2, 3, 4, 5}) = 0
m({1, 2}) = m({1, 3}) = m({1, 4}) = m({2, 4}) = m({2, 5}) = m({3, 5}) = m({4, 5}) = −1
m({1, 2, 5}) = m({1, 4, 5}) = m({2, 4, 5}) = m({1, 2, 3, 4}) = −1
m({2, 3}) = m({3, 4}) = −2.

Now, testingmembership of v inC4 is done using Proposition 6 (the resulting systemhas 20 variables and 25 constraints).
It can be checked that the following nonnegative coefficients solve system (18): q{2,3,5}

2 = 1; q{1,2,3,4}
3 = 1; q{1,2,4,5}

2 = 1. In
view of this, the Choquet integral Cv(x) can be rewritten as

Cv(x) = 2x1 + x2 + x3 + 2x4 + 3x5 − Min{x4, x5} − Min{x3, x4} − L{2,3,5}
2 (x) − L{1,2,3,4}

3 (x) − L{1,2,4,5}
2 (x).

This makes explicit the possibility of linearizing function Cv(x) in a minimization problem since all non-linear terms
appearing in the above expression have the right sign to be linearized using both the results of Section 4.2 and Proposition 7
above.

Remark 4. It is worth mentioning here an interesting subclass of problems to which the results of Section 4.4 readily
apply: this corresponds to maximizing Choquet integrals with respect to set functions v which are both k + 1-additive and
k-monotone for an arbitrary k such that 3 ≤ k ≤ n− 1. Let us briefly explain the reasons for this. According to the definition
of k-monotonicity (13) we know that m(L) ≥ 0 for all L such that |L| ≤ k (just use (13) with A = B and |A| ≤ k). Therefore
the only subsets possibly having negative Möbius masses are those of cardinality k + 1. We also deduce from (13) that for
any subset A ⊆ E of cardinality kwe have

m(A) +


i:m(A∪{i})<0

m(A ∪ {i}) ≥ 0.

Thanks to this property, it is easily seen that −v belongs to the class Ck+1. A proof of this would be very similar to the proof
of Proposition 1 using the following identity: for all S ⊆ E, |S| = k + 1 and zj ∈ R (∀j ∈ S)

i∈S

Min
j∈S\{i}

{zj} = k Min
j∈S

{zj} + Min2
j∈S

{zj}.

Using the above allows one to transform the expression of the Choquet integral C−v(x) into an expression involving non-
linear terms of the form Minj∈S{xj} and LS2(x) with only negative weights, which can be subsequently linearized.

5. Numerical tests

In this section, we present numerical tests showing the potential of the linearization of the Choquet integral
for determining compromise solutions in multicriteria transportation problems and knapsack problems, both in their
continuous and discrete versions. In such problems, n linear criteria (cost functions) must be minimized simultaneously
and we look for a well-balanced Pareto-optimal solution. The worth of any feasible cost vector x = (x1, . . . , xn) is defined
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Table 1
Transportationproblems solvedwith column-
generation applied to formulation (II).

n t # c tcg

20 0.30 41 0
40 16.55 111 0.15
60 240.05 187 1.28
80 2032.45 298 7.19

Table 2
Transportation problems solved with (CF2).

n nc nv t t ′

20 782 635 0.01 0.03
40 2694 2140 0.10 0.24
60 5815 4566 0.44 1.39
80 10199 7959 0.71 4.46

100 15736 12192 1.74 22.17
120 22807 17644 3.60 77.05
140 30904 23890 7.35 679.14
160 39963 30850 14.13 2108.09

by a convex Choquet integral Cv(x) (v is submodular and monotonic). The optimal compromise solution is obtained by
minimizing Cv(x) which ensures both preference for well-balanced solutions as defined in Eq. (4) and Pareto-optimality of
the solution found.

The first set of tests is performed on the transportation problem.We consider a problemwith n agents (clients) andm = n
providers. Each provider is able to produce 2 units of a given product and each agent needs exactly 2 units of this product.
Each agent can be supplied from 3 different providers (the underlying graph is built by randomly generating 3 distinct
matchings between agents and providers). The reason for generating instances that way is that this structure reduces the
possibility to get feasible solutions with ideally balanced cost profiles (x1, . . . , xn), thus making the instances of Choquet
minimization harder to solve. Let yij be the decision variables representing, for every pair (i, j), the quantity delivered to agent
j from provider i. There is one criterion for each agent i, that assigns to any solution y the cost xi =

n
j=1 cijyij where cij are

unit transportation costs randomly generated within the [0, 100] interval. Thus, to each feasible solution characterized by
continuous variables yij is associated a cost vector (x1, . . . , xn). The value of each cost vector is then defined by Cv(x1, . . . , xn)
for some degree 3 submodular capacity v (Möbiusmasses are zero for subsets of size greater than 3). For the tests, capacity v
is defined from itsMöbiusmasses. Thesemasses are randomly drawn so as to preserve submodularity andmonotonicity of v
and constructed in such away that the number of subsets of size 3with nonzeroMöbiusmasses is nearly equal to the number
of subsets of size 2 with nonzero Möbius masses. These instances have been used to test the two linearizations presented
in the paper, i.e. the one based on column-generation applied to the large scale formulation (II) introduced in Section 3;
and the compact formulation (CF2) introduced in Section 4. The experimental results obtained using column-generation are
shown in Table 1 where n is the number of criteria, t is the average solution time over 20 randomly generated instances, #c
the average number of iterations performed to solve the instance (i.e. the total number of columns generated), and tcg the
average solution time to find each generated column. We performed these tests using ILOG CPLEX 12.1 on a computer with
8 Gb of memory and an Intel Core 2 Duo 3.33 GHz processor. All computation times shown are in seconds.

The results obtained using the compact formulation (CF2) are shown in Table 2 where t is the average solution time over
20 randomly generated instances, nc, nv are the number of columns and the number of variables respectively in the LP to be
solved. In addition, we have solved the same instances after adding integrality constraints on variables yij (yij ∈ {0, 1}∀i, j)
to test the efficiency of the approach on the integer version of the problem. Thus we also give t ′, the average solution time
for the integer version of the problem.

The comparison of values obtained for t in Tables 1 and 2 confirm the intuition. We observe indeed that for 3-additive
capacities, using the compact formulation is much more efficient than column-generation on the large scale formulation.
Moreover, (CF2) allows one to solve the integer version of the problem (using a MIP) in reasonable times as can be seen in
the right column of Table 2. Note that, contrary to the column-generation approach, it is quite easy to handle integrality
restrictions on the variables in the compact formulation.

Using similar instances, we have investigated the impact on solution times of the value of K , i.e. the degree of the set
function v considered. Thus, for various values of n (n = 15, 20, 25), we have generated submodular degree K set functions
for increasing values of K . The set functions in CK considered in this experiment are obtained by randomly generating the
various coefficients (with the right sign) in Expression (19). Table 3 gives the average computation time t over 20 instances
for minimizing the Choquet integral with respect to such set functions (using the compact formulation (CF3)). We also give
into brackets the number of nonzero coefficients in the Expression (19) of Choquet integral.We can observe that the compact
formulation CF3 is practically efficient at least for K = 4 and K = 5 up to n = 25. We also note that these computation
times significantly increase with the value of K , but this seems essentially due to the rapid increase in size of the number
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Table 3
Solution times using (CF3) as a function of K .

K 2 3 4 5 6 7

n = 15 0.01 0.02 0.23 2.49 12.74 242.55
(81) (536) (2584) (8590) (21102) (40407)

n = 20 0.01 0.04 1.18 26.75 393.35 >1000
(142) (1282) (8549) (39557) (136457) (369017)

n = 25 0.03 0.08 2.27 271.5 >1000 >1000
(219) (2519) (21494) (127754) (570504) (2 012604)

Table 4
Knapsack problems solved with (CF2).

n nc nv t t ′

20 605 482 0.01 0.03
40 2256 1766 0.16 0.33
60 5209 4068 0.84 1.38
80 9338 7235 1.20 4.98

100 14642 11296 2.35 9.08
120 20078 15492 4.40 18.04
140 28597 22033 7.88 53.47
160 37350 28742 13.19 100.98

of nonzero coefficients in Expression (19) as K increases. We do not provide here comparison with the column-generation
approach because the best known strongly polynomial algorithm [23] requires O(n5) function evaluations, which, in view
of the sizes of the set functions considered in our experiments (see Table 3) would result in redhibitory computation times
in the context of a column-generation procedure.

The second series of tests performed concern knapsack problems in both their continuous and 0–1 versions (such
problems can be found e.g. in portfolio optimization or optimal project selection). The decision variables of the knapsack
problem are zj, j = 1, . . . , n. The associated weights are integers randomly generated in [0, 10 000]. We consider n linear
criteria with coefficient randomly generated in [0, 1000]. With each solution z we associate its image (x1, . . . , xn) in the
space of criteria and we look for z minimizing Cv(x). The set functions v are randomly generated using the same procedure
as above. Tests are only provided for the second linearization (CF2) (see Table 4) with the same conventions for notation as
in Table 2.

Again, it is observed that the compact formulation (CF2) enables one to compute Choquet-optimal knapsack solutions
with many criteria very efficiently, even in the discrete (0–1) version of the problem.

6. Conclusions

The focus of the present paper has been on minimizing Choquet integrals (or Lovász extensions) over polyhedra
or (mixed) integer sets in the convex case (i.e. when the underlying set functions are submodular). In theory, when
the solution sets considered are polyhedra, polynomiality of the problem follows from a general result by Grötschel
et al. (using the so-called ‘‘ellipsoid algorithm’’). However, solving practical instances requires resorting to the simplex
algorithm in conjunction with a column-generation procedure, a computationally demanding approach; as suggested by
the computational experiments reported in Section 5, this approach tends to become impracticable beyond, say, about 80
decision variables. Moreover, possible integrality requirements are difficult to handle within such an approach. In view
of this, we have investigated an alternative approach based on compact formulations which are obtained here for several
classes of submodular set functions, thus encompassing many potential practical applications. The experimental results
obtained (involving instances in dimensions up to n = 160) confirm the superiority of the compact formulations proposed,
both in terms of computational efficiency and easy handling of possible integrality requirements on decision variables. To
realize that the value n = 160 is indeed significant for Choquet minimization, please keep in mind that a piecewise affine
description of a Choquet integral (or Lovász extension) in n-dimensional space involves n! pieces, one for each canonical
simplex associated with a permutation of {1, . . . , n}. So, to the best of our knowledge, the present paper can be viewed as
the first systematic way of solving Choquet minimization problems on solution sets of significantly large dimensions.
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