76 research outputs found

    Multi-modal acoustic-photo-acoustic imaging for small animal imaging

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T

    Get PDF
    We report O-17 dynamic nuclear polarisation (DNP) enhanced solid-state NMR experiments at 18.8 T. Several formulations were investigated on the Mg(OH)(2) compound. A signal enhancement factor of 17 could be obtained when the solid particles were incorporated into a glassy o-terphenyl matrix doped with BDPA using the Overhauser polarisation transfer scheme whilst the cross effect mechanism enabled by TEKPol yielded a slightly lower enhancement but more time efficient data acquisition

    Flexible Ultrasonic Transducers and Their Performance

    Get PDF
    Peer reviewed: YesNRC publication: Ye

    More Homogeneous Capillary Flow and Oxygenation in Deeper Cortical Layers Correlate with Increased Oxygen Extraction

    Get PDF
    Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation

    Effects of a short residential thermal spa program to prevent work-related stress/burnout on stress biomarkers: The thermstress proof of concept study

    Get PDF
    Objective Work-related stress is a public health issue. Stress has multiple physical and psychological consequences, the most serious of which are increased mortality and cardiovascular morbidity. The ThermStress protocol was designed to offer a short residential thermal spa program for work-related stress prevention that is compatible with a professional context. Methods Participants will be 56 male and female workers aged 18 years or above. All participants will undergo a 6-day residential spa program comprising psychological intervention, physical activity, thermal spa treatment, health education, eating disorder therapy and a follow-up. On six occasions, participants’ heart rate variability, cardiac remodelling and function, electrodermal activity, blood markers, anthropometry and body composition, psychology and quality of life will be measured using questionnaires and bone parameters. Results This study protocol reports the planned and ongoing research for this intervention. Discussion The ThermStress protocol has been approved by an institutional ethics committee (ANSM: 2016 A02082 49). It is expected that this proof of concept study will highlight the effect of a short-term specific residential thermal spa program on the prevention of occupational burnout and work-related stress. The findings will be disseminated at several research conferences and in published articles in peer-reviewed journals. Trial Registration: ClinicalTrials.gov (NCT 03536624, 24/05/2018

    Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe

    Get PDF
    The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant R01NS067050)National Institutes of Health (U.S.) (Grant R01NS057198)National Institutes of Health (U.S.) (Grant R01EB000790)American Heart Association (Grant 11SDG7600037)Advanced Multimodal NeuroImaging Training Program (R90DA023427

    Numerical simulation of wave breaking

    Get PDF
    This paper is devoted to the numerical simulation of wave breaking. It presents the results of a numerical workshop that was held during the conference LOMA04. The objective is to compare several mathematical models (compressible or incompressible) and associated numerical methods to compute the flow field during a wave breaking over a reef. The methods will also be compared with experiments

    Off-the-Shelf Gd(NO3)(3) as an Efficient High-Spin Metal Ion Polarizing Agent for Magic Angle Spinning Dynamic Nuclear Polarization

    Get PDF
    [Image: see text] Magic angle spinning nuclear magnetic resonance spectroscopy experiments are widely employed in the characterization of solid media. The approach is incredibly versatile but deleteriously suffers from low sensitivity, which may be alleviated by adopting dynamic nuclear polarization methods, resulting in large signal enhancements. Paramagnetic metal ions such as Gd(3+) have recently shown promising results as polarizing agents for (1)H, (13)C, and (15)N nuclear spins. We demonstrate that the widely available and inexpensive chemical agent Gd(NO(3))(3) achieves significant signal enhancements for the (13)C and (15)N nuclear sites of [2-(13)C,(15)N]glycine at 9.4 T and ∼105 K. Analysis of the signal enhancement profiles at two magnetic fields, in conjunction with electron paramagnetic resonance data, reveals the solid effect to be the dominant signal enhancement mechanism. The signal amplification obtained paves the way for efficient dynamic nuclear polarization without the need for challenging synthesis of Gd(3+) polarizing agents
    corecore