333 research outputs found

    Elastic turbulence in shear banding wormlike micelles

    Full text link
    We study the dynamics of the Taylor-Couette flow of shear banding wormlike micelles. We focus on the high shear rate branch of the flow curve and show that for sufficiently high Weissenberg numbers, this branch becomes unstable. This instability is strongly sub-critical and is associated with a shear stress jump. We find that this increase of the flow resistance is related to the nucleation of turbulence. The flow pattern shows similarities with the elastic turbulence, so far only observed for polymer solutions. The unstable character of this branch led us to propose a scenario that could account for the recent observations of Taylor-like vortices during the shear banding flow of wormlike micelles

    Interface instability in shear banding flow

    Get PDF
    We report on the spatio-temporal dynamics of the interface in shear-banding flow of a wormlike micellar system (cetyltrimethylammonium bromide and sodium nitrate in water) during a start-up experiment. Using the scattering properties of the induced structures, we demonstrate the existence of an instability of the interface between bands along the vorticity direction. Different regimes of spatio-temporal dynamics of the interface are indentified along the stress plateau. We build a model based on the flow symetry which qualitatively describes the observed patterns

    Time scales in shear banding of wormlike micelles

    Get PDF
    Transient stress and birefringence measurements are performed on wormlike micellar solutions that "shear band", i.e. undergo flow-induced coexistence of states of different viscosities along a constant stress "plateau". Three well-defined relaxation times are found after a strain rate step between two banded flow states on the stress plateau. Using the Johnson-Segalman model, we relate these time scales to three qualitatively different stages in the evolution of the bands and the interface between them: band destabilization, reconstruction of the interface, and travel of the fully formed interface. The longest timescale is then used to estimate the magnitude of the (unknown) "gradient" terms that must be added to constitutive relations to explain the history independence of the steady flow and the plateau stress selection

    Simulating Plasmon Resonances of Gold Nanoparticles with Bipyramidal Shapes by Boundary Element Methods

    Get PDF
    Computational modeling and accurate simulations of localized surface plasmon resonance (LSPR) absorption properties are reported for gold nanobipyramids (GNBs), a class of metal nanoparticle that features highly tunable, geometry-dependent optical properties. GNB bicone models with spherical tips performed best in reproducing experimental LSPR spectra while the comparison with other geometrical models provided a fundamental understanding of base shapes and tip effects on the optical properties of GNBs. Our results demonstrated the importance of averaging all geometrical parameters determined from transmission electron microscopy images to build representative models of GNBs. By assessing the performances of LSPR absorption spectra simulations based on a quasi-static approximation, we provided an applicability range of this approach as a function of the nanoparticle size, paving the way to the theoretical study of the coupling between molecular electron densities and metal nanoparticles in GNB-based nanohybrid systems, with potential applications in the design of nanomaterials for bioimaging, optics and photocatalysis

    An elasto-visco-plastic model for immortal foams or emulsions

    Get PDF
    A variety of complex fluids consist in soft, round objects (foams, emulsions, assemblies of copolymer micelles or of multilamellar vesicles -- also known as onions). Their dense packing induces a slight deviation from their prefered circular or spherical shape. As a frustrated assembly of interacting bodies, such a material evolves from one conformation to another through a succession of discrete, topological events driven by finite external forces. As a result, the material exhibits a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion, object coalescence, molecular diffusion), and the material properties under low or vanishing stress may alter with time, a phenomenon known as aging. We neglect such effects to address the simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the ability of such soft materials to deform substantially in the elastic regime (be it compressible or not) before they undergo (incompressible) plastic creep -- or viscous flow under even higher stresses.Comment: 69 pages, 29 figure

    Taylor-like vortices in the shear-banding flow of giant micelles

    Full text link
    Using flow visualizations in Couette geometry, we demonstrate the existence of Taylor-like vortices in the shear-banding flow of a giant micelles system. We show that vortices stacked along the vorticity direction develop concomitantly with interfacial undulations. These cellular structures are mainly localized in the induced band and their dynamics is fully correlated with that of the interface. As the control parameter increases, we observe a transition from a steady vortex flow to a state where pairs of vortices are continuously created and destroyed. Normal stress effects are discussed as potential mechanisms driving the three-dimensional flow.Comment: 5 pages, 4 figure

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    Unstable Flow and Non-Monotonic Constitutive Equation of Transient Networks

    Full text link
    We have measured the nonlinear rheological response of a model transient network over a large range of steady shear rates. The system is built up from an oil in water droplet microemulsion into which a telechelic polymer is incorporated. The phase behaviour is characterized which comprises a liquid-gas phase separation and a percolation threshold. The rheological measurements are performed in the one phase region above the percolation line. Shear thinning is observed for all samples, leading in most cases to an unstable stress response at intermediate shear rates. We built up a very simple mean field model which involves the reduction of the residence time of the stickers in the droplets due to the chain tensions at high shear. The computed constitutive equation is non-monotonic with a range where the stress is a decreasing function of the rate, a feature that indeed makes homogeneous flows unstable. The computed the flow curves compare well to the experiments.Comment: mai 200

    In vivo evaluation of a hybrid nanoparticle for molecular imaging of amyloid aggregation

    Get PDF
    International audienceAmyloid-β (Aβ) fibrillization is described as a central event in the pathogenesis of Alzheimer’s disease (AD). Amyloid imaging is expected to play a pivotal role in early and differential diagnosis of dementias, and in the evaluation of anti-Aβ treatments. Luminescent conjugated oligothiophenes (LCO) have been proposed as optical biomarkers of protein fibrillation [1]. In this paper, we evaluated a fluorescent magnetic hybrid nanoprobe (HNP5011), based on gadolinium fluoride nanoparticles functionalized with luminescent conjugated polythiophenes moieties (Fig. 1). The aim of this study was to investigate its potential for molecular imaging in a rat model bearing intracerebral pre-aggregated Aβ peptides

    The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation

    Get PDF
    Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization
    corecore