10 research outputs found

    Age-Associated Remodeling of Neural and Nonneural Thymic Catecholaminergic Network Affects Thymopoietic Productivity

    No full text
    Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naive T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via beta(2)- and alpha(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of beta(2)- and alpha(1)-AR-expressing thymic nonlymphoid cells and the alpha(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving alpha(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naive T cell output. Copyright (C) 2011 S. Karger AG, Base

    Cutaneous Melanoma

    No full text

    Two-particle Bose–Einstein correlations in pp collisions at s√=13 TeV measured with the ATLAS detector at the LHC

    Get PDF
    This paper presents studies of Bose–Einstein correlations (BEC) in proton–proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 μb−1 and 8.4 nb−1, respectively. The BEC are measured for pairs of like-sign charged particles, each with |η|100 MeV and the second with particle pT>500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair

    Animal Models for Candidiasis

    No full text

    Two-particle Bose-Einstein correlations in pp collisions at root s=13 TeV measured with the ATLAS detector at the LHC

    No full text

    Measurement of the inclusive <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:math> production cross section in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>lepton</mml:mi><mml:mo>+</mml:mo><mml:mtext>jets</mml:mtext></mml:mrow></mml:math> channel in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi><mml:mi>p</mml:mi></mml:math> collisions at <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>7</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mi>TeV</mml:mi></mml:math> with the ATLAS detector using support vector machines

    Get PDF
    International audienceA measurement of the top quark pair-production cross section in the lepton+jets decay channel is presented. It is based on 4.6  fb-1 of s=7  TeV pp collision data collected during 2011 by the ATLAS experiment at the CERN Large Hadron Collider. A three-class, multidimensional event classifier based on support vector machines is used to differentiate tt¯ events from backgrounds. The tt¯ production cross section is found to be σtt¯=168.5±0.7(stat) -5.9+6.2(syst) -3.2+3.4(lumi)  pb. The result is consistent with the Standard Model prediction based on QCD calculations at next-to-next-to-leading order
    corecore