5 research outputs found

    Formation and modern state of ecosystem in Tolmachevskoye reservoir (Kamchatka) and the acclimatized there population of kokanee ( <i>Oncorhynchus nerka kennerlyi</i>)

    Get PDF
    Evolution of local ecosystem in Tolmachevskoye reservoir and changes in its artificial population of kokanee salmon are traced on the data of authors’ observations in 2009-2013 and previous archival and cited data. Decreasing of inorganic phosphorous, nitrogen, and bioavailable iron is detected in the water against a background of water warming. As the result, phytoplankton production and abundance decrease, its species composition becomes simpler, chlorophyll а concentration becomes lower. Zooplankton abundance is stable (1-2 g/m3), as before the reservoir appearance, but species structure of plankton crustaceans is changed, and the copepods Cyclops scutifer , small cladocerans Holopedium gibberum, Bosmina longirostris , and Daphnia ( Daphnia ) cristata group prevail recently. The salmon food spectrum is wide and includes a lot of unedible fractions as wood chips and plant detritus; coefficient of consumption is high - these factors indicate a deficiency of forage resources for fish. The fish condition indicates a chronic malnutrition. The state of female gonads is satisfactory, without any visible pathology, as in 2003-2007, but the oocytes resorption goes concurrently with maturation of gonads that is a sign of hard competition for the food within the kokanee population. The current stable state of the population differs from preceded stages of its development by lower stock add smaller size of fish, the age of spawning is now 4-7 years. Among other freshwater fish, the kokanee salmon is distinguished by high content of ω-3 polyunsaturated fatty acids. Artificial populations in Kamchatka could be considered as a resource for both amateur or sport fishing and commercial aquaculture

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    Get PDF
    Measurement(s) : temperature of water, temperature profile Technology Type(s) : digital curation Factor Type(s) : lake location, temporal interval Sample Characteristic - Environment : lake, reservoir Sample Characteristic - Location : global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change

    Nutrient status and plankton of nearshore water area of Kronotsky Gulf in August 2015

    No full text
    Firstly we carried out a hydrological and hydrobiological study of the nearshore area, at a depth up to 15 m of Kronotsky Gulf (Kronotsky Reserve, Kamchatka). We have shown that the washout from rivers influences significantly the hydrochemical status of nearshore areas. This parameter determines the level of organic and mineral forms in the compound of phosphorus and nitrogen pools and the content of iron in sea water. The hydrochemical status (particularly – the content of organic compounds) influences the structure of phytoplankton. Diatoms dominate in the locations with relatively high concentrations of mineral forms of phosphorus and nitrogen. In locations with an increased level of these elements in the contents of organic compounds, heterotrophic dinophytes and rotifers dominate. Lists of species of phyto- and zooplankton and their quantitative assessment are presented

    Global data set of long-term summertime vertical temperature profiles in 153 lakes

    No full text
    Abstract Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
    corecore