693 research outputs found

    Modo pendular y modo circular en la codificación del tiempo en el arte

    Get PDF

    Dynamical heat channels

    Full text link
    We consider heat conduction in a 1D dynamical channel. The channel consists of a group of noninteracting particles, which move between two heat baths according to some dynamical process. We show that the essential thermodynamic properties of the heat channel can be evaluated from the diffusion properties of the underlying particles. Emphasis is put on the conduction under anomalous diffusion conditions. \\{\bf PACS number}: 05.40.+j, 05.45.ac, 05.60.cdComment: 4 figure

    Anomalous kinetics and transport from 1D self--consistent mode--coupling theory

    Full text link
    We study the dynamics of long-wavelength fluctuations in one-dimensional (1D) many-particle systems as described by self-consistent mode-coupling theory. The corresponding nonlinear integro-differential equations for the relevant correlators are solved analytically and checked numerically. In particular, we find that the memory functions exhibit a power-law decay accompanied by relatively fast oscillations. Furthermore, the scaling behaviour and, correspondingly, the universality class depends on the order of the leading nonlinear term. In the cubic case, both viscosity and thermal conductivity diverge in the thermodynamic limit. In the quartic case, a faster decay of the memory functions leads to a finite viscosity, while thermal conductivity exhibits an even faster divergence. Finally, our analysis puts on a more firm basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion

    Thermal conductivity of one-dimensional lattices with self-consistent heat baths: a heuristic derivation

    Full text link
    We derive the thermal conductivities of one-dimensional harmonic and anharmonic lattices with self-consistent heat baths (BRV lattice) from the Single-Mode Relaxation Time (SMRT) approximation. For harmonic lattice, we obtain the same result as previous works. However, our approach is heuristic and reveals phonon picture explicitly within the heat transport process. The results for harmonic and anharmonic lattices are compared with numerical calculations from Green-Kubo formula. The consistency between derivation and simulation strongly supports that effective (renormalized) phonons are energy carriers in anharmonic lattices although there exist some other excitations such as solitons and breathers.Comment: 4 pages, 3 figures. accepted for publication in JPS

    Long time, large scale limit of the Wigner transform for a system of linear oscillators in one dimension

    Get PDF
    We consider the long time, large scale behavior of the Wigner transform W_\eps(t,x,k) of the wave function corresponding to a discrete wave equation on a 1-d integer lattice, with a weak multiplicative noise. This model has been introduced in Basile, Bernardin, and Olla to describe a system of interacting linear oscillators with a weak noise that conserves locally the kinetic energy and the momentum. The kinetic limit for the Wigner transform has been shown in Basile, Olla, and Spohn. In the present paper we prove that in the unpinned case there exists γ0>0\gamma_0>0 such that for any γ(0,γ0]\gamma\in(0,\gamma_0] the weak limit of W_\eps(t/\eps^{3/2\gamma},x/\eps^{\gamma},k), as \eps\ll1, satisfies a one dimensional fractional heat equation tW(t,x)=c^(x2)3/4W(t,x)\partial_t W(t,x)=-\hat c(-\partial_x^2)^{3/4}W(t,x) with c^>0\hat c>0. In the pinned case an analogous result can be claimed for W_\eps(t/\eps^{2\gamma},x/\eps^{\gamma},k) but the limit satisfies then the usual heat equation

    Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier

    Full text link
    We address the problem of heat conduction in 1-D nonlinear chains; we show that, acting on the parameter which controls the strength of the on site potential inside a segment of the chain, we induce a transition from conducting to insulating behavior in the whole system. Quite remarkably, the same transition can be observed by increasing the temperatures of the thermal baths at both ends of the chain by the same amount. The control of heat conduction by nonlinearity opens the possibility to propose new devices such as a thermal rectifier.Comment: 4 pages with figures included. Phys. Rev. Lett., to be published (Ref. [10] corrected

    Temperature dependence of thermal conductivity in 1D nonlinear lattices

    Full text link
    We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the mean-free-path of the effective phonon is inversely proportional to the strength of nonlinearity. We demonstrate analytically and numerically that the temperature behavior of the heat conductivity κ1/T\kappa\propto1/T is not universal for 1D harmonic lattices with a small nonlinear perturbation. The computer simulations of temperature dependence of heat conductivity in general 1D nonlinear lattices are in good agreements with our theoretic predictions. Possible experimental test is discussed.Comment: 6 pages and 2 figures. Accepted for publication in Europhys. Let

    Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains

    Full text link
    The harmonic Fibonacci chain, which is one of a quasiperiodic chain constructed with a recursion relation, has a singular continuous frequency-spectrum and critical eigenstates. The validity of the Fourier law is examined for the harmonic Fibonacci chain with stochastic heat baths at both ends by investigating the system size N dependence of the heat current J and the local temperature distribution. It is shown that J asymptotically behaves as (ln N)^{-1} and the local temperature strongly oscillates along the chain. These results indicate that the Fourier law does not hold on the harmonic Fibonacci chain. Furthermore the local temperature exhibits two different distribution according to the generation of the Fibonacci chain, i.e., the local temperature distribution does not have a definite form in the thermodynamic limit. The relations between N-dependence of J and the frequency-spectrum, and between the local temperature and critical eigenstates are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma

    In-memory computing with emerging memory devices: Status and outlook

    Get PDF
    Supporting data for "In-memory computing with emerging memory devices: status and outlook", submitted to APL Machine Learning
    corecore