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Abstract— In-memory computing (IMC) can accelerate
data-intensive tasks, such as matrix-vector multiplication
(MVM) or artificial neural networks (ANN) inference, by
means of the crosspoint memory array, allowing to reduce
time and energy consumption. IMC accuracy, however, is
affected by nonidealities, such as variability of the con-
ductive weights or IR drop along wires due to parasitic
resistances, whose impact steeply increases with the in-
crease of array size. This work proposes a compact model
to assess the impact of nonidealities for various circuital
implementations, together with architectural schemes for
their mitigation based on replicated arrays. The proposed
mitigation techniques allow to restore the ANN accuracy
from 72.7% to 94.9%, close to the software accuracy of
96.9%, in view of an increased area and energy consump-
tion.

Index Terms— In-memory computing, deep learning,
emerging memory technologies, hardware accelerator, re-
sistive switching memory.

I. INTRODUCTION

The spread of artificial intelligence (AI) is increasing the
request for data-intensive and decentralized computing tasks,
colliding with the memory bottleneck of traditional computing
architectures. In-memory computing (IMC) overcomes this
limitation by merging the memory and computational units, as
in the case of crosspoint memory array for the acceleration of
matrix-vector multiplication (MVM), sketched in Fig. 1a [1].
By applying a voltage vector V at the bitlines (rows), the
resistive memory elements produce current contributions that
are collected at the sourceline (column) grounds resulting in
an output current vector I = GV , where G is the conductance
matrix. Exploiting Ohm’s and Kirchhoff’s laws, crosspoint
array is thus capable of performing a one-step in situ MVM.
Multilevel programming of the memory devices, compatibility
with the back-end-of-line (BEOL) process, and 3D stackability
further boost the performances of the accelerator in terms
of energy efficiency, area occupation, and integration density.
Moreover, thanks to the inherent parallelism of the archi-
tecture [2], crosspoint-based MVM shows a computational
complexity of O(1). Several data-intensive applications can
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Fig. 1. Schematics of a (a) one-resistor (1R) and (b) one-transistor/one-
resistor (1T1R) crosspoint array affected by IR drop due to parasitic
wire resistances. Assuming a uniform voltage vector (V0 = 0.2 V),
uniform conductance pattern (G = 125 µS) and a parasitic resistance
r = 1 Ω, the device current profiles for (c) 1R and (d) 1T1R configu-
ration result strongly non-uniform. In particular, current profile in 1T1R
array is asymmetric because of the presence of the transistor, whose
conductance is modified by the IR drop at the sourcelines.

benefit from IMC approach, such as Artificial Neural Net-
works (ANN) inference [3], [4] and training [2], combinatorial
optimization [5], and image compression [6].

Various parasitic effects limit the actual possibilities of
crosspoint array. Device nonidealities, such as conductance
drift [7] and variability [8], [9], can affect the MVM com-
putation, degrading the accuracy of the implemented task. For
instance, in the application of ANN inference acceleration,
the combination of limited weight resolution and conductance
variability due to programming error can significantly de-
crease the classification accuracy [9]. Furthermore, nonideal
conductors give rise to IR drop along wires, which can be
schematically modeled by means of lumped parasitic resis-
tances, as shown in Fig. 1a. IR drop causes a distortion of
voltages along bitlines and sourcelines, which increasingly
deviate from the nominal input signals or ground, affecting
the MVM computation. IR drop is particularly detrimental
for IMC because of the parallel readout of numerous devices,
resulting in a large amount of current flowing through the
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Fig. 2. Schematic diagrams depicting the working principle of the various binary MVM implementations, namely (a) 1R, (b) 1T1R with application
of input signals at the bitline, (c) 1T1R with application of input signals at the transistor gates and (d) 1T1R with application of input signals at the
transistor gates and sequential readout of one bitline at a time.

wires, and of the increased wire resistivity for sub-50 nm
nodes, due to the increased electron surface scattering [10].
Furthermore, as will be discussed in the following, error due
to IR drop scales approximately linearly with the average
device conductance and quadratically with the size of the array,
preventing the up-scaling of the computing cores and limiting
the actual computational complexity of the architecture. To
cope with parasitic IR drop, several techniques were proposed
at device level [3], [4], at algorithmic level via ad hoc scaling
vectors or activation functions [11], [12], and at training level
via parasitic-aware training schemes [13], [14].

In this work we present a compact model for IR drop
and variability, a closed-form relationship for minimizing the
error and identifying the optimum array size, and a mitigation
technique based on replicated arrays. While the replication
schemes for parasitics mitigation were already proposed for
purely resistive arrays [15], here we expand the scheme set and
the application portfolio to more complex array configurations
that involve access transistors. Finally, we demonstrate their
effectiveness by simulating a crosspoint accelerator of ANN
inference for MNIST image classification [16].

II. CROSSPOINT ARRAY CONFIGURATIONS

The MVM concept can be implemented in various array
configurations. In particular, Fig. 1a shows the one-resistor
(1R) configuration, which allows to perform MVM while
keeping a compact architecture and an integration density up to
4F 2/n, where F is the lithographic feature size of the process
and n the number of stacked layers. A significant drawback of
the 1R structure is the presence of sneakpath currents in unde-
sired cells or other leakage currents during the programming
phase [17]. To overcome these programming issues, an access
transistor is typically added in series to the resistive device,
obtaining the one-transistor/one-resistor (1T1R) configuration,
shown in Fig. 1b. This configuration allows for a finer current
control, at the cost of a bulkier footprint and a more complex
architecture that needs to accommodate a third terminal.

In 1T1R arrays, MVM can be carried out through two
different approaches, depending on where the input signal is
applied. Fig. 2b shows the first approach, which we will refer
to as the bitline-signal approach, where the input voltages are
applied at the bitlines and the output currents are collected at
the grounded sourcelines. In this implementation, conceptually

similar to 1R array MVM, the transistors are simply enabled
during the computing phase. Alternatively, in the second
approach depicted in Fig. 2c, which will be referred to as
the gate-signal approach, the input voltages are applied at
the transistor gate terminals, while supplying a fixed voltage
VREAD and collecting the output currents at the bitlines.
Because of the nonlinear trans-characteristic of the transistor,
the latter approach typically involves binary conductances and
gate voltages. Gate-signal implementation can also involve
temporal encoding of the input signal, consisting of mod-
ulating the input gate signal in pulse width and acquiring
the MVM output through analog integration. Finally, both
1R and 1T1R structures can make use of sequential readout,
consisting of supplying the input voltage vector (or VREAD)
and collecting currents one sourceline (or bitline) at a time.
Fig. 2d shows the sequential approach in the case of 1T1R
array. To investigate the impact of the various nonidealities on
the proposed array configurations, we adopted a simulation
framework based on an ad hoc fast numerical algorithm for
the nodal analysis of crosspoint arrays affected by parasitic
effects [11].

Figs. 1c-d show the current contribution Icell of the memory
devices in presence of IR drop for 1R and 1T1R config-
urations, respectively, where we assumed a N×N square
crosspoint array (N = 64) based on HfO2 resistive switching
memory (RRAM) devices [18], a uniform voltage vector
(V0 = 0.2 V), a uniform conductance pattern (G = 125 µS),
and a parasitic wire resistances of value r = 1 Ω. While the
device current profile should ideally be uniform across the
array, current profiles are strongly non-uniform because of IR
drop, with the current error that increases as the cell position
becomes farther from grounds and voltage signals. Also, in the
case of 1T1R array the curve in Fig. 1d is asymmetric because
IR drop at the sourcelines increases the source voltages,
thus decreasing the transistor overdrive voltages and the cell
currents. As a result, cells distant from the grounds and close
to the input voltages experience a stronger current reduction
compared to cells distant from the input voltages and close
to the grounds. Nevertheless, 1T1R configuration is typically
less affected from IR drop than 1R configuration, since the
access transistors can reduce the average device conductance
and thus IR drop.

Fig. 3 shows the average IR drop impact on the output
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Fig. 3. Normalized average current output in presence of IR drop for various binary MVM implementations, namely (a) 1R, (b) 1T1R with application
of input signals at the bitline, (c) 1T1R with application of input signals at the transistor gates and (d) 1T1R with application of input signals at the
transistor gates and sequential readout of one bitline at a time. IR drop impact decreases thanks to the adoption of the transistor, which reduces
the average cell conductance (b)-(c)-(d), to the gate-signal approach, where all zero-input columns do not represent possible leakage paths (c)-(d),
and to the sequential readout, where IR drop along sourcelines is practically negligible (d). Notice that 1R scenario applies also for 1T1R arrays
having highly conductive transistors. Generally, the nominal gate voltage influences IR drop.

current vector for various binary MVM implementations nor-
malized in current units, where a current unit is the current
flowing through an ideal cell in the low resistive state (LRS)
considering the specific array configuration. Figs. 3a-b, differ-
ent only in the presence of the access transistor, confirm the
beneficial effect of 1T1R configuration in decreasing IR drop.
Compared to bitline-signal approach, gate-signal approach
reduces slightly further the error (Fig. 3c), since all array
columns receiving zero as input do not contribute to possible
leakage paths. When adopting sequential readout, IR drop
along sourcelines is practically negligible since at maximum
one current unit is flowing through each sourceline at a time,
resulting in a significant reduction of the error at the cost of a
strongly increased latency (Fig. 3d). In all cases, the average
error increases with the parasitic wire resistance value r.

From a spatial standpoint, the error increases with increasing
distance from voltage generators (Fig. 3a-b) or sourceline
grounds (Fig. 3c), resulting in a different output current
orientation because of the different position of the acquisition
chain. The sequential approach (Fig. 3d) does not show a clear
spatial trend, since IR drop is significant only along one axis.

III. COMPACT MODELING OF IR DROP AND VARIABILITY

The compact model of IR drop relies on two main assump-
tions that have been verified through Monte Carlo simulations.
The first assumption is that, given two 1R arrays, one with
a random pattern G and one with a uniform pattern with
average conductance G, they experience a similar average
IR drop that depends neither on the input voltage vector nor
on the average input voltage. Thus, regardless of the actual
patterns, we can consider arrays with uniform conductance
G and uniform applied voltage V0. The second assumption
is that the overall impact of IR drop is well described by
the IR drop affecting a particular reference cell, located at
sourceline index ≈ 0.425 · N and bitline index ≈ 0.575 · N .
Indeed, Monte Carlo simulations and approximated solutions
of the differential equation system describing IR drop in
the uniform scenario [11] indicate such reference cell as the
one experiencing the average IR drop for a wide range of
applications and array parameters. Hence, the compact model
aims to assess the IR drop impact at the reference cell, which
will result to be an accurate estimation of the average error
across the whole array.

Afterward, we assume that in each device flows an ideal
current I = V0 ·G contributing to the current flowing through
bitline wire resistances, which increases linearly from I to
N ·I approaching the voltage generators, as depicted in Fig. 4a.
Considering a wire resistance r, the voltage at the top electrode
of the reference cell is V ≃ V0−Ir ·0.335N2, where IR drop
is computed as the sum of consecutive integer currents. Since
the same applies to the bottom electrode, the voltage across
the cell is V∆ ≃ V0 − Ir · 0.67N2, generating a current

IIR,0 ≃ I − IrG · 0.67N2 (1)

and hence an error

ε ≃ rG · 0.67N2 (2)

Error in Eq. (2), however, does not take into account the
reduction of cell current I due to IR drop. To account for
this second-order effect, we proceed with the second iteration
of the numerical estimation, deriving how much is the IR
drop-induced error when considering the cell current IIR,0,
described in Eq. (1). By solving the equation system, the error
at the reference memory cell can be estimated as

ε1R ≃ αrGN2

1 + αrGN2
(3)

where α = 0.67.
In the general case of a rectangular array of size N1 ×N2,

the model can be applied by adopting as array size N the
normalized diagonal size, namely N =

√
(N2

1 +N2
2 )/2,

while in the case of different wire resistances between bit-
lines and sourcelines, it is sufficient to consider r as the
weighted average resistance. Furthermore, by replacing G
with an effective conductance Geff , the model can also be
extended to squared arrays implemented in the various 1T1R
configurations. Fig. 4b shows the estimated Geff for the
various MVM implementations, empirically extracted as the
best-fitting parameter for the simulation results. In 1T1R
arrays, the presence of a transistor in series to the memory
device inherently decreases the average conductance, while IR
drop at sourcelines additionally reduces transistor conductance
because of the reduced gate-source voltage VGS . Geff for the
gate-signal 1T1R configuration is slightly lower than in the
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Fig. 4. (a) Approximation for IR drop modeling. (b) Empirically extracted Geff for IR drop modeling, for various MVM implementations. (c) Simulation
results and compact model of IR drop-induced error as a function of the array size N for various RRAM-based MVM implementations. (d) Simulation
results and compact model of error due to IR drop and conductance variability in 1R arrays based on various memory technologies. By including
variability, error curves become non-monotonic, identifying an optimum array size NOPT that minimizes the error. (e) Simulation results and
compact model in presence of IR drop and conductance variability for various RRAM-based MVM implementations.

TABLE I
CONDUCTANCE AND CONDUCTANCE VARIABILITY OF VARIOUS MEMORY

DEVICES (INDICATIVE VALUES, NOT REPRESENTING THE MEDIAN).

STT-MRAM [19] RRAM [18] PCM [20] FEFET [21]

GLRS (σLRS) 605 µS (103 µS) 200 µS (20 µS) 30 µS (2 µS) 35 µS (2 µS)

GHRS (σHRS) 380 µS (30 µS) 10 µS (5 µS) 2 µS (1.6 µS) 1 µS (0.3 µS)

bitline-signal case, with a reduction that is weakly dependent
on the gate signal sparsity, since all array columns receiving
zero as input do not contribute to possible leakage paths.
Finally, Geff for the sequential MVM is significantly lower,
because of the negligible IR drop along sourcelines.

Fig. 4c shows the calculated IR drop-induced current error
as a function of the array size for the various MVM imple-
mentations, compared with the average simulation output. The
simulation assumed random binary MVM having low resistive
state at GLRS = 125 µS and high resistive state (HRS) at
GHRS = 8 µS occurring with equal probabilities, namely with
a pattern density of 50%. Activation density was set at 50%,
while parasitic resistances were set at r = 3 Ω. Simulation
results, reported in normalized current units to facilitate the
comparison, are in good agreement with the proposed compact
modeling based on Eq. (3) and Geff , with a partial exception
for the sequential MVM. Indeed, in sequential MVM the
average sourceline resistance produces a minor error which
cannot be properly included in Geff , since its value quickly
increases at low array sizes and then saturates.

While IR drop-induced error quickly increases when in-
creasing the array size, error due to device or read variabil-
ity decreases, because of the averaging of more conductive
weights. In particular, the variability-induced error for a 1R
configuration can be estimated as

εvar =

√
2

π
· σ

G ·
√
N

(4)

where σ is root sum square of the HRS and LRS con-
ductance variability, and the coefficient

√
2/π stems from the

computation of the error in absolute value.
Fig. 4d shows the root sum square of IR drop and variability

induced errors as a function of the array size, assuming 1R
configuration based on various emerging memory technolo-
gies, such as spin-transfer torque magnetic random-access
memory (STT-MRAM) [19], resistive random access memory
(RRAM) [18], phase change memory (PCM) [20], and ferro-
electric field-effect transistor (FeFET) [21]. The devices were
incorporated in the compact model by considering their binary
conductance values with the corresponding standard deviations
for variability, according to the values reported in Tab. I.

For small array size N, the error is dominated by variability,
while IR drop becomes the most significant contribution when
increasing the array size. This non-monotonic behavior allows
to identify the point of minimum error in correspondence of
an optimum array size NOPT , which can be approximately
derived as

NOPT ≃ 5

√
σ2

2π · α2G
4
r2

(5)

Fig. 4d also includes the compact model estimations, high-
lighting the good agreement with simulation results. Finally,
Fig. 4e shows the impact of both RRAM variability and IR
drop in the various RRAM-based MVM implementations. In
1T1R configurations, Eq. 4 allows us to assess the variability
impact by considering the actual cell conductance, namely the
series of the transistor and device conductances.

IV. REPLICATION SCHEMES

Fig. 5a shows the simulated device current profile for a 1R
array with uniform voltage input and conductance pattern in
presence of IR drop. As confirmed by the device current pro-
file, impact of IR drop along the array is strongly non-uniform,
which is particularly detrimental for IMC applications.

If the application of voltage signals and the acquisition of
the output currents take place on the opposite array edges, the
current profile results mirrored, as shown in Fig. 5b. The two
current profiles can be combined by averaging the output cur-
rents of the two MVMs, to improve the uniformity of the error
due to IR drop. Such approach can be implemented through the
adoption of a second array with remapped conductive weights
and input signals, with the additional advantage of providing
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Fig. 5. (a) The device current profiles in presence of IR drop are
strongly non-uniform. (b) Assuming a uniform pattern and input, if the
application of voltage signals and the acquisition of currents take place
on the opposite edges of the array, the current profile results mirrored.
By averaging the two current outputs, one can distribute IR drop-induced
error more uniformly across the devices.

a mitigation of conductance variability thanks to the weight
redundancy [22].

Figs. 6a-d display the standard array (R1) for the MVM and
the proposed replication schemes for 1R and 1T1R configura-
tions. The replication schemes vary depending on the number
of replication arrays to be implemented, such as 2 (R2, in
Fig. 6b), 4 (R4, in Fig. 6c), or 8 (R8, in Fig. 6d). In particular,
R2 scheme is the direct physical mapping of the mirroring
concept proposed in Fig. 5. Fig. 6b displays its patterns, with
voltage and current vectors represented in different shades
of brown and green, respectively, and conductive weights
represented with letters from A to P and colors ranging from
red to blue. In addition to the original array (R1, in Fig. 6a),
R2 involves a second array whose conductance matrix has
undergone a 180° rotation and whose voltage and current
vector indices have been inverted.

As mentioned, the concept can be extended to more complex
replication schemes, based on more arrays, at an increased
cost of area and power consumption. By comparing various
mapping patterns, the best options are the ones proposed in
Fig. 6c-d, based on 4 (R4) or 8 arrays (R8), respectively,
featuring various 180° rotations and bitline/sourceline-wise
exchange. After averaging the output current of each replicated
array, equivalent normalized current profiles are obtained, as
reported in Fig. 6e for the case of uniform voltage and con-
ductance patterns. The profiles become increasingly uniform
for increasing number of replicated arrays. This means that
we are increasingly approximating the ideal MVM current
profile, which in this uniform scenario would be flat, except
for a multiplicative factor. To validate the concept, Fig. 6f
illustrates the resulting output current vector for the various
proposed schemes, highlighting an increasing similarity to
the ideal output, except for a scalar factor. Furthermore,
Fig. 6g shows the cumulative distributions of output current
for the various replication schemes compared to the ideal case,
confirming that weight redundancy inherently mitigates error
due to variability.

While so far we have considered 1R array, the proposed
techniques apply also for bitline-signal 1T1R and gate-signal
1T1R configurations. Ad hoc mapping strategy can be adopted
when the transistor conductance is kept particularly low and
thus the current profiles result exceptionally asymmetric, while
in most cases the proposed schemes result to be the most
beneficial ones. Instead, gate-signal 1T1R configuration with
sequential readout shows a drastically different current profile,
since IR drop along the sourcelines is practically negligible.
This characteristic simplifies the mapping strategies of the
replication schemes, that can avoid bitline-wise exchange and
thus the inversion of the voltage vector. The resulting best-
performing schemes are sketched in Fig. 7a-d for the case of
2-array (R2), 4-array (R4), and 8-array (R8) systems, respec-
tively. Fig. 7e shows the equivalent normalized current profiles,
confirming the trend already seen for 1R configuration. The
curves are increasingly uniform for increasing number of
replicated arrays, thus more similar to the ideal MVM except
for a multiplicative factor.

V. APPLICATION IN NEURAL NETWORK INFERENCE

Acceleration of ANN inference is a typical application of
crosspoint-based IMC, since the workload is predominantly
composed of MVM with stationary weights, thus with no
need to reprogram the device conductances. However, parasitic
effects have a detrimental impact on the accuracy, forcing
to use small computing tiles in order to maintain low IR
drop and consequently requiring an increased peripheral cir-
cuitry. To validate the proposed replication schemes for ANN
inference acceleration, we trained a 2-layer fully-connected
neural network (FCNN) for image classification of the MNIST
dataset [16], adopting the Adamax optimizer [23] to minimize
the cross-entropy loss function along 50 epochs. To explore ap-
plication cases more complex than binarized neural networks,
the quantization was set to 4 bits for the synaptic weights and
6 bits for the activations. The IMC accelerator is sketched
in Fig. 8a, based on 64×64 1R crosspoint arrays implemented
in a differential architecture, enabling the mapping of negative
weights through the equivalent weight W = G+−G−. To this
aim, two sets of arrays were adopted to store positive (G+) and
negative (G−) conductance values. The peripheral circuitry
consists of transimpedance amplifier (TIA), 6-bit analog-to-
digital converters (ADC) with fixed full-scale range, 6-bit
digital-to-analog converters (DAC), and a digital signal pro-
cessor (DSP) to perform subtractions and activation functions.

To validate the replication schemes, we simulated the accel-
erator assuming a wire resistance r = 8 Ω and a conductance
variability σG = 20 µS. While RRAM variability is typically
in the range of 3-10 µS [18], we deliberately overstated
its value to better comprehend its impact on classification
accuracy. Fig. 8b shows the simulated accuracy for the repli-
cation schemes compared to the standard case (R1), with and
without a gain calibration of the TIAs. Thanks to a more
uniform distribution of IR drop and to information redundancy,
replication schemes manage to recover the accuracy loss due to
parasitics from 72.7% to 91.8% (R4) and 92.6% (R8), despite
a significant scalar factor loss in the MVM computation, as
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Fig. 6. Graphical sketches of the replication schemes for 1R and 1T1R configurations operated with parallel readout, namely when IR drop
affects both sourcelines and bitlines. (a) Sketches show the standard MVM based on a single array (R1), (b) the R2 scheme, where the second
array features a 180° rotation of the conductance matrix and an inversion of voltage and current vectors, (c) the R4 scheme and (d) the R8
scheme, based on 4 and 8 arrays, respectively, featuring various 180° rotations and bitline/sourceline-wise exchange. Assuming 1R arrays having
r = 4Ω (e) the normalized average current profiles and (f) the output current vectors for the proposed schemes become increasingly uniform when
increasing the number of arrays. Therefore, the operation is increasingly similar to the ideal MVM except for a multiplicative factor. (g) Cumulative
distribution of the output current vectors, whose variability is strongly reduced when implementing the replication schemes.

Fig. 7. Graphical sketches of the replication schemes for 1T1R con-
figuration with sequential readout, namely when IR drop mainly affects
the bitlines or, more generally, the direction of current accumulation. The
proposed schemes are based on (b) 2, (c) 4, and (d) 8 arrays, featuring
various sourceline-wise exchange. They are referred to as R2, R4, and
R8 scheme, respectively. (e) Normalized average current profiles for the
proposed schemes, becoming increasingly uniform when increasing the
number of replicated arrays. r was set to 20 Ω, higher than in Fig. 6, for
a better visualization.

seen in Fig. 8b. As a further improvement, TIA gain can be
calibrated to recover the scalar factor loss, obtaining accuracy
up to 94.7% (R4) and 94.9% (R8), close to the ideal accuracy

of 96.9%. TIA gain calibration was computed offline with a
separate validation set, considering one fixed gain for all TIAs
of a neuron layer.

Notice that the proposed replication schemes are agnostic
on the device, on the network topology and training, and they
can be implemented directly at the inference stage, except for
the gain calibration procedure. Furthermore, since the main
portion of energy and area budget is typically consumed by
peripheral circuitry and thanks to the possibility of sharing
common TIAs, ADCs, or DACs among the replicated arrays,
energy and area consumption is expected to increase less than
linearly with the number of arrays. The actual energy and
area overheads due to replication schemes, however, depend
on the layout design constraints, that can allow or not to share
common peripheral circuits in the various schemes. As an
example, the R2 scheme can likely be implemented by sharing
readout periphery and summing the two analog signals before
a single ADC conversion, while the R8 scheme will surely
require additional circuitry. Alternatively, in the case of generic
in-memory ANN accelerators, our proposal can leverage the
presence of multiplexing stages between the array output and
the readout stages, usually fewer in number, not reducing the
energy consumption but limiting the area increase. With the
proposed replication schemes, the user can choose to trade
off performances, in terms of increased area consumption,
increased energy consumption, and decreased throughput, with
an increase in the network accuracy. Power consumption is
maintained. In this scenario, the compensation can be flexibly
adopted a posteriori in case the network accuracy is not
sufficiently high.

Simulation results support the efficacy of replication
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Fig. 8. Replication schemes were validated in the application of FCNN inference for MNIST classification, (a) simulating a crosspoint-based
accelerator. (b) Classification accuracy in presence of IR drop and conductance variability implementing the replication schemes without or with a
gain calibration of the first layer TIAs. The same gain is adopted for all the TIAs.

schemes for IR drop and variability mitigation in crosspoint
accelerator of ANN inference, obtaining significant increase in
classification accuracy, close to the full recovery of software
accuracy.

VI. CONCLUSIONS

We presented a compact modeling framework for assessing
the impact of IR drop and conductance variability effects,
applicable to various MVM implementations and to differ-
ent memory technologies. Also, we presented architectural
schemes for nonidealities mitigation based on replicated and
remapped arrays, which benefit from a more uniform distri-
bution of IR drop and from the redundancy of conductive
weights. In the scenario of ANN inference acceleration, the
proposed replication schemes achieve a significant increase of
the classification accuracy, in front of an increased area and
energy consumption.
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