We study the dynamics of long-wavelength fluctuations in one-dimensional (1D)
many-particle systems as described by self-consistent mode-coupling theory. The
corresponding nonlinear integro-differential equations for the relevant
correlators are solved analytically and checked numerically. In particular, we
find that the memory functions exhibit a power-law decay accompanied by
relatively fast oscillations. Furthermore, the scaling behaviour and,
correspondingly, the universality class depends on the order of the leading
nonlinear term. In the cubic case, both viscosity and thermal conductivity
diverge in the thermodynamic limit. In the quartic case, a faster decay of the
memory functions leads to a finite viscosity, while thermal conductivity
exhibits an even faster divergence. Finally, our analysis puts on a more firm
basis the previously conjectured connection between anomalous heat conductivity
and anomalous diffusion