85 research outputs found

    Current concepts regarding the HTLV-1 receptor complex

    Get PDF
    The identity of the Human T lymphotropic Virus type 1 (HTLV-1) receptor remained an unsolved puzzle for two decades, until the recent demonstration that three molecules, Glucose Transporter 1, Neuropilin-1 and Heparan Sulfate Proteoglycans are involved in HTLV-1 binding and entry. Despite these advances, several questions remain unanswered, including the precise role of each of these molecules during virus entry. In light of the most recent data, we propose a model of the HTLV-1 receptor complex and discuss its potential impact on HTLV-1 infection

    Povidone iodine: properties, mechanisms of action and role in infection control and staphylococcus aureus decolonization

    Get PDF
    Nasal decolonization is an integral part of the strategies used to control and prevent the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. The two most commonly used agents for decolonization are intranasal mupirocin 2% ointment and chlorhexidine wash but the increasing emergence of resistance and treatment failure has underscored the need for alternative therapies. This article discusses povidone iodine (PVP-I) as an alternative decolonization agent and is based on literature reviewed during an Expert's workshop on resistance and MRSA decolonization. When compared to chlorhexidine and mupirocin, respectively, PVP-I 10% and 7.5% solution had rapid and superior bactericidal activity against MRSA in in vitro and ex vivo studies. Notably, PVP-I 10% and 5% solutions were also active against both chlorhexidine-resistant and mupirocin-resistant strains, respectively. Unlike chlorhexidine and mupirocin, available reports have not observed a link between PVP-I and the induction of bacterial resistance or cross-resistance to antiseptics and antibiotics. These pre-clinical findings also translate into clinical decolonization, where intranasal PVP-I significantly improved the efficacy of chlorhexidine wash and was as effective as mupirocin in reducing surgical site infection (SSI) in orthopedic surgery. Overall, these qualities of PVP-I make it a useful alternative decolonizing agent for the prevention of S. aureus infections, but additional experimental and clinical data are required to further evaluate the use of PVP-I in this setting

    Retinoids Regulate Survival and Antigen Presentation by Immature Dendritic Cells

    Get PDF
    Maturation of dendritic cells (DCs) is a critical step for the induction of an immune response. We have examined the role of retinoid nuclear receptor pathways in this process. Retinoids induce DC apoptosis, in the absence of inflammatory signals, through retinoic acid receptor (RAR)α/retinoic X receptor (RXR) heterodimers. In contrast, via a cross talk with inflammatory cytokines, retinoids increase DNA binding activity of nuclear factor κB in DCs, trigger membrane major histocompatibility complex class II and costimulatory molecule expression, induce the differentiation of immature DCs into mature DCs, and enhance antigen-specific T cell response. This maturation of DCs is mediated via a RXR-dependent/RAR-independent pathway and via an RARα/RXR pathway distinct from the one responsible for apoptosis. Apoptosis and activation, mediated through distinct nuclear retinoid receptor pathways, can be dissociated from each other with selective synthetic retinoids. We identify a novel cellular function for retinoids and suggest that selective retinoids might be of interest for controlling antigen presentation

    Human Muscle Progenitor Cells Displayed Immunosuppressive Effect through Galectin-1 and Semaphorin-3A

    Get PDF
    In human skeletal muscle, myoblasts represent the main population of myogenic progenitors. We previously showed that, beside their myogenic differentiation capacities, myoblasts also differentiate towards osteogenic and chondrogenic lineages, some properties generally considered being hallmarks of mesenchymal stem cells (MSCs). MSCs are also characterized by their immunosuppressive potential, through cell-cell contacts and soluble factors, including prostaglandin E-2 (PGE-2), transforming growth factor-β1 (TGF-β1), interleukine-10, or indoleamine 2,3-dioxygenase. We and others also reported that Galectin-1 (Gal-1) and Semaphorin-3A (Sema-3A) were involved in MSCs-mediated immunosuppression. Here, we show that human myoblasts induce a significant and dose-dependant proliferation inhibition, independently of PGE-2 and TGF-β1. Our experiments revealed that myoblasts, in culture or in situ in human muscles, expressed and secreted Gal-1 and Sema-3A. Furthermore, myoblasts immunosuppressive functions were reverted by using blocking antibodies against Gal-1 or Sema-3A. Together, these results demonstrate an unsuspected immunosuppressive effect of myoblasts that may open new therapeutic perspectives

    T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells: Function of intestinal epithelial exosomes

    Get PDF
    International audienceBackground and aims: Intestinal epithelial cells release antigen presenting vesicles (exosomes) bearing MHC class II/peptide complexes stimulating specific immune responses in vivo. To further characterize the role of human epithelial exosomes in antigen presentation, their capacity to load antigenic peptides, to bind immune target cells and to induce T cell activation was analyzed in vitro. Methods: The capacity of exosomes derived from the HLA-DR4 expressing, intestinal epithelial cell line T84, to load the HLA-DR4-specific peptide 3H-HSA 64-76 and to activate a HLA-DR4-restricted T cell hybridoma, was tested in the presence or absence of human monocyte-derived dendritic cells (DCs). Interaction of FITC-labeled exosomes with T cells and DCs was analyzed by flow cytometry and confocal microscopy. Results: T84-derived exosomes, enriched in CD9, CD81, CD82 and A33 antigen, were capable of binding specifically HSA 64-76 peptide on HLA-DR4 molecules and of interacting preferentially with DCs. HSA-loaded exosomes were unable to activate the T cell hybridoma directly, but induced a productive T cell activation through DCs. When HSA peptide was bound to exosomal HLA-DR4 molecules instead of in a soluble form, the threshold of peptide presentation by DCs was markedly decreased (x10-3). Conclusions: Exosomes released by intestinal epithelial cells bear exogenous peptides complexed to MHC class II molecules and interact preferentially with DCs, strongly potentiating peptide presentation to T cells. Epithelial exosomes constitute a powerful link between luminal antigens and local immune cells by mediating the transfer of tiny amounts of luminal antigenic information and facilitating immune surveillance at mucosal surfaces

    A RasGAP SH3 Peptide Aptamer Inhibits RasGAP-Aurora Interaction and Induces Caspase-Independent Tumor Cell Death

    Get PDF
    The Ras GTPase-activating protein RasGAP catalyzes the conversion of active GTP-bound Ras into inactive GDP-bound Ras. However, RasGAP also acts as a positive effector of Ras and exerts an anti-apoptotic activity that is independent of its GAP function and that involves its SH3 (Src homology) domain. We used a combinatorial peptide aptamer approach to select a collection of RasGAP SH3 specific ligands. We mapped the peptide aptamer binding sites by performing yeast two-hybrid mating assays against a panel of RasGAP SH3 mutants. We examined the biological activity of a peptide aptamer targeting a pocket delineated by residues D295/7, L313 and W317. This aptamer shows a caspase-independent cytotoxic activity on tumor cell lines. It disrupts the interaction between RasGAP and Aurora B kinase. This work identifies the above-mentioned pocket as an interesting therapeutic target to pursue and points its cognate peptide aptamer as a promising guide to discover RasGAP small-molecule drug candidates

    Povidone iodine: properties, mechanisms of action and role in infection control and staphylococcus aureus decolonization

    Get PDF
    Nasal decolonization is an integral part of the strategies used to control and prevent the spread of methicillin-resistant Staphylococcus aureus (MRSA) infections. The two most commonly used agents for decolonization are intranasal mupirocin 2% ointment and chlorhexidine wash but the increasing emergence of resistance and treatment failure has underscored the need for alternative therapies. This article discusses povidone iodine (PVP-I) as an alternative decolonization agent and is based on literature reviewed during an Expert's workshop on resistance and MRSA decolonization. When compared to chlorhexidine and mupirocin, respectively, PVP-I 10% and 7.5% solution had rapid and superior bactericidal activity against MRSA in in vitro and ex vivo studies. Notably, PVP-I 10% and 5% solutions were also active against both chlorhexidine-resistant and mupirocin-resistant strains, respectively. Unlike chlorhexidine and mupirocin, available reports have not observed a link between PVP-I and the induction of bacterial resistance or cross-resistance to antiseptics and antibiotics. These pre-clinical findings also translate into clinical decolonization, where intranasal PVP-I significantly improved the efficacy of chlorhexidine wash and was as effective as mupirocin in reducing surgical site infection (SSI) in orthopedic surgery. Overall, these qualities of PVP-I make it a useful alternative decolonizing agent for the prevention of S. aureus infections, but additional experimental and clinical data are required to further evaluate the use of PVP-I in this setting

    A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients

    No full text
    International audienceAdult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoid proliferative disease that exists under diverse clinical forms ranging from chronic to acute. Although leukemic cells from patients with ATL exhibit an intrinsic resistance to chemotherapy, monoclonal antibodies directed against CD25 (interleukin 2 receptor ␣ [IL-2R␣] antibody) have been used as specific therapeutic agents. However, significant clinical results with these antibodies have been demonstrated only in chronic forms of ATL. In contrast to resting T cells, human T-cell lymphotropic virus type 1 (HTLV-1)-infected cells constitutively express high levels of surface transferrin receptor (TfR). Herein, we report the characterization of a new monoclonal antibody (mAb A24) directed against the human TfR and the evaluation of its capacity to block the proliferation of ATL cells ex vivo. We determined that A24 binds TfR with an equilibrium constant (K d) of 2.7 nM and competes with transferrin for binding to TfR. A24 also inhibited [ 55 Fe]-transferrin uptake in activated T cells and blocked T-cell proliferation. Moreover, A24 reduced and impaired TfR expression and recycling, respectively. Most important, we showed that A24 blocked the ex vivo proliferation of malignant T cells from both acute and chronic forms of ATL, through induction of programmed cell death. Therefore efficient therapeutic tools to treat acute forms of ATL might be derived from A24

    Automated detection of hospital outbreaks: A systematic review of methods.

    No full text
    OBJECTIVES:Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. METHODS:We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. RESULTS:Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. CONCLUSION:Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results
    corecore