14 research outputs found

    ISM properties in low-metallicity environments I. mid-infrared spectra of dwarf galaxies

    Full text link
    We present new ISOCAM mid-infrared spectra of three starbursting nearby dwarf galaxies, NGC1569, IIZw40, NGC1140 and the 30Dor region of the LMC and explore the properties of the ISM in low-metallicity environments, also using additional sources from the literature. We analyse the various components of the ISM probed by the mid-infrared observations and compare them with other Galactic and extragalactic objects. The MIR spectra of the low-metallicity starburst sources are dominated by the [NeIII] and [SIV] lines, as well as a steeply rising dust continuum. PAH bands are generaly faint, both locally and averaged over the full galaxy, in stark contrast to dustier starburst galaxies, where the PAH features are very prominant and even dominate on global scales. The hardness of the modeled interstellar radiation fields for the dwarf galaxies increases as the presence of PAH band emission becomes less pronounced. The [NeIII]/[NeII] ratios averaged over the full galaxy are strikingly high, often >10. Thus, the hard radiation fields are pronounced and pervasive. We find a prominent correlation between the PAHs/VSGs and the [NeIII]/[NeII] ratios for a wide range of objects, including the low metallicity galaxies as well as Galactic HII regions and other metal-rich galaxies. This effect is consistent with the hardness of the interstellar radiation field playing a major role in the destruction of PAHs in the low metallicity ISM. We see a PAHs/VSGs and metallicity correlation, also found by Engelbracht et al. (2005) for a larger survey. Combined effects of metallicity and radiation field seem to be playing important roles in the observed behavior of PAHs in the low metallicity systems.Comment: accepted by A&

    Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer

    No full text
    International audienceHereditary predisposition to cancer affects about 3–5% of renal cancers. Testing criteria have been proposed in France for genetic testing of non-syndromic renal cancer. Our study explores the detection rates associated with our testing criteria. Using a comprehensive gene panel including 8 genes related to renal cancer and 50 genes related to hereditary predisposition to other cancers, we evaluated the detection rate of pathogenic variants in a cohort of 83 patients with suspected renal cancer predisposition. The detection rate was 7.2% for the renal cancer genes, which was 2.41-fold higher than the estimated 3% proportion of unselected kidney cases with inherited risk. Pathogenic variants in renal cancer genes were observed in 44.5% of syndromic cases, and in 2.7% of non-syndromic cases. Incidental findings were observed in CHEK2, MSH2, MUTYH and WRN. CHEK2 was associated with renal cancer (OR at 7.14; 95% CI 1.74–29.6; p < 0.003) in our study in comparison to the gnomAD control population. The detection rate in renal cancer genes was low in non-syndromic cases. Additional causal mechanisms are probably involved, and further research is required to find them. A study of the management of renal cancer risk for CHEK2 pathogenic variant carriers is needed

    Relevance of Extending FGFR3 Gene Analysis in Osteochondrodysplasia to Non-Coding Sequences: A Case Report

    No full text
    Skeletal dysplasia, also called osteochondrodysplasia, is a category of disorders affecting bone development and children’s growth. Up to 552 genes, including fibroblast growth factor receptor 3 (FGFR3), have been implicated by pathogenic variations in its genesis. Frequently identified causal mutations in osteochondrodysplasia arise in the coding sequences of the FGFR3 gene: c.1138G>A and c.1138G>C in achondroplasia and c.1620C>A and c.1620C>G in hypochondroplasia. However, in some cases, the diagnostic investigations undertaken thus far have failed to identify the causal anomaly, which strengthens the relevance of the diagnostic strategies being further refined. We observed a Caucasian adult with clinical and radiographic features of achondroplasia, with no common pathogenic variant. Exome sequencing detected an FGFR3(NM_000142.4):c.1075+95C>G heterozygous intronic variation. In vitro studies showed that this variant results in the aberrant exonization of a 90-nucleotide 5â€Č segment of intron 8, resulting in the substitution of the alanine (Ala359) for a glycine (Gly) and the in-frame insertion of 30 amino acids. This change may alter FGFR3’s function. Our report provides the first clinical description of an adult carrying this variant, which completes the phenotype description previously provided in children and confirms the recurrence, the autosomal-dominant pathogenicity, and the diagnostic relevance of this FGFR3 intronic variant. We support its inclusion in routinely used diagnostic tests for osteochondrodysplasia. This may increase the detection rate of causal variants and therefore could have a positive impact on patient management. Finally, FGFR3 alteration via non-coding sequence exonization should be considered a recurrent disease mechanism to be taken into account for new drug design and clinical trial strategies

    Analysis of 11 candidate genes in 849 adult patients with suspected hereditary cancer predisposition

    No full text
    International audienceHereditary predisposition to cancer concerns between 5% and 10% of cancers. The main genes involved in the most frequent syndromes (hereditary breast and ovarian cancer syndrome, hereditary nonpolyposis colorectal cancer syndrome) were identified in the 1990s. Exploration of their functional pathways then identified novel genes for hereditary predisposition to cancer, and candidate genes whose involvement remains unclear. To determine the contribution of truncating variants in 11 candidate genes (BARD1, FAM175A, FANCM, MLH3, MRE11A, PMS1, RAD50, RAD51, RAD51B, RINT1, and XRCC2) to cancer predisposition in a population of interest, panel sequencing was performed in 849 patients with a suspected hereditary predisposition to cancer for whom a diagnostic panel of 38 genes identified no causal mutation. Sixteen truncating variants were found in FANCM (n = 7), RINT1 (n = 4), RAD50 (n = 2), BARD1, PMS1, and RAD51B. FANCM (adjusted P-value: .03) and RINT1 (adjusted P-value: 0.04) were significantly associated with hereditary breast and ovarian cancer. However, further studies are required to determinate the risk of cancer, including the segregation of the variants in the families of our cases. No mutation was identified in RAD51, MRE11A, FAM175A, XRCC2, or MLH3. The involvement of these genes in the hereditary predisposition to cancer cannot be ruled out, although if it exists it is rare or does not seem to involve truncating variants

    Case Series of 11 <i>CDH1</i> Families (47 Carriers) Including Incidental Findings, Signet Ring Cell Colon Cancer and Review of the Literature

    No full text
    Germline pathogenic variants in E-cadherin (CDH1) confer high risk of developing lobular breast cancer and diffuse gastric cancer (DGC). The cumulative risk of DGC in CDH1 carriers has been recently reassessed (from 40–83% by age 80 to 25–42%) and varies according to the presence and number of gastric cancers in the family. As there is no accurate estimate of the risk of gastric cancer in families without DGC, the International Gastric Cancer Linkage Consortium recommendation is not straightforward: prophylactic gastrectomy or endoscopic surveillance should be proposed for these families. The inclusion of CDH1 in constitutional gene panels for hereditary breast and ovarian cancer and for gastrointestinal cancers, recommended by the French Genetic and Cancer Consortium in 2018 and 2020, leads to the identification of families with lobular cancer without DGC but also to incidental findings of pathogenic variants. Management of CDH1 carriers in case of incidental findings is complex and causes dilemmas for both patients and providers. We report eleven families (47 CDH1 carriers) from our oncogenetic department specialized in breast and ovarian cancer, including four incidental findings. We confirmed that six families did not have diffuse gastric cancer in their medical records. We discuss the management of the risk of diffuse gastric cancer in Hereditary Lobular Breast Cancer (HLBC) through a family of 11 CDH1 carriers where foci were identified in endoscopic surveillance. We also report a new colon signet ring cancer case in a CDH1 carrier, a rare aggressive cancer included in CDH1-related malignancies

    Diagnosis of PTEN mosaicism: the relevance of additional tumor DNA sequencing. A case report and review of the literature

    No full text
    Abstract Background PTEN hamartoma syndrome (PHTS) is an autosomal dominant disorder characterized by pathogenic variants in the tumor suppressor gene phosphatase and tensin homolog ( PTEN ). It is associated with an increased risk of muco-cutaneous features, hamartomatous tumors, and cancers. Mosaicism has been found in a few cases of patients with de novo PHTS, identified from blood samples. We report a PHTS patient with no variant identified from blood sample. Constitutional PTEN mosaicism was detected through sequencing of DNA from different tumoral and non-tumoral samples. Case presentation Our patient presented clinical Cowden syndrome at 56 years of age, with three major criteria (macrocephaly, Lhermitte Duclos disease, oral papillomatosis), and two minor criteria (structural thyroid lesions, esophageal glycogenic acanthosis). Deep sequencing of PTEN of blood leukocytes did not reveal any pathogenic variants. Exploration of tumoral (colonic ganglioneuroma, esophageal papilloma, diapneusia fibroids) and non-tumoral stomach tissues found the same PTEN pathogenic variant (NM_000314.4 c.389G > A; p.(Arg130Gln)), with an allelic frequency of 12 to 59%, confirming genomic mosaicism for Cowden syndrome. Conclusions This case report, and review of the literature, suggests that systematic tumor analysis is essential for patients presenting PTEN hamartoma syndrome in the absence of any causal variant identified in blood leukocytes, despite deep sequencing. In 65 to 70% of cases of clinical Cowden syndrome, no pathogenic variant in the PTEN is observed in blood samples: mosaicism may explain a significant number of these patients. Tumor analysis would improve our knowledge of the frequency of de novo variations in this syndrome. Finally, patients with mosaicism for PTEN may not have a mild phenotype; medical care identical to that of heterozygous carriers should be offered
    corecore