47 research outputs found

    In situ associations between marine photosynthetic picoeukaryotes and potential parasites - a role for fungi?

    Get PDF
    Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems

    Virus, bactéries et protistes pathogènes du phytoplancton, le rôle insoupçonné des parasites dans le fonctionnement des écosystèmes aquatiques

    Get PDF
    International audienceMicroscopiques, les parasites sont la plupart du temps invisibles, mais présents partout. Ils infectent tous les organismes du monde vivant. La dernière décennie a révélé une incroyable diversité chez les parasites viraux, bactériens et eucaryotes. Ceux infectant le phytoplancton pourraient avoir une importance capitale dans la dynamique des populations algales et dans le fonctionnement des écosystèmes aquatiques, mais leur rôle est encore très largement méconnu à ce jour (Brussaard, 2004). Sur ces questions, la recherche ne fait que commencer

    Diversity, spatial distribution and activity of fungi in freshwater ecosystems

    Get PDF
    High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction of fungi through the 18S rRNA transcripts level. These results revealed a high diversity of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were Dikarya (47%), represented by putative filamentous fungi more diverse and abundant in freshwater habitats than previous studies have suggested, followed by Cryptomycota (17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed the same dominant groups as those observed at the 18S rRNA genes level. On average 13.25% of the fungal OTUs were active. The small number of OTUs shared among aquatic ecosystems may result from the low abundances of those microorganisms and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment or catchment areas). The richness estimates suggest that fungi have been overlooked and undersampled in freshwater ecosystems, especially rivers, though they play key roles in ecosystem functioning as saprophytes and parasites

    A global perspective on marine photosynthetic picoeukaryote community structure

    Get PDF
    A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning–sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and β-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change

    Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling

    Get PDF
    Among small photosynthetic eukaryotes that play a key role in oceanic food webs, picoplanktonic Mamiellophyceae such as Bathycoccus, Micromonas, and Ostreococcus are particularly important in coastal regions. By using a combination of cell sorting by flow cytometry, whole genome amplification (WGA), and 454 pyrosequencing, we obtained metagenomic data for two natural picophytoplankton populations from the coastal upwelling waters off central Chile. About 60% of the reads of each sample could be mapped to the genome of Bathycoccus strain from the Mediterranean Sea (RCC1105), representing a total of 9 Mbp (sample T142) and 13 Mbp (sample T149) of non-redundant Bathycoccus genome sequences. WGA did not amplify all regions uniformly, resulting in unequal coverage along a given chromosome and between chromosomes. The identity at the DNA level between the metagenomes and the cultured genome was very high (96.3% identical bases for the three larger chromosomes over a 360 kbp alignment). At least two to three different genotypes seemed to be present in each natural sample based on read mapping to Bathycoccus RCC1105 genome

    High diversity of microsporidian parasites and new planktonic hosts in freshwater and marine ecosystems

    No full text
    International audienceMicrosporidia are a large group of obligate intracellular eukaryotic parasites related to fungi primarily knownas parasites of vertebrates and invertebrates. They are well described as parasites of organisms of interest(e.g., edible fish and crustaceans, honeybees, bioindicators such as daphnia, humans) on which they can havean important impact (e.g., reduced survival or fecundity and sex ratio distortion). However, their diversity inaquatic environments, especially in marine ecosystems, has been greatly understudied since they are nottargeted by classical eukaryotic primers used in metabarcoding studies. Moreover, little is known about theirhosts among protists or microzooplankton and therefore about their impact on the trophic food web function-ing. In this work, we sampled 15 different sites across marine and freshwater environments, size-fractioned thesamples, and used microsporidian specific primers associated with metabarcoding to study the microsporidiandiversity (and the associated spatial variation). Co-occurrence networks as well as tyramide signal amplification-fluorescent in situ hybridization were used to link potential hosts (planktonic eukaryotes < 150 μm) and Micro-sporidia diversity. Our analysis unraveled a large microsporidian diversity which was widely divergent betweenthe two environments studied. In both of them, an important part of this diversity was not affiliated to a genus,suggesting an important reservoir of new microsporidian species and thus new hosts among planktonic eukary-otes. Co-occurrence networks and fluorescence microscopy showed for the first-time associations betweenMicrosporidia and dinoflagellates in freshwater and marine environments

    Community composition of lacustrine small eukaryotes in hyper-eutrophic conditions in relation to top-down and bottom-up factors

    No full text
    International audienceSmall eukaryotes (0.2-5 microm) in hyper-eutrophic conditions were described using terminal restriction fragment length polymorphism and cloning-sequencing, and were related to environmental variables both by an experimental approach and by a temporal field study. In situ analysis showed marked temporal variations in the dominant terminal restriction fragments (T-RFs), which were related to environmental variables such as nutrient concentrations and metazooplankton composition. To monitor the responses of the small-eukaryote community to top-down (absence or presence of planktivorous fish) and bottom-up (low or high nitrogen and phosphorus addition) effects, a cross-classified design mesocosm experiment was used. Depending on the type of treatment, we recorded changes in the diversity of T-RFs, as well as modifications in phylogenetic composition. Centroheliozoa and Cryptophyta were found in all types of treatment, whereas Chlorophyta were specific to enclosures receiving high nutrient loadings, and were associated either with LKM11 and 'environmental sequences'. Cercozoa and Fungi were not detected in enclosures receiving high nutrient loadings and fishes. Our results showed that resources and top-down factors are both clearly involved in shaping the structure of small eukaryotes, not only autotrophs but also heterotrophs, via complex interactions and trophic cascades within a microbial loop, notably in response to nutrient loading

    Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community

    No full text
    International audienceThe diversity of small eukaryotes (0.2 to 5 mum) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types

    Single Cell Analysis Reveals a New Microsporidia-Host Association in a Freshwater Lake

    No full text
    International audienceMicrosporidia are a large group of obligate intracellular eukaryotic parasites. Recent studies suggest that their diversity can be huge in freshwater lake ecosystems especially in the <150 µm size fraction. However, little is known about their hosts and therefore their impact on the trophic food web functioning. In this study, single cell analysis and fluorescence microscopy were used to detect new host-parasite association within rotifer communities in lake Aydat (France). Our analysis showed the existence of a potential new species belonging to the Crispospora genus able of infecting the rotifer Kellicottia with a high prevalence (42.5%) suggesting that Microsporidia could have a great impact on the rotifer populations regulation in lakes
    corecore