68 research outputs found

    Rise of correlations of transformation strains in random polycrystals

    Get PDF
    We investigate the statistics of the transformation strains that arise in random martensitic polycrystals as boundary conditions cause its component crystallites to undergo martensitic phase transitions. In our laminated polycrystal model the orientation of the n grains (crystallites) is given by an uncorrelated random array of the orientation angles θ_i, i = 1, . . . ,n. Under imposed boundary conditions the polycrystal grains may undergo a martensitic transformation. The associated transformation strains ε_i, i = 1, . . . ,n depend on the array of orientation angles, and they can be obtained as a solution to a nonlinear optimization problem. While the random variables θ_i, i = 1, . . . ,n are uncorrelated, the random variables ε_i, i = 1, . . . ,n may be correlated. This issue is central in our considerations. We investigate it in following three different scaling limits: (i) Infinitely long grains (laminated polycrystal of height L = ∞); (ii) Grains of finite but large height (L » 1); and (iii) Chain of short grains (L = l_0/(2n), l_0 « 1). With references to de Finetti’s theorem, Riesz’ rearrangement inequality, and near neighbor approximations, our analyses establish that under the scaling limits (i), (ii), and (iii) the arrays of transformation strains arising from given boundary conditions exhibit no correlations, long-range correlations, and exponentially decaying short-range correlations, respectivel

    Application of new institutional economic theory in firm analysing and management

    Get PDF
    Обґрунтовано необхідність використання нової інституціональної економічної теорії для аналізу та управління фірмою. Проаналізовано основні течії нової економінічної теорії.The article deals with the necessity of using the new institutional economic theory for the analysis and management of the firm. The paper analyzes the main currents of the new economic theory

    Surface-Enhanced Raman Scattering of Silicon Nanocrystals in a Silica Film

    Get PDF
    Surface-enhanced Raman scattering (SERS) is an intriguing effect, efficiency of which depends on many factors and whose applicability to a given system is not obvious before the experiment. The motivation of the present work is to demonstrate the SERS effect on silicon nanocrystals (Si-nc) embedded in silica, the material of high technological importance. Using the Ag overlayer method, we have found the SERS effect for this material. The best result is obtained for Ag layers of a weight thickness of 12 nm, whose surface plasmons are in a resonance with the laser wavelength (488 nm). The enhancement obtained for the Raman signal from 3-4-nm Si-nc in a 40-nm SiOx film is above 100. The SERS effect is about twice stronger for ultra-small Si-nc (similar to 1 nm) and/or disordered silicon compared to Si-nc with sizes of 3-4 nm. The SERS measurements with an Ag overlayer allow detecting silicon crystallization for ultrathin SiOx films and/or for very low Si excess and suppress the Raman signal from the substrate and the photoluminescence of the film.Peer reviewe

    A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis

    Get PDF
    In mammalian cells, the Golgi apparatus undergoes extensive fragmentation during apoptosis. p115 is a key vesicle tethering protein required for maintaining the structural organization of the Golgi apparatus. Here, we demonstrate that p115 was cleaved during apoptosis by caspases 3 and 8. Compared with control cells expressing native p115, those expressing a cleavage-resistant form of p115 delayed Golgi fragmentation during apoptosis. Expression of cDNAs encoding full-length or an NH2-terminal caspase cleavage fragment of p115 had no effect on Golgi morphology. In contrast, expression of the COOH-terminal caspase cleavage product of p115 itself caused Golgi fragmentation. Furthermore, this fragment translocated to the nucleus and its expression was sufficient to induce apoptosis. Most significantly, in vivo expression of the COOH-terminal fragment in the presence of caspase inhibitors, or upon coexpression with a cleavage-resistant mutant of p115, showed that p115 degradation plays a key role in amplifying the apoptotic response independently of Golgi fragmentation

    INTERACTION OF CLEAVAGE CRACKS WITH SLIPBANDS IN ALKALI-HALIDE CRYSTALS

    Get PDF
    Authors have shown that when the cleavage crack crosses the border of the artificially introduced and aged slipband at {110}, the spreading rate of the crack in LiF crystals changes in comparison with the same value at crossing the fresh slipband. The cleaved surface relief in the first and the second cases is also different. Reasons of the change of speed of the crack and differences in the cleaved surface relief are determined. 

    Atomic collapse, Lorentz boosts, Klein scattering, and other quantum-relativistic phenomena in graphene

    Get PDF
    Electrons in graphene, behaving as massless relativistic Dirac particles, provide a new perspective on the relation between condensed matter and high-energy physics. We discuss atomic collapse, a novel state of superheavy atoms stripped of their discrete energy levels, which are transformed into resonant states. Charge impurities in graphene provide a convenient condensed matter system in which this effect can be explored. Relativistic dynamics also manifests itself in another system, graphene p-n junctions. We show how the transport problem in the presence of magnetic field can be solved with the help of a Lorentz transformation, and use it to investigate magnetotransport in p-n junctions. Finally, we review recent proposal to use Fabry-Perot resonances in p-n-p structures as a vehicle to investigate Klein scattering, another hallmark phenomenon of relativistic dynamics.Comment: minireview, 9 pg

    Mapping Dirac quasiparticles near a single Coulomb impurity on graphene

    Get PDF
    The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1066)United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)National Science Foundation (U.S.) (Award DMR-0906539

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore