675 research outputs found

    Film thickness measurements in a running hydrostatic unit using ultrasound

    Get PDF
    The present paper describes the measurement of the oil film thickness in the range of a few micrometers in an operating hydrostatic unit using ultrasound. The investigated tribological system consists of a rotating steel cylinder block and a stationary bi-metal valve plate under static and hydrodynamic lubrication. The film thickness has been recorded in a wide range of operating conditions, pressure between 100 to 300 bar and rotational speed between 500 and 3000 rpm, to support a deeper understanding of the system. Temperature sensors were implemented next to the ultrasound sensors to compensate the ultrasound signal amplitude and phase change due to temperature dependent acoustic impedances. To confirm the results, especially the presence of deliberate zero-film conditions, wear profiles of the running surface were taken. The ultrasound technique also allows the real-time observation of film thickness oscillations with shaft and piston frequency. Steady-state measurements confirm the system behavior observed in transient operation and zero-film conditions with respect to hardware configuration were detected. The findings will be utilized to support current product development activities and to validate and improve simulation models used for film thickness predictions

    Briefe von SIS-Absolventen: Auswertung der Voruntersuchung zu SIS 5

    Full text link
    Vorgelegt werden Ergebnisse einer schriftlichen Befragung von Teilnehmern der Studenten-Intervallstudie (n=534) zu Problemen des Berufseintritts bei Studenten. Angesprochen werden folgenden Themenfelder: (1) Probleme in der berufspraktischen TĂ€tigkeit; (2) im Studium erworbene Kenntnisse und Fertigkeiten, die die Einarbeitung erleichtern; (3) notwendige Verbesserungen des Studiums aus der Sicht der Absolventen; (4) Probleme und Sorgen ĂŒber die beruflichen TĂ€tigkeit hinaus. Zu den genannten Themenfeldern wird eine umfangreiche Dokumentation qualitativer Statements vorgelegt. (ICE

    Identification of Intrahelical Bifurcated H‑Bonds as a New Type of Gate in K+ Channels

    Get PDF
    Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels. Includes Supporting Informatio

    Identification of Intrahelical Bifurcated H‑Bonds as a New Type of Gate in K+ Channels

    Get PDF
    Gating of ion channels is based on structural transitions between open and closed states. To uncover the chemical basis of individual gates, we performed a comparative experimental and computational analysis between two K+ channels, KcvS and KcvNTS. These small viral encoded K+ channel proteins, with a monomer size of only 82 amino acids, resemble the pore module of all complex K+ channels in terms of structure and function. Even though both proteins share about 90% amino acid sequence identity, they exhibit different open probabilities with ca. 90% in KcvNTS and 40% in KcvS. Single channel analysis, mutational studies and molecular dynamics simulations show that the difference in open probability is caused by one long closed state in KcvS. This state is structurally created in the tetrameric channel by a transient, Ser mediated, intrahelical hydrogen bond. The resulting kink in the inner transmembrane domain swings the aromatic rings from downstream Phes in the cavity of the channel, which blocks ion flux. The frequent occurrence of Ser or Thr based helical kinks in membrane proteins suggests that a similar mechanism could also occur in the gating of other ion channels. Includes Supporting Informatio

    Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels

    Get PDF
    Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV-1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV-1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV-1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV-1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains

    Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels

    Get PDF
    Transmembrane domains (TMDs) are often flanked by Lys or Arg because they keep their aliphatic parts in the bilayer and their charged groups in the polar interface. Here we examine the relevance of this so-called “snorkeling” of a cationic amino acid, which is conserved in the outer TMD of small viral K+ channels. Experimentally, snorkeling activity is not mandatory for KcvPBCV-1 because K29 can be replaced by most of the natural amino acids without any corruption of function. Two similar channels, KcvATCV-1 and KcvMT325, lack a cytosolic N-terminus, and neutralization of their equivalent cationic amino acids inhibits their function. To understand the variable importance of the cationic amino acids, we reanalyzed molecular dynamics simulations of KcvPBCV-1 and N-terminally truncated mutants; the truncated mutants mimic KcvATCV-1 and KcvMT325. Structures were analyzed with respect to membrane positioning in relation to the orientation of K29. The results indicate that the architecture of the protein (including the selectivity filter) is only weakly dependent on TMD length and protonation of K29. The penetration depth of Lys in a given protonation state is independent of the TMD architecture, which leads to a distortion of shorter proteins. The data imply that snorkeling can be important for K+ channels; however, its significance depends on the architecture of the entire TMD. The observation that the most severe N-terminal truncation causes the outer TMD to move toward the cytosolic side suggests that snorkeling becomes more relevant if TMDs are not stabilized in the membrane by other domains

    Metal-Insulator Transition in a Disordered Two-Dimensional Electron Gas in GaAs-AlGaAs at zero Magnetic Field

    Full text link
    A metal-insulator transition in two-dimensional electron gases at B=0 is found in Ga(Al)As heterostructures, where a high density of self-assembled InAs quantum dots is incorporated just 3 nm below the heterointerface. The transition occurs at resistances around h/e^2 and critical carrier densities of 1.2 10^11cm^-2. Effects of electron-electron interactions are expected to be rather weak in our samples, while disorder plays a crucial role.Comment: 4 pages, 3 figures, 21 reference

    New insights into the intracellular distribution pattern of cationic amphiphilic drugs

    Get PDF
    Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endolysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 mu M, 5 mu M). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 mu M) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 mu M), while changes in CD63 pattern already occurred at intermediate concentrations (5 mu M). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs

    Super Weyl invariance: BPS equations from heterotic worldsheets

    Full text link
    It is well-known that the beta functions on a string worldsheet correspond to the target space equations of motion, e.g. the Einstein equations. We show that the BPS equations, i.e. the conditions of vanishing supersymmetry variations of the space-time fermions, can be directly derived from the worldsheet. To this end we consider the RNS-formulation of the heterotic string with (2,0) supersymmetry, which describes a complex torsion target space that supports a holomorphic vector bundle. After a detailed account of its quantization and renormalization, we establish that the cancellation of the Weyl anomaly combined with (2,0) finiteness implies the heterotic BPS conditions: At the one loop level the geometry is required to be conformally balanced and the gauge background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl invariance and (2,0) finiteness extended, typos correcte
    • 

    corecore