2,600 research outputs found

    Hierarchical nanoreinforced composites: Computational analysis of damage mechanisms

    Get PDF
    The potential of hierarchical composites with secondary nanoreinforcement is discussed and analysed on the basis of the computational modelling. The concept of nanostructuring of interfaces as an important reserve of the improvement of the composite properties is discussed. The influence of distribution, shape, orientation of nanoparticles (carbon nanotube, graphene) in unidirectional polymer matrix composites on the strength and damage resistance of the composites is studied in computational studies. The possible directions of the improvement of nanoreinforced composites by controlling shapes, localization and other parameters of nanoreinforcements are reviewed

    Energy correlations of non-integrable Ising models: The scaling limit in the cylinder

    Get PDF
    We consider a class of non-integrable 2D Ising models, whose Hamiltonian, in addition to the nearest neighbor couplings, includes weak multi-spin interactions, even under spin flip. We study the model in cylindrical domains of arbitrary aspect ratio and prove that, in the scaling limit, the multipoint energy correlations converge to the same limiting correlations as those of the planar Ising model in the cylinder with renormalized couplings, up to an overall multiplicative constant, independent of the shape and size of the domain. The proof is based on a representation of the generating function of correlations in terms of a non-Gaussian Grassmann integral, and a constructive Renormalization Group (RG) analysis thereof. A key technical novelty compared with previous works is a systematic analysis of the effect of the boundary corrections to the RG flow, in particular a proof that the scaling dimension of boundary operators is better by one dimension than their bulk counterparts. A cancellation mechanism based on an approximate image rule for the fermionic Green's function is of crucial importance for controlling the RG flow of the marginal boundary terms.Comment: 114 pages, 6 figure

    Measuring Kinematic Response to Perturbed Locomotion in Young Adults

    Get PDF
    Daily life activities often require humans to perform locomotion in challenging scenarios. In this context, this study aimed at investigating the effects induced by anterior-posterior (AP) and medio-lateral (ML) perturbations on walking. Through this aim, the experimental protocol involved 12 participants who performed three tasks on a treadmill consisting of one unperturbed and two perturbed walking tests. Inertial measurement units were used to gather lower limb kinematics. Parameters related to joint angles, as the range of motion (ROM) and its variability (CoV), as well as the inter-joint coordination in terms of continuous relative phase (CRP) were computed. The AP perturbation seemed to be more challenging causing differences with respect to normal walking in both the variability of the ROM and the CRP amplitude and variability. As ML, only the ankle showed different behavior in terms of joint angle and CRP variability. In both tasks, a shortening of the stance was found. The findings should be considered when implementing perturbed rehabilitative protocols for falling reduction.Peer Reviewe

    Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model

    Get PDF
    International audienceWestudymulti-fissurationanddebondingphenomenaofathinfilmbondedtoastiffsubstrateusing the variational approach to fracture mechanics. We consider a reduced one-dimensional membrane model where the loading is introduced through uniform inelastic (e.g., thermal) strains in the film or imposed dis- placements of the substrate. Fracture phenomena are accounted for by adopting a Griffith model for debonding and transverse fracture. On the basis of energy minimization arguments, we recover the key qualitative prop- erties of the experimental evidences, like the periodicity of transverse cracks and the peripheral debonding of each regular segment. Phase diagrams relate the maximum number of transverse cracks that may be created before debonding takes place, as a function of the material properties and the sample's geometry. The theo- retical results are illustrated with numerical simulations obtained through a finite element discretization and a regularized variational formulation of the Ambrosio-Tortorelli type, which is suited to further extensions in two-dimensional settings

    Sex-specific tuning of modular muscle activation patterns for locomotion in young and older adults

    Get PDF
    This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.There is increasing evidence that including sex as a biological variable is of crucial importance to promote rigorous, repeatable and reproducible science. In spite of this, the body of literature that accounts for the sex of participants in human locomotion studies is small and often produces controversial results. Here, we investigated the modular organization of muscle activation patterns for human locomotion using the concept of muscle synergies with a double purpose: i) uncover possible sex-specific characteristics of motor control and ii) assess whether these are maintained in older age. We recorded electromyographic activities from 13 ipsilateral muscles of the lower limb in young and older adults of both sexes walking (young and old) and running (young) on a treadmill. The data set obtained from the 215 participants was elaborated through non-negative matrix factorization to extract the time-independent (i.e., motor modules) and time-dependent (i.e., motor primitives) coefficients of muscle synergies. We found sparse sex-specific modulations of motor control. Motor modules showed a different contribution of hip extensors, knee extensors and foot dorsiflexors in various synergies. Motor primitives were wider (i.e., lasted longer) in males in the propulsion synergy for walking (but only in young and not in older adults) and in the weight acceptance synergy for running. Moreover, the complexity of motor primitives was similar in younger adults of both sexes, but lower in older females as compared to older males. In essence, our results revealed the existence of small but defined sex-specific differences in the way humans control locomotion and that these are not entirely maintained in older age.Peer Reviewe

    Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice.

    Get PDF
    Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.Supported by UofMN Medical School start-up funds to AB, Medical Research Council MRC Disease Model Core and British Heart Foundation program grants to AVP, and BIO2011-27069 from the Spanish Ministry of Economy and Competitiveness and PROMETEOII/2014/025 from the GVA-FEDER to JD. VS was supported by a graduate student fellowship of the University of Parma. CC was supported by EU FP7-People Project(ref 316861) "MLPM2012: Machine Learning For Personalized Medicine".This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.3109/10253890.2016.115149

    Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    Get PDF
    Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.Supported by UofMN Medical School start-up funds to AB, Medical Research Council MRC Disease Model Core and British Heart Foundation program grants to AVP, and BIO2011-27069 from the Spanish Ministry of Economy and Competitiveness and PROMETEOII/2014/025 from the GVA-FEDER to JD. VS was supported by a graduate student fellowship of the University of Parma. CC was supported by EU FP7-People Project(ref 316861) "MLPM2012: Machine Learning For Personalized Medicine".This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.3109/10253890.2016.115149

    Propuesta de implementación de Lean Manufacturing para mejorar la productividad en el área de producción en una empresa ladrillera, Cajamarca 2021

    Get PDF
    El presente trabajo es realizado en una empresa ladrillera en Cajamarca, en el cual se plantea como objetivo principal evaluar el impacto de la propuesta de implementación de las herramientas Lean Manufacturing para mejorar la productividad de la empresa, mediante el diagnóstico de la situación actual de la empresa, desarrollo de la propuesta y evaluación económica y financiera de la misma. Para el diagnóstico de la situación actual de la empresa se procedió a realizar un análisis documental de los registros de la empresa, luego se realizó un diagrama Ishikawa para encontrar las causas raíz de los problemas presentes en la empresa; por consiguiente, planteamos distintas herramientas Lean para darles soluciones, estas son, VSM, 5’S y Kanban, así mismo se evaluó el costo de inversión de las herramientas, este último ascendió a una inversión de S/. 12,463.20 soles. Finalizado el diagnóstico de la situación inicial se calculó el costo que la causas raíces ocasionaban, este ascendió a un valor de S/. 7,247.2 soles, y se redujo a S/. 2,000 soles con el desarrollo e implementación de las herramientas, dando un beneficio económico de S/.5,247.20 soles. Finalmente se logró aumentar la productividad desde un valor de 5.16 a 7.74
    corecore