9 research outputs found

    Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold

    Get PDF
    SummaryThe nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes

    Atorvastatin for the treatment of mild to moderate Alzheimer disease: Preliminary results

    No full text
    Background: Laboratory evidence of cholesterol-induced production of amyloid β as a putative neurotoxin precipitating Alzheimer disease, along with epidemiological evidence, suggests that cholesterol-lowering statin drugs may favorably influence the progression of the disorder. Objective: To determine if treatment with atorvastatin calcium affects the cognitive and/or behavioral decline in patients with mild to moderate Alzheimer disease. Design: Pilot intention-to-treat, proof-of-concept, double-blind, placebo-controlled, randomized (1:1) trial with a 1-year exposure to once-daily atorvastatin calcium (80 mg; two 40-mg tablets) or placebo using last observation carried forward analysis of covariance as the primary method of statistical assessment. Participants: Individuals with mild to moderate Alzheimer disease (Mini-Mental State Examination score of 12-28) were recruited. Of the 98 participants providing informed consent, 71 were eligible for randomization, 67 were randomized, and 63 subjects completed the 3-month visit and were considered evaluable. Main Outcome Measures: The primary outcome measures were change in Alzheimer\u27s Disease Assessment Scale-cognitive subscale and the Clinical Global Impression of Change Scale scores. The secondary outcome measures included scores on the Mini-Mental State Examination, Geriatric Depression Scale, the Neuropsychiatric Inventory Scale, and the Alzheimer\u27s Disease Cooperative Study-Activities of Daily Living Inventory. The tertiary outcome measures included total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels. Results: Atorvastatin reduced circulating cholesterol levels and produced a positive signal on each of the clinical outcome measures compared with placebo. This beneficial effect reached significance for the Geriatric Depression Scale and the Alzheimer\u27s Disease Assessment Scale-cognitive subscale at 6 months and was significant at the level of a trend for the Alzheimer\u27s Disease Assessment Scale-cognitive subscale, Clinical Global Impression of Change Scale, and Neuropsychiatric Inventory Scale at 12 months assessed by analysis of covariance with last observation carried forward. Conclusion: Atorvastatin treatment may be of some clinical benefit and could be established as an effective therapy for Alzheimer disease if the current findings are substantiated by a much larger multicenter trial

    Atorvastatin therapy lowers circulating cholesterol but not free radical activity in advance of identifiable clinical benefit in the treatment of mild-to-moderate AD

    No full text
    Cholesterol-induced production of amyloid beta (Aβ) as a putative neurotoxin in Alzheimer\u27s disease (AD), along with epidemiological evidence, suggests that statin drugs may provide benefit in treatment of the disorder. We tested the effect of once daily atorvastatin calcium (80 mg; two 40mg tablets) on cognitive and/or behavioral decline in patients with mild-to-moderate AD. The study was designed as a pilot intention-to-treat, proof-of-concept, double-blind, placebo-controlled, randomized (1:1) trial with a 1-year exposure to study medication employing last-observation-carried-forward (LOCF) ANCOVA as the primary statistical method of assessment. Alternate statistical methods were employed to further explore the effect of atorvastatin treatment on progression of deterioration. Of the 98 individuals with mild-to-moderate AD (Mini-Mental State Examination score of 12-28) providing Informed Consent, 71 were eligible for randomization, 67 were randomized and 63 completed the 3-month visit and were statistically evaluable. The primary outcome measures were change in the Alzheimer Disease Assessment Scale-Cognitive (ADAS-cog) performance and the Clinical Global Impression of Change (CGIC). Secondary outcome measures included the MMSE, Geriatric Depression Scale (GDS), the Neurospychiatric Inventory (NPI) and the ADCS Activities of Daily Living inventory (ADCS-ADL). Tertiary outcome measures included levels of total circulating cholesterol, LDL and VLDL, and circulating activity of the free radical scavenger enzymes superoxide dismutase (SOD) and gluthathione peroxidase (GpX). Atorvastatin reduced circulating cholesterol levels and produced a positive signal on each of the clinical outcome measures compared to placebo, but did not elicit a difference in circulating SOD or GpX activities. The observed beneficial clinical effect reached significance for the GDS (p = 0.040) and the ADAS-cog at 6 months (p = 0.003), was all but significant for the ADAS-cog (p = 0.055) at 12 months, and was of marginal significance for the CGIC (p = 0.073) and NPI (p = 0.071) at 12 months when employing the primary statistical approach (ANCOVA with LOCF). Application of repeated measures ANCOVA statistics revealed the difference was significant for the CGIC and marginally significant for the ADAS-cog, but not significant for the other clinical indices. This evaluation indicated significant time-by-treatment interactions (altered progression) for the ADAS-cog and MMSE, but not the CGIC. Application of random intercept regression analysis revealed a significant difference for the CGIC, ADAS-cog and MMSE. Regression analysis also indicated that atorvastatin produced change in the slope of deterioration on the MMSE. Accordingly, atorvastatin therapy may be an effective treatment and may slow the progression of AD among mild-to-moderately affected patients. ©2005 Bentham Science Publishers Ltd

    Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study

    No full text
    BACKGROUND: The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes. METHODS: To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16 851 cases with state-of-the-art phenotyping data and 32 473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20 941 cases and 364 736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10 172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis. FINDINGS: We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50 × 10-8; joint OR 1·19, 1·12-1·26, p=1·30 × 10-9). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26 × 10-19; joint OR 1·37, 1·30-1·45, p=2·79 × 10-32) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93 × 10-7; joint OR 1·17, 1·11-1·23, p=2·29 × 10-10) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50 × 10-8; joint OR 1·24, 1·15-1·33, p=4·52 × 10-9) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82 × 10-8; joint OR 1·17, 1·11-1·23, p=2·92 × 10-9). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed. INTERPRETATION: Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke
    corecore