12 research outputs found

    臺灣北部沿海工業區環境影響評估

    No full text
    Aims: Exercise combined with adipose tissue lipolytic inhibition augments intramuscular lipid and glycogen use in type 2 diabetes patients. The present study investigates the impact of adipose tissue lipolytic inhibition during exercise on subsequent postprandial glycemic control in type 2 diabetes patients. Methods: Fourteen male type 2 diabetes patients (age 65 ± 2 years, HbA1c 6.7 ± 0.1% (50 ± 2 mmol/mol)) participated in a double-blind placebo-controlled randomized cross-over study in which subjects performed endurance-type exercise after being administered 250 mg of a nicotinic acid analogue (acipimox; ACP) or a placebo (PLA). A control experiment was included in which no exercise was performed (CON). Results: Sixty minutes of endurance-type exercise (at 45% Wpeak) did not significantly lower circulating plasma glucose and insulin excursions in PLA when compared with CON (P = .300). Acipimox administration strongly reduced circulating plasma FFA concentrations during exercise (P < .001). Circulating plasma glucose and insulin excursions were substantially lower during 7.5 h of recovery from exercise (i.e. postprandial) in ACP when compared with either CON (P = .041 and P = .002, respectively) or PLA (P = .009 and P = .001, respectively). Conclusions: Collectively, exercise with adipose tissue lipolytic inhibition reduces postprandial blood glucose and insulin excursions and, as such, further improves glycemic control in male type 2 diabetes patients

    Heart Failure-Related Outcomes in Patients with Left Ventricular Dysfunction Undergoing Percutaneous Chronic Total Occlusion Revascularization

    No full text
    Background: The presence of a chronic total occlusion (CTO) and severe left ventricular (LV) systolic dysfunction are known negative prognostic factors in patients with coronary artery disease. Several studies have examined the effect of CTO revascularization on mortality, symptoms, occurrence of myocardial infarction (MI), and cardiac function in patients with normal or reduced LV function. However, the effect of CTO revascularization on heart failure-related events in patients with LV dysfunction, such as heart failure hospitalization (HFH), the occurrence of atrial fibrillation (AF), and a worsening renal function (WRF), has not yet been evaluated. To assess the success rate and safety of CTO percutaneous coronary interventions (PCIs) in coronary patients with LV ejection fractions of ≤40% and evaluate the impact of successful CTO revascularization on HFH, occurrence of AF, and WRF. Methods: Prospectively, data were collected from CTO PCIs performed at three referral centers and analyzed. From a total of 1435 CTO PCIs, 132 (9.2%) patients with a left ventricular ejection fraction (LVEF) of ≤40% were included in this analysis. The median follow-up duration was 23.18 months (interquartile range (IQR): 11.02–46.66 months). Results: A successful CTO PCI was achieved in 109 of these patients, while the procedure was unsuccessful in 23 patients (82.5% procedural success rate). Overall, the intervention had an acceptable number of peri-procedural (or in-hospital) complications (9.1%). During the follow-up period, the rates of all-cause death, cardiovascular death, and non-fatal MI were not significantly different between the two groups. The rates of HFH were significantly lower in the successful PCI group, while WRF and AF did not differ between successful and unsuccessful PCI groups. Successful PCI and higher estimated glomerular filtration rate (eGFR) were independent predictors of a lower risk of HFH, while prior stroke and diabetes were independent predictors of a higher risk of HFH. Conclusions: In patients with reduced LV systolic function (ejection fraction, EF ≤40%), CTO PCI is a safe and effective procedure and successful CTO PCI is independently associated with a lower risk of HFH during follow-up. Further expansion of this cohort is necessary to confirm these results

    Impact of loading and myocardial mechanical properties on natural shear waves

    No full text
    Background: Shear wave elastography (SWE) has been proposed as a novel noninvasive method for the assessment of myocardial stiffness, a relevant determinant of diastolic function. It is based on tracking the propagation of shear waves, induced, for instance, by mitral valve closure (MVC), in the myocardium. The speed of propagation is directly related to myocardial stiffness, which is defined by the local slope of the nonlinear stress-strain relation. Therefore, the operating myocardial stiffness can be altered by both changes in loading and myocardial mechanical properties. Objectives: This study sought to evaluate the capability of SWE to quantify myocardial stiffness changes in vivo by varying loading and myocardial tissue properties and to compare SWE against pressure-volume loop analysis, a gold standard reference method. Methods: In 15 pigs, conventional and high–frame rate echocardiographic data sets were acquired simultaneously with pressure-volume loop data after acutely changing preload and afterload and after inducting an ischemia/reperfusion (I/R) injury. Results: Shear wave speed after MVC significantly increased by augmenting preload and afterload (3.2 ± 0.8 m/s vs 4.6 ± 1.2 m/s and 4.6 ± 1.0 m/s, respectively; P = 0.001). Preload reduction had no significant effect on shear wave speed compared to baseline (P = 0.118). I/R injury resulted in significantly higher shear wave speed after MVC (6.1 ± 1.2 m/s; P < 0.001). Shear wave speed after MVC had a strong correlation with the chamber stiffness constant β (r = 0.63; P < 0.001) and operating chamber stiffness dP/dV before induction of an I/R injury (r = 0.78; P < 0.001) and after (r = 0.83; P < 0.001). Conclusions: Shear wave speed after MVC was influenced by both acute changes in loading and myocardial mechanical properties, reflecting changes in operating myocardial stiffness, and was strongly related to chamber stiffness, invasively derived by pressure-volume loop analysis. SWE provides a novel noninvasive method for the assessment of left ventricular myocardial properties

    Impact of Loading and Myocardial Mechanical Properties on Natural Shear Waves: Comparison to Pressure-Volume Loops

    No full text
    Background: Shear wave elastography (SWE) has been proposed as a novel noninvasive method for the assessment of myocardial stiffness, a relevant determinant of diastolic function. It is based on tracking the propagation of shear waves, induced, for instance, by mitral valve closure (MVC), in the myocardium. The speed of propagation is directly related to myocardial stiffness, which is defined by the local slope of the nonlinear stress-strain relation. Therefore, the operating myocardial stiffness can be altered by both changes in loading and myocardial mechanical properties. Objectives: This study sought to evaluate the capability of SWE to quantify myocardial stiffness changes in vivo by varying loading and myocardial tissue properties and to compare SWE against pressure-volume loop analysis, a gold standard reference method. Methods: In 15 pigs, conventional and high–frame rate echocardiographic data sets were acquired simultaneously with pressure-volume loop data after acutely changing preload and afterload and after inducting an ischemia/reperfusion (I/R) injury. Results: Shear wave speed after MVC significantly increased by augmenting preload and afterload (3.2 ± 0.8 m/s vs 4.6 ± 1.2 m/s and 4.6 ± 1.0 m/s, respectively; P = 0.001). Preload reduction had no significant effect on shear wave speed compared to baseline (P = 0.118). I/R injury resulted in significantly higher shear wave speed after MVC (6.1 ± 1.2 m/s; P < 0.001). Shear wave speed after MVC had a strong correlation with the chamber stiffness constant β (r = 0.63; P < 0.001) and operating chamber stiffness dP/dV before induction of an I/R injury (r = 0.78; P < 0.001) and after (r = 0.83; P < 0.001). Conclusions: Shear wave speed after MVC was influenced by both acute changes in loading and myocardial mechanical properties, reflecting changes in operating myocardial stiffness, and was strongly related to chamber stiffness, invasively derived by pressure-volume loop analysis. SWE provides a novel noninvasive method for the assessment of left ventricular myocardial properties

    Shockwave balloon or atherectomy with rotablation in calcified coronary artery lesions:Design and rationale of the SONAR trial

    No full text
    Background: The percutaneous treatment of calcified coronary lesions remains challenging and is associated with worse clinical outcomes. In addition, coronary artery calcification is associated with more frequent peri-procedural myocardial infarction. Study design and objectives: The ShOckwave ballooN or Atherectomy with Rotablation in calcified coronary artery lesions (SONAR) study is an investigator-initiated, prospective, randomized, international, multicenter, open label trial (NCT05208749) comparing a lesion preparation strategy with either shockwave intravascular lithotripsy (IVL) or rotational atherectomy (RA) before drug-eluting stent implantation in 170 patients with moderate to severe calcified coronary lesions. The primary endpoint is difference in the rate of peri-procedural myocardial infarction. Key secondary endpoints include rate of peri-procedural microvascular dysfunction, peri-procedural myocardial injury, descriptive study of IMR measurements in calcified lesions, technical and procedural success, interaction between OCT calcium score and primary endpoint, 30-day and 1-year major adverse clinical events. Conclusions: The SONAR trial is the first randomized controlled trial comparing the incidence of peri-procedural myocardial infarction between 2 contemporary calcium modification strategies (Shockwave IVL and RA) in patients with calcified coronary artery lesions. Furthermore, for the first time, the incidence of peri-procedural microvascular dysfunction after Shockwave IVL and RA will be evaluated and compared.</p

    Mechanical Dyssynchrony Combined with Septal Scarring Reliably Identifies Responders to Cardiac Resynchronization Therapy

    No full text
    Background and aim: The presence of mechanical dyssynchrony on echocardiography is associated with reverse remodelling and decreased mortality after cardiac resynchronization therapy (CRT). Contrarily, myocardial scar reduces the effect of CRT. This study investigated how well a combined assessment of different markers of mechanical dyssynchrony and scarring identifies CRT responders. Methods: In a prospective multicentre study of 170 CRT recipients, septal flash (SF), apical rocking (ApRock), systolic stretch index (SSI), and lateral-to-septal (LW-S) work differences were assessed using echocardiography. Myocardial scarring was quantified using cardiac magnetic resonance imaging (CMR) or excluded based on a coronary angiogram and clinical history. The primary endpoint was a CRT response, defined as a ≥15% reduction in LV end-systolic volume 12 months after implantation. The secondary endpoint was time-to-death. Results: The combined assessment of mechanical dyssynchrony and septal scarring showed AUCs ranging between 0.81 (95%CI: 0.74–0.88) and 0.86 (95%CI: 0.79–0.91) for predicting a CRT response, without significant differences between the markers, but significantly higher than mechanical dyssynchrony alone. QRS morphology, QRS duration, and LV ejection fraction were not superior in their prediction. Predictive power was similar in the subgroups of patients with ischemic cardiomyopathy. The combined assessments significantly predicted all-cause mortality at 44 ± 13 months after CRT with a hazard ratio ranging from 0.28 (95%CI: 0.12–0.67) to 0.20 (95%CI: 0.08–0.49). Conclusions: The combined assessment of mechanical dyssynchrony and septal scarring identified CRT responders with high predictive power. Both visual and quantitative markers were highly feasible and demonstrated similar results. This work demonstrates the value of imaging LV mechanics and scarring in CRT candidates, which can already be achieved in a clinical routine

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access
    corecore