9 research outputs found

    Zip Nucleic Acids: new high affinity oligonucleotides as potent primers for PCR and reverse transcription

    Get PDF
    Most nucleic acid-based technologies rely upon sequence recognition between an oligonucleotide and its nucleic acid target. With the aim of improving hybridization by decreasing electrostatic repulsions between the negatively charged strands, novel modified oligonucleotides named Zip nucleic acids (ZNAs) were recently developed. ZNAs are oligonucleotide–oligocation conjugates whose global charge is modulated by the number of cationic spermine moieties grafted on the oligonucleotide. It was demonstrated that the melting temperature of a hybridized ZNA is easily predictable and increases linearly with the length of the oligocation. Furthermore, ZNAs retain the ability to discriminate between a perfect match and a single base-pair-mismatched complementary sequence. Using quantitative PCR, we show here that ZNAs are specific and efficient primers displaying an outstanding affinity toward their genomic target. ZNAs are particularly efficient at low magnesium concentration, low primer concentrations and high annealing temperatures, allowing to improve the amplification in AT-rich sequences and potentially multiplex PCR applications. In reverse transcription experiments, ZNA gene-specific primers improve the yield of cDNA synthesis, thus increasing the accuracy of detection, especially for genes expressed at low levels. Our data suggest that ZNAs exhibit faster binding kinetics than standard and locked nucleic acid-containing primers, which could explain why their target recognition is better for rare targets

    Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    Get PDF
    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3′ end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes

    The processivity factor β controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo

    No full text
    The dinB-encoded DNA polymerase IV (Pol IV) belongs to the recently identified Y-family of DNA polymerases. Like other members of this family, Pol IV is involved in translesion synthesis and mutagenesis. Here, we show that the C-terminal five amino acids of Pol IV are essential in targeting it to the β-clamp, the processivity factor of the replicative DNA polymerase (Pol III) of Escherichia coli. In vivo, the disruption of this interaction obliterates the function of Pol IV in both spontaneous and induced mutagenesis. These results point to the pivotal role of the processivity clamp during DNA polymerase trafficking in the vicinity of damaged-template DNA

    IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas

    No full text
    Neurogenin 3 (Ngn3) is key for endocrine cell specification in the embryonic pancreas and induction of a neuroendocrine cell differentiation program by misexpression in adult pancreatic duct cells. We identify the gene encoding IA1, a zinc-finger transcription factor, as a direct target of Ngn3 and show that it forms a novel branch in the Ngn3-dependent endocrinogenic transcription factor network. During embryonic development of the pancreas, IA1 and Ngn3 exhibit nearly identical spatio-temporal expression patterns. However, embryos lacking Ngn3 fail to express IA1 in the pancreas. Upon ectopic expression in adult pancreatic duct cells Ngn3 binds to chromatin in the IA1 promoter region and activates transcription. Consistent with this direct effect, IA1 expression is normal in embryos mutant for NeuroD1, Arx, Pax4 and Pax6, regulators operating downstream of Ngn3. IA1 is an effector of Ngn3 function as inhibition of IA1 expression in embryonic pancreas decreases the formation of insulin- and glucagon-positive cells by 40%, while its ectopic expression amplifies neuroendocrine cell differentiation by Ngn3 in adult duct cells. IA1 is therefore a novel Ngn3-regulated factor required for normal differentiation of pancreatic endocrine cells

    Conjugating Phosphospermines to siRNAs for Improved Stability in Serum, Intracellular Delivery and RNAi-Mediated Gene Silencing

    No full text
    siRNAs are usually formulated with cationic polymers or lipids to form supramolecular particles capable of binding and crossing the negatively charged cell membrane. However, particles hardly diffuse through tissues when administered <i>in vivo</i>. We therefore are developing cationic siRNAs, composed of an antisense sequence annealed to an oligophosphospermine-conjugated sense strand. Cationic siRNAs have been previously shown to display gene silencing activity in human cell line (Nothisen et al. <i>J. Am. Chem. Soc.</i> <b>2009</b>). We have improved the synthesis, purification and characterization of oligospermine-oligoribonucleotide conjugates which provide cationic siRNAs with enhanced biological activity. We show data supporting their carrier-free intracellular delivery in a molecular, soluble state. Additional results on the relationship between global charge, uptake and silencing activity confirm the requirement for an overall positive charge of the conjugated siRNA in order to enter cells. Importantly, conjugated siRNAs made of natural phosphodiester nucleotides are protected from nuclease degradation by the oligophosphospermine moiety, operate through the RNAi mechanism and mediate specific gene silencing at submicromolar concentration in the presence of serum

    Effect of chemoprevention by low-dose aspirin of new or recurrent colorectal adenomas in patients with Lynch syndrome (AAS-Lynch): study protocol for a multicenter, double-blind, placebo-controlled randomized controlled trial

    No full text
    Abstract Lynch syndrome (LS) is the most common cause of inherited colorectal cancer (CRC) and confers a high lifetime risk of CRC estimated to be up to 60%. Colonoscopy is recommended every 2 years in LS patients above the 20–25-year-old age bracket, and every year when colonic neoplasia has been detected. Efficient chemoprevention has the potential to represent a cost-effective intervention in these high-risk patients and could allow a delay in colonoscopy surveillance. Several epidemiological studies have shown that regular use of low dose aspirin is associated with a 20 to 30% reduction in the risk of sporadic colonic adenomas and colorectal cancer regardless of family risk. However, in recent large randomized trials in specific populations, aspirin use showed no protection for colorectal cancer. A prospective randomized CAPP-2 trial evaluated the effect of aspirin use in LS patients. The primary analysis of this trial showed no significant decrease in CRC in LS patients under daily aspirin. However, a preplanned secondary analysis after an extended follow-up showed a significant reduced risk of CRC in the aspirin group in the per-protocol analysis. The real effect and clinical benefit of aspirin are still to be consolidated in this population. The AAS-Lynch trial—a prospective, multicentric, double-blind, placebo-controlled, randomized clinical trial—was designed to investigate if daily aspirin therapy, at a dose of 100 or 300 mg, would decrease the occurrence or recurrence of colorectal adenomas in patients under 75 years of age, compared with placebo. Trial registration ClinicalTrials.gov NCT02813824 . Registered on 27 June 2016. The trial was prospectively registered
    corecore