11 research outputs found

    Gamma-ray observations of MAXI J1820+070 during the 2018 outburst

    No full text
    Abstract MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10¹¹ and 10¹³ cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA

    Long-term TeV and X-Ray Observations of the Gamma-Ray Binary HESS J0632+057

    Get PDF
    HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 3154+6315 ^{+6}_{-4} days is derived from the X-ray data set, which is compatible with previous results, P = (321 ± 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (>6.5σ) detection at orbital phases 0.6-0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries

    The 2012 Flare of PG 1553+113 Seen with H.E.S.S. and Fermi-LAT

    Get PDF
    Very high energy (VHE, E > 100 GeV) γ-ray flaring activity of the high-frequency peaked BL Lac object PG 1553+113 has been detected by the H.E.S.S. telescopes. The flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with VHE γ-ray flaring being caused by the injection of ultrarelativistic particles, emitting γ-rays at the highest energies. The dataset offers a unique opportunity to constrain the redshift of this source at z = 0.49 ± 0.04 using a novel method based on Bayesian statistics. The indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are EQG,1 > 4.10 × 1017 GeV and EQG,2 > 2.10 × 1010 GeV for linear and quadratic LIV effects, respectively

    Search for dark matter annihilation signatures in H.E.S.S. observations of dwarf spheroidal galaxies

    Get PDF
    Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of nonthermal high-energy gamma-ray emission or intense star formation. Therefore they are among the most promising candidates for indirect dark matter searches. During the last years the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes observed five of these dwarf galaxies for more than 140 hours in total, searching for TeV gamma-ray emission from annihilation of dark matter particles. The new results of the deep exposure of the Sagittarius dwarf spheroidal galaxy, the first observations of the Coma Berenices and Fornax dwarves and the reanalysis of two more dwarf spheroidal galaxies already published by the H.E.S.S. Collaboration, Carina and Sculptor, are presented. In the absence of a significant signal new constraints on the annihilation cross section applicable to weakly interacting massive particles (WIMPs) are derived by combining the observations of the five dwarf galaxies. The combined exclusion limit depends on the WIMP mass and the best constraint is reached at 1–2 TeV masses with a cross-section upper bound of ∼ 3.9×10−24  cm3 s−1 at a 95% confidence level

    Acceleration of petaelectronvolt protons in the Galactic Centre

    No full text
    Galactic cosmic rays reach energies of at least a few Peta-electronvolts (1 PeV =101510^\mathbf{15} electron volts). This implies our Galaxy contains PeV accelerators (PeVatrons), but all proposed models of Galactic cosmic-ray accelerators encounter non-trivial difficulties at exactly these energies. Tens of Galactic accelerators capable of accelerating particle to tens of TeV (1 TeV =101210^\mathbf{12} electron volts) energies were inferred from recent gamma-ray observations. None of the currently known accelerators, however, not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays, have shown the characteristic tracers of PeV particles: power-law spectra of gamma rays extending without a cutoff or a spectral break to tens of TeV. Here we report deep gamma-ray observations with arcminute angular resolution of the Galactic Centre regions, which show the expected tracer of the presence of PeV particles within the central 10~parsec of the Galaxy. We argue that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts and an outflow from the Galactic Centre. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 1067\gtrsim 10^{6-7} years, and therefore should be considered as a viable alternative to supernova remnants as a source of PeV Galactic cosmic rays

    Acceleration of petaelectronvolt protons in the Galactic Centre

    No full text
    Galactic cosmic rays reach energies of at least a few petaelectronvolts1 (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators (‘PeVatrons’), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies2. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent γ-ray observations3. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of γ-rays extending without a cut-off or a spectral break to tens of teraelectronvolts4. Here we report deep γ-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts5and an outflow from the Galactic Centre6. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106–107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays

    THE 2012 FLARE OF PG 1553+113 SEEN WITH H.E.S.S. AND FERMI

    No full text
    corecore