98 research outputs found

    Recherches sur l’écosystème de la foret subéquatoriale de basse Côte-d’Ivoire I. Introduction

    Get PDF

    Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping

    Get PDF
    We have developed a Clostridium difficile PCR ribotyping method based on capillary gel electrophoresis and have compared it with conventional PCR ribotyping. A total of 146 C. difficile isolates were studied: five isolates were reference strains (PCR ribotypes 001, 014, 017, 027 and 053); 141 were clinical isolates comprising 39 Austrian PCR ribotypes collected in the period 2006–2007 at 25 Austrian healthcare facilities. Capillary gel electrophoresis yielded up to 11 fragments per isolate and 47 ribotype patterns. All but one of the five PCR ribotypes of reference strains were clearly reflected in the chromatograms of capillary-based typing. Capillary gel electrophoresis divided 24 isolates belonging to PCR ribotype type 014 into seven subgroups, whereas subtyping the same isolates using multiple-locus variable-number tandem-repeat analysis yielded three unrelated subgroups, without obvious correlation to sr subgroups. Using a web-based software program (http://webribo.ages.at), we were able to correctly identify these 014 isolates by simply allocating the seven subgroup patterns to one ribotype, i.e. to PCR ribotype 014. We consider capillary gel electrophoresis-based PCR ribotyping to be a way of overcoming the problems associated with inter-laboratory comparisons of typing results, while at the same time substantially diminishing the hands-on time for PCR ribotyping

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc

    The Clostridium difficile Cell Wall Protein CwpV is Antigenically Variable between Strains, but Exhibits Conserved Aggregation-Promoting Function

    Get PDF
    Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV

    The populations of sessile oak (Quercus petraea) of La Tillaie and Gros Fouteau conservation areas in the Fontainebleau Forest, France. Age structure, demography and evolution

    No full text
    The structure and dynamics of the population of Sessile Oak (Quercus petraea) in two conservation areas of the Fontainebleau forest, France, is described. In this Beech forest, oaks are few in number, and mostly very old (an individual lived for more than 470 years). However, pollen analysis shows that the Sessile Oak was dominant in this forest up to the end of the Middle Ages. The successive stages of the Oak's life-cycle are described : acorn production, acorn consumption by animals, establishment and mortality of the seedlings, survival of young plants, annual growth, and mortality rate. Mortality rates of seedlings and saplings are very high, and much higher than those of sympatric beeches, which can grow successfully even under the crowns of old oak trees. Although the greater life-span of the oaks ensures them a better chance of regeneration than Beech, the forest clearings were filled by Oak recruits only once during the last 150 years . As the mortality rate of fertile Oak trees greatly exceeds their rate of recruitment, the species is rapidly declining in numbers in the conservation areas, and its future is uncertai
    • …
    corecore