6,344 research outputs found
Social marketing: Immunizing against unethical practice
A simple approach for the catalytic conversion of primary alcohols into their corresponding esters and amides, with evolution of H2 gas using in situ formed ruthenium PNP- and PNN-pincer catalysts, is presented. The evaluation showed conversions for the esterification with turnover numbers as high as 4300, and 4400 for the amidation
Genetic variability and incidence of systemic diseases in wild vines (Vitis vinifera ssp. silvestris) along the Danube
In the riparian woods of Danube and March east of Vienna 87 wild specimens of Vitis vinifera ssp. silvestris were genetically analysed and compared. The silvestris population can be split into 6 distinct groups, but this clustering cannot be explained solely by the geographical distance. The unique genetic variability observed represents a strong case for preservation of wild grapevines.The incidence of bacterioses, viroses and nematodes transmitting nepoviruses to these vines were registered. None of the analysed specimens suffered from Agrobacterium vitis-induced crown gall. Only some vines were infected by viral pathogens such as GLRaV I and SLRV. Thus the wild vines do not constitute a risk for the surrounding commercial vineyards. On the other hand, diseases spread from cultivated grapevines may seriously harm the wild vine population. Four species of nematodes transmitting nepoviruses were registered. Samples of Xiphinema vuittenezi and Longidorus attenuatus from the Lobau (natural forests, north of the Danube in the area of Vienna) differ morphometrically from others found on arable soils or isolated from the research area.
Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU
In a case study (June 6-7, 2008) we report on how the internal structure of a
coronal mass ejection (CME) at 1 AU can be anticipated from remote observations
of white-light images of the heliosphere. Favorable circumstances are the
absence of fast equatorial solar wind streams and a low CME velocity which
allow us to relate the imaging and in-situ data in a straightforward way. The
STEREO-B spacecraft encountered typical signatures of a magnetic flux rope
inside an interplanetary CME (ICME) whose axis was inclined at 45 degree to the
solar equatorial plane. Various CME direction-finding techniques yield
consistent results to within 15 degree. Further, remote images from STEREO-A
show that (1) the CME is unambiguously connected to the ICME and can be tracked
all the way to 1 AU, (2) the particular arc-like morphology of the CME points
to an inclined axis, and (3) the three-part structure of the CME may be
plausibly related to the in situ data. This is a first step in predicting both
the direction of travel and the internal structure of CMEs from complete remote
observations between the Sun and 1 AU, which is one of the main requirements
for forecasting the geo-effectiveness of CMEs.Comment: The Astropyhsical Journal Letters (accepted); 4 figure
Mesoscopic motion of atomic ions in magnetic fields
We introduce a semiclassical model for moving highly excited atomic ions in a
magnetic field which allows us to describe the mixing of the Landau orbitals of
the center of mass in terms of the electronic excitation and magnetic field.
The extent of quantum energy flow in the ion is investigated and a crossover
from localization to delocalization with increasing center of mass energy is
detected. It turns out that our model of the moving ion in a magnetic field is
closely connected to models for transport in disordered finite-size wires.Comment: 4 pages, 2 figures, subm. to Phys.Rev.A, Rap.Co
Solar fusion cross sections. II. The pp chain and CNO cycles
We summarize and critically evaluate the available data on nuclear fusion
cross sections important to energy generation in the Sun and other
hydrogen-burning stars and to solar neutrino production. Recommended values and
uncertainties are provided for key cross sections, and a recommended spectrum
is given for 8B solar neutrinos. We also discuss opportunities for further
increasing the precision of key rates, including new facilities, new
experimental techniques, and improvements in theory. This review, which
summarizes the conclusions of a workshop held at the Institute for Nuclear
Theory, Seattle, in January 2009, is intended as a 10-year update and
supplement to Reviews of Modern Physics 70 (1998) 1265.Comment: 54 pages, 20 figures, version to be published in Reviews of Modern
Physics; various typos corrected and several updates mad
Long-Time Asymptotics of Perturbed Finite-Gap Korteweg-de Vries Solutions
We apply the method of nonlinear steepest descent to compute the long-time
asymptotics of solutions of the Korteweg--de Vries equation which are decaying
perturbations of a quasi-periodic finite-gap background solution. We compute a
nonlinear dispersion relation and show that the plane splits into
soliton regions which are interlaced by oscillatory regions, where
is the number of spectral gaps.
In the soliton regions the solution is asymptotically given by a number of
solitons travelling on top of finite-gap solutions which are in the same
isospectral class as the background solution. In the oscillatory region the
solution can be described by a modulated finite-gap solution plus a decaying
dispersive tail. The modulation is given by phase transition on the isospectral
torus and is, together with the dispersive tail, explicitly characterized in
terms of Abelian integrals on the underlying hyperelliptic curve.Comment: 45 pages. arXiv admin note: substantial text overlap with
arXiv:0705.034
Impact of directional walk on atom probe microanalysis
In the atom probe microanalysis of steels, inconsistencies in the measured compositions of solutes (C, N) have often been reported, as well as their appearance as molecular ions. Here we propose that these issues might arise from surface migration of solute atoms over the specimen surface. Surface migration of solutes is evidenced by field-ion microscopy observations, and its consequences on atom probe microanalysis are detailed for a wide range of solute (P, Si, Mn, B, C and N). It is proposed that directional walk driven by field gradients over the specimen surface and thermally activated is the prominent effect
Studies of release properties of ISOLDE targets
Off-line release rates of Be, Mg, S, Mn and Kr from refractory materials were studied. Mn yields were determined from a ZrO2 target and Kr yields from a SrO and ZrO2 targets. A Monte Carlo code to optimize ISOLDE targets was introduced
STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5-7 April 2010
On 5 April 2010 an interplanetary (IP) shock was detected by the Wind
spacecraft ahead of Earth, followed by a fast (average speed 650 km/s) IP
coronal mass ejection (ICME). During the subsequent moderate geomagnetic storm
(minimum Dst = -72 nT, maximum Kp=8-), communication with the Galaxy 15
satellite was lost. We link images from STEREO/SECCHI to the near-Earth in situ
observations and show that the ICME did not decelerate much between Sun and
Earth. The ICME flank was responsible for a long storm growth phase. This type
of glancing collision was for the first time directly observed with the STEREO
Heliospheric Imagers. The magnetic cloud (MC) inside the ICME cannot be modeled
with approaches assuming an invariant direction. These observations confirm the
hypotheses that parts of ICMEs classified as (1) long-duration MCs or (2)
magnetic-cloud-like (MCL) structures can be a consequence of a spacecraft
trajectory through the ICME flank.Comment: Geophysical Research Letters (accepted); 3 Figure
- âŠ