706 research outputs found

    Magnetic defects promote ferromagnetism in Zn1-xCoxO

    Full text link
    Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p- or n-type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO. The electronic structures of Co substituted for Zn in ZnO, Zn and O vacancies, substituted N and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34 eV for bulk ZnO, close to the experimental value of 3.47 eV. Occupied minority spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction band minimum. Majority spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy and interstitial Zn are deep and shallow donors, respectively. The Zn vacancy is a deep acceptor and the acceptor level for substituted N is at mid gap. The possibility that p- or n-type dopants promote exchange coupling of Co ions was investigated by computing total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N or interstitial Zn in various charge states. The neutral N defect and the singly-positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range.Comment: 9 pages, 11 figure

    Day-night high resolution infrared radiometer employing two-stage radiant cooling. Part 1 - Two-stage radiant cooler Final report

    Get PDF
    Design, thermal analysis, testing, and breadboard integration of two-stage radiant cooler for high resolution radiomete

    Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors

    Full text link
    Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite Cu-III-VI2 semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent electron photoconductivity (n-type PPC) caused by the oxygen vacancy VO in n-ZnO, and persistent hole photoconductivity (p-type PPC) caused by the Se vacancy VSe in p-CuInSe2 and p-CuGaSe2. We find that VSe in the chalcopyrite materials is amphoteric having two "negative-U" like transitions, i.e. a double-donor transition e(2+/0) close to the valence band and a double-acceptor transition e(0/2-) closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects (e.g., donors): type-alpha, which have a defect-localized-state (DLS) in the gap, and type-beta, which have a resonant DLS within the host bands (e.g., conduction band). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host-state (PHS). Type alpha is non-conducting, whereas type beta is conducting. We identify the neutral anion vacancy as type-alpha and the doubly positively charged vacancy as type-beta. We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between alpha- and beta-type behavior, resulting in metastability and PPC. In CuInSe2, the metastable behavior of VSe is carried over to the (VSe-VCu) complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and CuInSe2 in the light of this model.Comment: submitted to Phys. Rev.

    Magnetic oxide semiconductors

    Full text link
    Magnetic oxide semiconductors, oxide semiconductors doped with transition metal elements, are one of the candidates for a high Curie temperature ferromagnetic semiconductor that is important to realize semiconductor spintronics at room temperature. We review in this paper recent progress of researches on various magnetic oxide semiconductors. The magnetization, magneto-optical effect, and magneto-transport such as anomalous Hall effect are examined from viewpoint of feasibility to evaluate the ferromagnetism. The ferromagnetism of Co-doped TiO2 and transition metal-doped ZnO is discussed.Comment: 26 pages, 5 tables, 6 figure

    advanced electric propulsion diagnostic tools at iom

    Get PDF
    Abstract Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1] , which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1] , [4] ), in two different vacuum facilities

    Hydrogen a relevant shallow donor in Zinc Oxide

    Get PDF
    Biological and Soft Matter Physic

    Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    Full text link
    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the xx-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.Comment: 22 pages, 18 figures, accepted for publication in Astrophys. Space Sc

    Role of serum S100B and PET-CT in follow-up of patients with cutaneous melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased level of serum S100B can serve as a marker of metastatic spread in patients with cutaneous melanoma (CM). In patients with elevated S100 B and/or clinical signs of disease progression PET-CT scan is a valuable tool for discovering metastases and planning treatment.</p> <p>The aims of this study were to determine whether regular measurements of serum S100B are a useful tool for discovering patients with CM metastases and to evaluate the diagnostic value of PET-CT during the follow-up.</p> <p>Methods</p> <p>From September 2007 to February 2010, 115 CM patients included in regular follow up at the Institute of Oncology Ljubljana were appointed to PET-CT. There were 82 (71.3%) patients with clinical signs of disease progression and 33 (28.7%) asymptomatic patients with two subsequent elevated values of S100B. Sensitivity, specificity, positive and negative predictive value (PPV, NPV) of S100B and PET-CT were calculated using standard procedures.</p> <p>Results</p> <p>Disease progression was confirmed in 81.7% of patients (in 86.5% of patients with clinical signs of disease progression and in 69.7% of asymptomatic patients with elevated S100B). Sensitivity, specificity, PPV and NPV of S100B was 33.8%, 90.9%, 96.0% and 17.5% in patients with clinical signs of disease progression. In 20.0% of patients increased serum S100B was the only sign of disease progression. Sensitivity and PPV of S100 in this group of patients were 100.0% and 69.7%.</p> <p>With PET-CT disease progression was diagnosed in 84.2% of symptomatic patients and in 72.7% of asymptomatic patients with elevated S100B. The sensitivity, specificity, PPV and NPV of PET-CT for symptomatic patients was 98.5%, 90.9%, 98.5% and 90.9% and 100%, 90.0%, 95.8% and 100% for asymptomatic patients with elevated S100.</p> <p>Conclusions</p> <p>Measurements of serum S100B during regular follow-up of patients with CM are a useful tool for discovering disease progression in asymptomatic patients. The value of its use increases if measurements are followed by extended whole body PET-CT.</p
    corecore