561 research outputs found

    Synchronized single electron emission from dynamical quantum dots

    Full text link
    We study synchronized quantized charge pumping through several dynamical quantum dots (QDs) driven by a single time modulated gate signal. We show that the main obstacle for synchronization being the lack of uniformity can be overcome by operating the QDs in the decay cascade regime. We discuss the mechanism responsible for lifting the stringent uniformity requirements. This enhanced functionality of dynamical QDs might find applications in nanoelectronics and quantum metrology.Comment: 4 pages, 3 figures, submitted to AP

    Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    Full text link
    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.Comment: 31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included her

    Il termine "communitas" in una lettera di Gregorio II

    Get PDF

    Constructive role of non-adiabaticity for quantized charge pumping

    Full text link
    We investigate a recently developed scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAl-GaAs gated nanowire. It has been shown theoretically that non-adiabaticity is fundamentally required to realize single-parameter pumping, while in previous multi-parameter pumping schemes it caused unwanted and less controllable currents. In this paper we demonstrate experimentally the constructive and destructive role of non-adiabaticity by analysing the pumping current over a broad frequency range.Comment: Presented at ICPS 2010, July 25 - 30, Seoul, Kore

    Can intervals enhance the inflammatory response and enjoyment in upper-body exercise?

    Get PDF
    Purpose To investigate the inflammatory and perceptual responses to three different forms of upper-body exercise. Methods Twelve recreationally active, able-bodied males performed three work-matched arm-crank sessions in a randomised order: 30 min moderate-intensity continuous (CON), 30 min moderate-intensity with changes in cadence (CAD) and 20 min high-intensity interval training (HIIT). Blood samples were taken pre, post and 2-h post-exercise to determine plasma concentrations of interleukin (IL)-6 and IL-1ra. Perceptual responses pre, during and following the trials were assessed using the Feeling Scale, Felt Arousal Scale, Ratings of Perceived Exertion (RPE) and the Physical Activity Enjoyment Scale (PACES). Results All trials were evenly effective in inducing an acute inflammatory response, indicated by similar increases in IL-6 after exercise and in IL-1ra at 2-h post exercise for all trials. More negative affect and higher RPE were reported during HIIT compared to CON and CAD, whereas PACES scores reported after exercise were higher for HIIT and CAD compared to CON. Conclusions When matched for external work, there was no difference in the inflammatory response to HIIT compared to moderate-intensity upper-body exercise. Although HIIT was (perceived as) more strenuous and affective responses were more negative during this mode, the higher ratings of enjoyment for both HIIT and CAD reported after exercise suggest that the inclusion of variation enhances enjoyment in upper-body exercise. As the fashion in which upper-body exercise is performed does not seem to influence the inflammatory response, it might be advised to prescribe varied exercise to enhance its enjoyment

    An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

    Get PDF
    We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene π\pi-band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.

    Editorial: Rising stars in exercise physiology

    Get PDF
    [Extract] Physical exercise has been recognized as essential for human health and evolution for thousands of years, beginning with the ancient cultures. Hippocrates, Plato, Aristotle, and the Roman physician Galen were the earliest recorded and most well-known promoters of the beneficial effects of physical exercise. Since these times, several dedicated laboratories worldwide have been established, with many researchers conducting numerous investigations related to exercise physiology; nevertheless, a cornerstone of all laboratories is the development of new and novel researchers. These talented and emerging researchers have been necessary for our understanding of exercise physiology to have reached where we are today (and where we will be in the future). Given the evolution of exercise physiology, the field has incorporated a range of basic to applied scientific investigations and a range of end-users (e.g., researchers, athletes, coaches, physiologists, and clinical/public health professionals) who will benefit from these new advances in exercise physiology

    Electronic structure and magnetic properties of cobalt intercalated in graphene on Ir(111)

    No full text
    Using a combination of photoemission and x-ray magnetic circular dichroism (XMCD), we characterize the growth and the electronic as well as magnetic structure of cobalt layers intercalated in between graphene and Ir(111). We demonstrate that magnetic ordering exists beyond one monolayer intercalation, and determine the Co orbital and spin magnetic moments. XMCD from the carbon edge shows an induced magnetic moment in the graphene layer, oriented antiparallel to that of cobalt. The XMCD experimental data are discussed in comparison to our results of first-principles electronic structure calculations. It is shown that good agreement between theory and experiment for the Co magnetic moments can be achieved when the local-spin-density approximation plus the Hubbard U (LSDA+U) is used

    Antioxidant, Organoleptic and Physicochemical Changes in Different Marinated Oven-Grilled Chicken Breast Meat

    Get PDF
    The antioxidant, organoleptic, and physicochemical changes in different marinated oven-grilled chicken breast meat were investigated. Specifically, the chicken breast meat samples were procured from a local retailer in Wroclaw, Poland. The antioxidant aspects involved 2,2′-azinobis-(3-ethylbenzthiazolin-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-pierylhydrazy (DPPH), and ferric-reducing antioxidant power (FRAP). The organoleptic aspects involved sensory and texture aspects. The physicochemical aspects involved the pH, thiobarbituric acid reactive substance (TBARS), cooking weight loss, L* a* b* color, and textural cutting force. Different marination variants comprised incremental 0.5, 1, and 1.5% concentrations of Baikal skullcap (BS), cranberry pomace (CP), and grape pomace (GP) that depicted antioxidants, and subsequently incorporated either African spice (AS) or an industrial marinade/pickle (IM). The oven grill facility was set at a temperature of 180 °C and a constant cooking time of 5 min. Results showed various antioxidant, organoleptic and physicochemical range values across the different marinated oven-grilled chicken breast meat samples, most of which appeared somewhat limited. Incorporating either AS or IM seemingly widens the ABTS and FRAP ranges, with much less for the DPPH. Moreover, with increasing CP, GP, and BS concentrations, fluctuations seemingly persist in pH, TBARS, cooking weight loss, L* a* b* color, and textural cutting force values even when either AS or IM was incorporated, despite resemblances in some organoleptic sensory and texture profiles. Overall, the oven-grilling approach promises to moderate the antioxidant, organoleptic, and physicochemical value ranges in the different marinated chicken breast meat samples in this study.info:eu-repo/semantics/publishedVersio
    • …
    corecore