365 research outputs found
Progress and status of APEmille
We report on the progress and status of the APEmille project: a SIMD parallel
computer with a peak performance in the TeraFlops range which is now in an
advanced development phase. We discuss the hardware and software architecture,
and present some performance estimates for Lattice Gauge Theory (LGT)
applications.Comment: Talk presented at LATTICE97, 3 pages, Late
A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in
Namibia. It consists of four 12-m telescopes (CT1-4), which started operations
in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is
the only IACT system featuring telescopes of different sizes, which provides
sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to
~100 TeV. Since the camera electronics of CT1-4 are much older than the one of
CT5, an upgrade is being carried out; first deployment was in 2015, full
operation is planned for 2016. The goals of this upgrade are threefold:
reducing the dead time of the cameras, improving the overall performance of the
array and reducing the system failure rate related to aging. Upon completion,
the upgrade will assure the continuous operation of H.E.S.S. at its full
sensitivity until and possibly beyond the advent of CTA. In the design of the
new components, several CTA concepts and technologies were used and are thus
being evaluated in the field: The upgraded read-out electronics is based on the
NECTAR readout chips; the new camera front- and back-end control subsystems are
based on an FPGA and an embedded ARM computer; the communication between
subsystems is based on standard Ethernet technologies. These hardware solutions
offer good performance, robustness and flexibility. The design of the new
cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July-
6 August, 2015, The Hague, The Netherland
The AMANDA Neutrino Telescope
With an effective telescope area of order m for TeV neutrinos, a
threshold near 50 GeV and a pointing accuracy of 2.5 degrees per muon
track, the AMANDA detector represents the first of a new generation of high
energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We
describe early results on the calibration of natural deep ice as a particle
detector as well as on AMANDA's performance as a neutrino telescope.Comment: 12 pages, Latex2.09, uses espcrc2.sty and epsf.sty, 13 postscript
files included. Talk presented at the 18th International Conference on
Neutrino Physics and Astrophysics (Neutrino 98), Takayama, Japan, June 199
Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector
A search for nearly vertical up-going muon-neutrinos from neutralino
annihilations in the center of the Earth has been performed with the AMANDA-B10
neutrino detector. The data sample collected in 130.1 days of live-time in
1997, ~10^9 events, has been analyzed for this search. No excess over the
expected atmospheric neutrino background is oberved. An upper limit at 90%
confidence level on the annihilation rate of neutralinos in the center of the
Earth is obtained as a function of the neutralino mass in the range 100
GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical
Review
IceCube - the next generation neutrino telescope at the South Pole
IceCube is a large neutrino telescope of the next generation to be
constructed in the Antarctic Ice Sheet near the South Pole. We present the
conceptual design and the sensitivity of the IceCube detector to predicted
fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete
simulation of the detector design has been used to study the detector's
capability to search for neutrinos from sources such as active galaxies, and
gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth
International Conference on Neutrino Physics and Astrophysics, Munich 200
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
Muon Track Reconstruction and Data Selection Techniques in AMANDA
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy
neutrino telescope operating at the geographic South Pole. It is a lattice of
photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m.
The primary goal of this detector is to discover astrophysical sources of high
energy neutrinos. A high-energy muon neutrino coming through the earth from the
Northern Hemisphere can be identified by the secondary muon moving upward
through the detector. The muon tracks are reconstructed with a maximum
likelihood method. It models the arrival times and amplitudes of Cherenkov
photons registered by the photo-multipliers. This paper describes the different
methods of reconstruction, which have been successfully implemented within
AMANDA. Strategies for optimizing the reconstruction performance and rejecting
background are presented. For a typical analysis procedure the direction of
tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st
- âŠ