157 research outputs found

    CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity.

    Get PDF
    Intratumoral regulatory T cell (Treg) abundance associates with diminished anti-tumor immunity and poor prognosis in human cancers. Recent work demonstrates that CD25, the high affinity receptor subunit for IL-2, is a selective target for Treg depletion in mouse and human malignancies; however, anti-human CD25 antibodies have failed to deliver clinical responses against solid tumors due to bystander IL-2 receptor signaling blockade on effector T cells, which limits their anti-tumor activity. Here we demonstrate potent single-agent activity of anti-CD25 antibodies optimized to deplete Tregs whilst preserving IL-2-STAT5 signaling on effector T cells, and demonstrate synergy with immune checkpoint blockade in vivo. Pre-clinical evaluation of an anti-human CD25 (RG6292) antibody with equivalent features demonstrates, in both non-human primates and humanized mouse models, efficient Treg depletion with no overt immune-related toxicities. Our data supports the clinical development of RG6292 and evaluation of novel combination therapies incorporating non-IL-2 blocking anti-CD25 antibodies in clinical studies

    Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods

    Get PDF
    Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(−/−)), Arr1-deficient (Arr1(−/−)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(−/−) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(−/−) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo
    • …
    corecore