37 research outputs found

    Neuro-oscillatory tracking of low- and high-level musico-acoustic features during naturalistic music listening: insights from an intracranial electroencephalography study

    Get PDF
    Studies investigating the neural processing of musico-acoustic features have tended to do so using highly controlled musical stimuli. However, it is increasingly argued that failing to use naturalistic stimuli limits the extent to which findings from lab studies can be extrapolated to rich and varied real-world experiences. Here, we recorded electrical brain activity from 8 epileptic patients, implanted for pre-surgical evaluation with Stereo-encephalography (SEEG), while they listened to pieces from the western tonal music repertoire. We estimated the sound intensity and key and pulse clarity of the stimuli using a toolbox for automatic extraction of musico-acoustic features. We then used partial-correlation analyses to examine the patterns of neuro-oscillatory activity associated with the processing of these features. Our results showed clear tracking of sound intensity in high-gamma and alpha frequency bands in posterior superior temporal gyrus, reflecting neural firing and the transfer of auditory information from the thalamus to auditory cortices, respectively. Patterns of partial correlations, in line with our hypotheses, also suggested limbic and inferior frontal cortical tracking of tonal and rhythmic uncertainty, albeit without the robustness shown for sound intensity tracking in auditory areas. The study provides an important contribution to the existing literature in its adherence to the call for a greater use of ecologically valid stimuli in neuroscientific investigations of music listening. Our results, specifically, have implications for research on the neural processing of musical uncertainty and for future studies seeking to use intracranial EEG to examine naturalistic music processing

    Intracranial recordings and computational modelling of music reveal the time course of prediction error signaling in frontal and temporal cortices

    Get PDF
    Prediction is held to be a fundamental process underpinning perception, action and cognition. To examine the time-course of prediction error signaling, we recorded intracranial EEG activity from 9 pre-surgical epileptic patients while they listened to melodies whose information-theoretic predictability had been characterized using a computational model. We examined oscillatory activity in the superior temporal gyrus (STG), the middle temporal gyrus (MTG) and the pars orbitalis of the inferior frontal gyrus (IFG), lateral cortical areas previously implicated in auditory predictive processing. We also examined activity in anterior cingulate gyrus (ACG), the insula and amygdala, to determine whether signatures of prediction error signaling may also be observable in these subcortical areas. Our results demonstrate that the information content (a measure of unexpectedness) of musical notes modulates the amplitude of low-frequency oscillatory activity (theta to beta power) in bilateral STG and right MTG from within 100 and 200ms of note-onset respectively. Our results also show this cortical activity to be accompanied by low-frequency oscillatory modulation in ACG and insula - areas previously associated with mediating physiological arousal. Finally, we showed that modulation of low-frequency activity is followed by that of high-frequency (gamma) power from approximately 200ms in the STG, between 300ms and 400ms in the left insula and between 400 and 500ms in the ACG. We discuss these results with respect to models of neural processing that emphasize gamma activity as an index of prediction error signaling, and highlight the usefulness of musical stimuli in revealing the wide-reaching neural consequences of predictive processing

    Good scientific practice in MEEG Research: Progress and Perspectives

    Get PDF
    Good Scientific Practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization.For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be periodically revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research.This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges.Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons

    Representation of the bird's own song in the canary HVC : contribution of broadly tune neurons.

    No full text
    International audienc

    How to identify dear enemies: the group signature in the complex song of the skylark Alauda arvensis

    Get PDF
    International audienceSong geographic variation and Neighbour-Stranger (N-S) discrimination have been intensively but separately studied in bird species, especially in those with small- to medium-sized repertoires. Here, we establish a link between the two phenomena by showing that dialect features are used for N-S recognition in a territorial species with a large repertoire, the skylark Alauda arvensis. In this species, during the breeding season, many pairs settle in stable and adjoining territories gathered in locations spaced by a few kilometres. In a first step, songs produced by males established in different locations were recorded, analyzed and compared to identify possible microgeographic variation at the syntax level. Particular common sequences of syllables (phrases) were found in the songs of all males established in the same location (neighbours), whereas males of different locations (strangers) shared only few syllables and no sequences. In a second step, playback experiments were conducted and provided evidence for N-S discrimination consistent with the dear-enemy effect, i.e. reduced aggression from territorial birds towards neighbours than towards strangers. In addition, a similar response was observed when a ;chimeric' signal (shared phrases of the location artificially inserted in the song of a stranger) and a neighbour song were broadcast, indicating that shared sequences were recognized and identified as markers of the group identity. We thus show experimentally that the shared phrases found in the songs of neighbouring birds constitute a group signature used by birds for N-S discrimination, and serve as a basis for the dear-enemy effect

    Individual signature in canary songs: contribution of multiple levels of song structure

    No full text
    Through variations in features, both within and between individuals, songs of male passerines provide information on the identity of the singer. In domesticated canaries (Serinus canaria), these variations remain, for a large part, to be investigated. This led us to question whether individual identity might be coded at one or more hierarchical levels of song organization, i.e. in acoustic parameters, in the syllable repertoire and in the delivery order of syllables. A song as a whole had numerous individual distinctive acoustic features. However, the structure of its individual signature appeared to be complex. A repertoire combined syllables never sung by other individuals with those shared by other birds. But, most of the individual-specific syllables that accounted for 16% of a repertoire did not recur frequently. Variation in sequences of multiple syllable types appeared to reflect the individual identity of a male canary. Nearly all sequences larger than three syllable types were specific to the individual that produced them. Some of these occurred recurrently in songs and differed in their acoustic structure between individuals. Focusing upon recurrent sequences might allow vocal recognition of an individual without requiring the knowledge of its full repertoire. However, acoustic parameters and repertoire composition might also serve as additional cues to limit confusion between individuals

    How to Identify Dear Enemies: The Group Signature in the Complex Song of the Skylark Alauda arvensis

    No full text
    Song geographic variation and Neighbour–Stranger (N–S) discrimination have been intensively but separately studied in bird species, especially in those with small- to medium-sized repertoires. Here, we establish a link between the two phenomena by showing that dialect features are used for N–S recognition in a territorial species with a large repertoire, the skylark Alauda arvensis. In this species, during the breeding season, many pairs settle in stable and adjoining territories gathered in locations spaced by a few kilometres. In a first step, songs produced by males established in different locations were recorded, analyzed and compared to identify possible microgeographic variation at the syntax level. Particular common sequences of syllables (phrases) were found in the songs of all males established in the same location (neighbours), whereas males of different locations (strangers) shared only few syllables and no sequences. In a second step, playback experiments were conducted and provided evidence for N–S discrimination consistent with the dear-enemy effect, i.e. reduced aggression from territorial birds towards neighbours than towards strangers. In addition, a similar response was observed when a ʻchimericʼ signal (shared phrases of the location artificially inserted in the song of a stranger) and a neighbour song were broadcast, indicating that shared sequences were recognized and identified as markers of the group identity. We thus show experimentally that the shared phrases found in the songs of neighbouring birds constitute a group signature used by birds for N–S discrimination, and serve as a basis for the dear-enemy effect

    Impaired auditory sampling in dyslexia: further evidence from combined fMRI and EEG.

    Get PDF
    The aim of the present study was to explore auditory cortical oscillation properties in developmental dyslexia. We recorded cortical activity in 17 dyslexic participants and 15 matched controls using simultaneous EEG and fMRI during passive viewing of an audiovisual movie. We compared the distribution of brain oscillations in the delta, theta and gamma ranges over left and right auditory cortices. In controls, our results are consistent with the hypothesis that there is a dominance of gamma oscillations in the left hemisphere and a dominance of delta-theta oscillations in the right hemisphere. In dyslexics, we did not find such an interaction, but similar oscillations in both hemispheres. Thus, our results confirm that the primary cortical disruption in dyslexia lies in a lack of hemispheric specialization for gamma oscillations, which might disrupt the representation of or the access to phonemic units

    Altered low-γ sampling in auditory cortex accounts for the three main facets of dyslexia

    Get PDF
    It has recently been conjectured that dyslexia arises from abnormal auditory sampling. What sampling rate is altered and how it affects reading remains unclear. We hypothesized that by impairing phonemic parsing abnormal low-gamma sampling could yield phonemic representations of unusual format and disrupt phonological processing and verbal memory. Using magnetoencephalography and behavioral tests, we show in dyslexic subjects a reduced left-hemisphere bias for phonemic processing, reflected in less entrainment to ≈30 Hz acoustic modulations in left auditory cortex. This deficit correlates with measures of phonological processing and rapid naming. We further observed enhanced cortical entrainment at rates beyond 40 Hz in dyslexics and show that this particularity is associated with a verbal memory deficit. These data suggest that a single auditory anomaly, i.e., phonemic oversampling in left auditory cortex, accounts for three main facets of the linguistic deficit in dyslexia

    Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/ Functional Magnetic Resonance Imaging Study

    No full text
    International audienceTrial-by-trial variability in perceptual performance on identical stimuli has been related to spontaneous fluctuations in ongoing activity of intrinsic functional connectivity networks (ICNs). In a paradigm requiring sustained vigilance for instance, we previously observed that higher prestimulus activity in a cingulo-insular-thalamic network facilitated subsequent perception. Here, we test our proposed interpretation that this network underpins maintenance of tonic alertness. We used simultaneous acquisition of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) in the absence of any paradigm to test an ensuing hypothesis, namely that spontaneous fluctuations in this ICNs activity (as measured by fMRI) should show a positive correlation with the electrical signatures of tonic alertness (as recorded by concurrent EEG). We found in human subjects (19 male, 7 female) that activity in a network comprising dorsal anterior cingulate cortex, anterior insula, anterior prefrontal cortex and thalamus is positively correlated with global field power (GFP) of upper alpha band (10-12 Hz) oscillations, the most consistent electrical index of tonic alertness. Conversely, and in line with earlier findings, alpha band power was negatively correlated with activity in another ICN, the so-called dorsal attention network which is most prominently involved in selective spatial attention. We propose that the cingulo-insular-thalamic network serves maintaining tonic alertness through generalized expression of cortical alpha oscillations. Attention is mediated by activity in other systems, e.g., the dorsal attention network for space, selectively disrupts alertness-related suppression and hence manifests as local attenuation of alpha activity
    corecore