126 research outputs found
Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal and cubic phases of methylammonium lead iodide
The hybrid halide perovskite CH3NH3PbI3 exhibits a complex structural
behaviour, with successive transitions between orthorhombic, tetragonal and
cubic polymorphs at ca. 165 K and 327 K. Herein we report first-principles
lattice dynamics (phonon spectrum) for each phase of CH3NH3PbI3. The
equilibrium structures compare well to solutions of temperature-dependent
powder neutron diffraction. By following the normal modes we calculate infrared
and Raman intensities of the vibrations, and compare them to the measurement of
a single crystal where the Raman laser is controlled to avoid degradation of
the sample. Despite a clear separation in energy between low frequency modes
associated with the inorganic PbI3 network and high-frequency modes of the
organic CH3NH3+ cation, significant coupling between them is found, which
emphasises the interplay between molecular orientation and the corner-sharing
octahedral networks in the structural transformations. Soft modes are found at
the boundary of the Brillouin zone of the cubic phase, consistent with
displacive instabilities and anharmonicity involving tilting of the PbI6
octahedra around room temperature.Comment: 9 pages, 4 figure
Experimental and theoretical optical properties of methylammonium lead halide perovskites
The optical constants from the ellipsometry of single crystals of CH3NH3PbX3(X = I, Br, Cl) are interpreted with high levelab initioQSGW calculations.</p
Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites
We present Raman and terahertz absorbance spectra of methylammonium lead
halide single crystals (MAPbX3, X = I, Br, Cl) at temperatures between 80 and
370 K. These results show good agreement with density-functional-theory phonon
calculations.1 Comparison of experimental spectra and calculated vibrational
modes enables confident assignment of most of the vibrational features between
50 and 3500 cm-1. Reorientation of the methylammonium cations, unlocked in
their cavities at the orthorhombic-to-tetragonal phase transition, plays a key
role in shaping the vibrational spectra of the different compounds.
Calculations show that these dynamics effects split Raman peaks and create more
structure than predicted from the independent harmonic modes. This explains the
presence of extra peaks in the experimental spectra that have been a source of
confusion in earlier studies. We discuss singular features, in particular the
torsional vibration of the C-N axis, which is the only molecular mode that is
strongly influenced by the size of the lattice. From analysis of the spectral
linewidths, we find that MAPbI3 shows exceptionally short phonon lifetimes,
which can be linked to low lattice thermal conductivity. We show that optical
rather than acoustic phonon scattering is likely to prevail at room temperature
in these materials.Comment: 40 pages (no supporting info uploaded
Description and evaluation of the Community Ice Sheet Model (CISM) v2.1
We describe and evaluate version 2.1 of the Community Ice Sheet Model (CISM).
CISM is a parallel, 3-D thermomechanical model, written mainly in Fortran,
that solves equations for the momentum balance and the thickness and
temperature evolution of ice sheets. CISM's velocity solver incorporates a
hierarchy of Stokes flow approximations, including shallow-shelf,
depth-integrated higher order, and 3-D higher order. CISM also includes a
suite of test cases, links to third-party solver libraries, and
parameterizations of physical processes such as basal sliding, iceberg
calving, and sub-ice-shelf melting. The model has been verified for standard
test problems, including the Ice Sheet Model Intercomparison Project for
Higher-Order Models (ISMIP-HOM) experiments, and has participated in the
initMIP-Greenland initialization experiment. In
multimillennial simulations with modern climate forcing on a 4 km grid, CISM
reaches a steady state that is broadly consistent with observed flow patterns
of the Greenland ice sheet. CISM has been integrated into version 2.0 of the
Community Earth System Model, where it is being used for Greenland
simulations under past, present, and future climates. The code is open-source
with extensive documentation and remains under active development.</p
Polyamine Sharing between Tubulin Dimers Favours Microtubule Nucleation and Elongation via Facilitated Diffusion
We suggest for the first time that the action of multivalent cations on
microtubule dynamics can result from facilitated diffusion of GTP-tubulin to the
microtubule ends. Facilitated diffusion can promote microtubule assembly,
because, upon encountering a growing nucleus or the microtubule wall, random
GTP-tubulin sliding on their surfaces will increase the probability of
association to the target sites (nucleation sites or MT ends).
This is an original explanation for understanding the apparent discrepancy
between the high rate of microtubule elongation and the low rate of tubulin
association at the microtubule ends in the viscous cytoplasm. The mechanism of
facilitated diffusion requires an attraction force between two tubulins, which
can result from the sharing of multivalent counterions. Natural polyamines
(putrescine, spermidine, and spermine) are present in all
living cells and are potent agents to trigger tubulin self-attraction. By using
an analytical model, we analyze the implication of facilitated diffusion
mediated by polyamines on nucleation and elongation of microtubules. In
vitro experiments using pure tubulin indicate that the promotion of
microtubule assembly by polyamines is typical of facilitated diffusion. The
results presented here show that polyamines can be of particular importance for
the regulation of the microtubule network in vivo and provide
the basis for further investigations into the effects of facilitated diffusion
on cytoskeleton dynamics
Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals
Methylammonium lead iodide perovskite (MAPbI_3) exhibits long charge carrier lifetimes that are linked to its high efficiency in solar cells. Yet, the mechanisms governing these unusual carrier dynamics are not completely understood. A leading hypothesis—disproved in this work—is that a large, static bulk Rashba effect slows down carrier recombination. Here, using second harmonic generation rotational anisotropy measurements on MAPbI_3 crystals, we demonstrate that the bulk structure of tetragonal MAPbI_3 is centrosymmetric with I4/mcmspace group. Our calculations show that a significant Rashba splitting in the bandstructure requires a non-centrosymmetric lead iodide framework, and that incorrect structural relaxations are responsible for the previously predicted large Rashba effect. The small Rashba splitting allows us to compute effective masses in excellent agreement with experiment. Our findings rule out the presence of a large static Rashba effect in bulk MAPbI_3, and our measurements find no evidence of dynamic Rashba effects
Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry
OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc).
METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers.
RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group.
CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
- …