211 research outputs found

    Computational modelling of NF-κB activation by IL-1RI and its co-receptor TILRR, predicts a role for Cytoskeletal Sequestration of IκBα in inflammatory signalling.

    Get PDF
    The transcription factor NF-κB (nuclear factor kappa B) is activated by Toll-like receptors and controlled by mechanotransduction and changes in the cytoskeleton. In this study we combine 3-D predictive protein modelling and in vitro experiments with in silico simulations to determine the role of the cytoskeleton in regulation of NF-κB. Simulations used a comprehensive agent-based model of the NF-κB pathway, which includes the type 1 IL-1 receptor (IL-1R1) complex and signalling intermediates, as well as cytoskeletal components. Agent based modelling relies on in silico reproductions of systems through the interactions of its components, and provides a reliable tool in investigations of biological processes, which require spatial considerations and involve complex formation and translocation of regulatory components. We show that our model faithfully reproduces the multiple steps comprising the NF-κB pathway, and provides a framework from which we can explore novel aspects of the system. The analysis, using 3-D predictive protein modelling and in vitro assays, demonstrated that the NF-κB inhibitor, IκBα is sequestered to the actin/spectrin complex within the cytoskeleton of the resting cell, and released during IL-1 stimulation, through a process controlled by the IL-1RI co-receptor TILRR (Toll-like and IL-1 receptor regulator). In silico simulations using the agent-based model predict that the cytoskeletal pool of IκBα is released to adjust signal amplification in relation to input levels. The results suggest that the process provides a mechanism for signal calibration and enables efficient, activation-sensitive regulation of NF-κB and inflammatory responses

    Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes

    Get PDF
    Our study tested the hypothesis that immunoglobulins differ in their ability to activate the nuclear factor-κB pathway mediated cellular responses. These responses are modulated by several properties of the immune complex, including the ratio of antibody isotypes binding to antigen. Immunoassays allow the measurement of antigen specific antibodies belonging to distinct immunoglobulin classes and subclasses but not the net biological effect of the combination of these antibodies. We set out to develop a biosensor that is suitable for the detection and characterization of antigen specific serum antibodies. We genetically modified the monocytoid U937 cell line carrying Fc receptors with a plasmid encoding NF-κB promoter-driven GFP. This clone, U937-NF-κB, was characterized with respect to FcR expression and response to solid-phase immunoglobulins. Human IgG3, IgG4 and IgG1 induced GFP production in a time- and dose-dependent manner, in this order of efficacy, while IgG2 triggered no activation at the concentrations tested. IgA elicited no response alone but showed significant synergism with IgG3 and IgG4. We confirmed the importance of activation via FcγRI by direct stimulation with monoclonal antibody and by competition assays. We used citrullinated peptides and serum from rheumatoid arthritis patients to generate immune complexes and to study the activation of U937-NF-κB, observing again a synergistic effect between IgG and IgA. Our results show that immunoglobulins have distinct pro-inflammatory potential, and that U937-NF-κB is suitable for the estimation of biological effects of immune-complexes, offering insight into monocyte activation and pathogenesis of antibody mediated diseases

    The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    No full text
    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence

    Peripheral blood iNKT cells display an activated profile with both increased apoptosis and dysfunction in obesity

    Get PDF
    Obesity is characterized by a chronic low-grade inflammation and, paradoxically, is also associated with immune cells dysfunction. In this study, we analyzed peripheral blood Invariant Natural killer T cells (iNKT) in individuals with or without obesity. These unconventional T cells recognize lipid antigens presented by the monomorphic CD1d MHC I-like protein. We demonstrated an activation of iNKT cells in individuals with obesity associated with both increased apoptosis and dysfunction as assessed by the lack of responsiveness to PMA/Ionomycin stimulation. This disruption mainly affects the CD4− subset, more dedicated to pro-inflammatory cytokines release and cytotoxicity. Such impact could therefore be involved in the loss of immunosurveillance observed in obesity. Interestingly, CD1d is upregulated on intermediate and non-classical monocytes from individuals with obesity and its expression on both monocyte subsets is correlated with iNKT cell dysfunction. Both the activation and hypo-responsiveness of iNKT cells as well as CD1d modulation on monocytes are significantly reversed after bariatric surgery. Altogether, these data suggest that increased CD1d expression may enhance the presentation of endogenous lipid antigens, thereby contributing to iNKT cell activation in the context of obesity

    Nod2 Downregulates TLR2/1 Mediated IL1β Gene Expression in Mouse Peritoneal Macrophages

    Get PDF
    Nod2 is a cytosolic pattern recognition receptor. It has been implicated in many inflammatory conditions. Its signaling has been suggested to modulate TLR responses in a variety of ways, yet little is known about the mechanistic details of the process. We show in this study that Nod2 knockdown mouse peritoneal macrophages secrete more IL1β than normal macrophages when stimulated with peptidoglycan (PGN). Muramyl dipeptide (MDP, a Nod2 ligand) + PGN co-stimulated macrophages have lower expression of IL1β than PGN (TLR2/1 ligand) stimulated macrophages. MDP co-stimulation have similar effects on Pam3CSK4 (synthetic TLR2/1 ligand) mediated IL1β expression suggesting that MDP mediated down regulating effects are receptor dependent and ligand independent. MDP mediated down regulation was specific for TLR2/1 signaling as MDP does not affect LPS (TLR4 ligand) or zymosan A (TLR2/6 ligand) mediated IL1β expression. Mechanistically, MDP exerts its down regulating effects by lowering PGN/Pam3CSK4 mediated nuclear cRel levels. Lower nuclear cRel level were observed to be because of enhanced transporting back rather than reduced nuclear translocation of cRel in MDP + PGN stimulated macrophages. These results demonstrate that Nod2 and TLR2/1 signaling pathways are independent and do not interact at the level of MAPK or NF-κB activation

    Differential effects of selenium and knock-down of glutathione peroxidases on TNFα and flagellin inflammatory responses in gut epithelial cells

    Get PDF
    Selenium (Se) is essential for human health. Despite evidence that Se intake affects inflammatory responses, the mechanisms by which Se and the selenoproteins modulate inflammatory signalling, especially in the gut, are not yet defined. The aim of this work was to assess effects of altered Se supply and knock-down of individual selenoproteins on NF-κB activation in gut epithelial cells. Caco-2 cells were stably transfected with gene constructs expressing luciferase linked either to three upstream NF-κB response elements and a TATA box or only a TATA box. TNFα and flagellin activated NF-κB-dependent luciferase activity and increased IL-8 expression. Se depletion decreased expression of glutathione peroxidase1 (GPX1) and selenoproteins H and W and increased TNFα-stimulated luciferase activity, endogenous IL-8 expression and reactive oxygen species (ROS) production. These effects were not mimicked by independent knock-down of either GPX1, selenoprotein H or W; indeed, GPX1 knock-down lowered TNFα-induced NF-κB activation and did not affect ROS levels. GPX4 knock-down decreased NF-κB activation by flagellin but not by TNFα. We hypothesise that Se depletion alters the pattern of expression of multiple selenoproteins that in turn increases ROS and modulates NF-κB activation in epithelial cells, but that the effect of GPX1 knock-down is ROS-independent

    NIK Stabilization in Osteoclasts Results in Osteoporosis and Enhanced Inflammatory Osteolysis

    Get PDF
    Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway.Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis.Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli

    Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC) risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use.</p> <p>Methods</p> <p>The polymorphisms nuclear factor kappa-B (<it>NFkB, NFKB1) </it>-94 insertion/deletion ATTG (rs28362491), pregnane X receptor (<it>PXR, NR1I2) </it>A-24381C (rs1523127), C8055T (rs2276707), A7635G (rs6785049), liver X receptor (<it>LXR-β, NR1H3) </it>C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons.</p> <p>Results</p> <p>Carriers of <it>NFkB </it>-94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of <it>NFkB </it>-94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09) whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03). <it>PXR </it>and <it>LXR </it>polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and <it>NFkB</it>, <it>PXR </it>or <it>LXR </it>polymorphisms.</p> <p>Conclusions</p> <p>A polymorphism in <it>NFkB </it>was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology.</p
    corecore