571 research outputs found

    Differential effects of lobe A and lobe B of the conserved oligomeric golgi complex on the stability of β1,4-galactosyltransferase 1 and α2,6-sialyltransferase 1

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged β1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure

    Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of β1,4-galactosyltransferase 1 and α2,6-sialyltransferase 1

    Get PDF
    Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged β1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structur

    Oleuropein prevents neuronal death, mitigates mitochondrial superoxide production and modulates autophagy in a dopaminergic cellular model

    Get PDF
    This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) grant to Maria-Grazia Martinoli.Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA).We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.peer-reviewe

    Identification of novel genes potentially involved in somatic embryogenesis in chicory (Cichorium intybus L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our laboratory we use cultured chicory (<it>Cichorium intybus</it>) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation <it>i.e</it>. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> showed that the use of the β-D-glucosyl Yariv reagent (β-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that β-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used β-GlcY to block SE in order to identify genes potentially involved in this process.</p> <p>Results</p> <p>Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. β-GlcY-treatment of explants blocked <it>in vitro </it>SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by β-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by β-GlcY-treatment: <it>AGP </it>(DT212818), <it>26 S proteasome AAA ATPase subunit 6 </it>(<it>RPT6</it>), <it>remorin </it>(<it>REM</it>), <it>metallothionein-1 </it>(<it>MT1</it>), two non-specific lipid transfer proteins genes (<it>SDI-9 and DEA1</it>), <it>3-hydroxy-3-methylglutaryl-CoA reductase </it>(<it>HMG-CoA reductase</it>), and <it>snakin 2 </it>(<it>SN2</it>). These results suggest that the 8 genes, including the previously-identified <it>AGP </it>gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory.</p> <p>Conclusion</p> <p>The use of two different chicory genotypes differing in their responsiveness to SE induction, together with β-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.</p

    REM1.3's phospho-status defines its plasma membrane nanodomain organization and activity in restricting PVX cell-to-cell movement

    Get PDF
    Plants respond to pathogens through dynamic regulation of plasma membrane-bound signaling pathways. To date, how the plant plasma membrane is involved in responses to viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX) COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the activation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1 REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3’s phospho-status defines its plasma membrane nanodomain organization and is crucial for REM1.3-dependent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmodesmata. This study unveils plasma membrane nanodomain-associated molecular events underlying the plant immune response to viruses

    Airway Epithelial Cell Migration Dynamics: Mmp-9 Role in Cell–Extracellular Matrix Remodeling

    Get PDF
    Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell–ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell–collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts

    Le gisement paléolithique multistratifié « les Bossats » à Ormesson (Seine-et-Marne, France) : palethnographie ou pâle ethnographie ? Une synthèse des huit premières années de fouille (2009-2016)

    Full text link
    editorial reviewedÀ l'évidence, ces vingt dernières années ont vu en France, notamment, se développer en parallèle deux nouvelles façons de traiter le Paléolithique supérieur ancien qui ne sont pas antagonistes d'ailleurs. L'une consiste en une reprise des stratigraphies anciennes dans le Centre et le Sud-Ouest de la France plus spécifiquement et est associée à une meilleure redéfinition des entités culturelles par l'analyse détaillée des différentes composantes des systèmes techniques. L'autre s'efforce d'appliquer à cette période la démarche palethnographique, inféodée historiquement au Magdalénien du Bassin parisien. Il est vrai que peu de gisements autorisaient ce type d'approche, en raison d'une surface fouillée insuffisante ou d'un état de conservation médiocre, mais même lorsque les découvertes s'y prêtaient, le manque de temps et d'investissement freinait également toute velléité d'une étude approfondie des sites en question, qui aurait alors débouché sur une lecture palethnographique des lieux et des artefacts. À l'issue d'un PCR mené entre 1999 et 2005, nous pouvions ainsi légitimement nous demander si nous étions capables de jouer les ethnologues du passé pour le Paléolithique supérieur ancien dans le Bassin parisien. Les sites identifiés dans le cadre de ce programme de recherche étaient certes nombreux mais représentés surtout par des découvertes de surface, ils ne garantissaient pas un niveau d'analyse digne de ce qui a pu se faire depuis plus de 50 ans à Pincevent ou à Étiolles par exemple (Bodu et al., 2013). Il aura fallu attendre la découverte fortuite du gisement de plein-air d'Ormesson « les Bossats » (Seine-et-Marne, près de Nemours) au début des années 2000 pour que cette question trouve une réponse positive. Concernant, au départ, presqu'exclusivement des vestiges lithiques et osseux attribués au Gravettien, les premières fouilles menées en 2009 permirent d'identifier rapidement un second niveau d'occupation, d'attribution moustérienne. Les campagnes suivantes amenèrent à la découverte de cinq autres niveaux d'occupation paléolithiques, inégaux tant pour la surface couverte que pour l'état de conservation : un second niveau moustérien résultant vraisemblablement de palimpsestes, un ensemble châtelperronien, un autre solutréen, un quatrième badegoulien et enfin entre Châtelperronien et Gravettien, un foyer isolé sans vestiges archéologiques associés. Cette stratigraphie paléolithique de plein-air dilatée est le témoignage d'une forte occupation du lieu pendant près de 30 000 ans, ce qui s'explique notamment par la configuration particulière de la vallée à cet endroit. À la diversité chronologique des occupations préhistoriques répond une diversité des comportements économiques et techniques au sein des différentes sphères d'activités mais également des habitudes spatiales différentes. À l'issue des huit premières années de fouille (2009-2016), le site d'Ormesson « les Bossats » permet ainsi de développer une approche détaillée des comportements techniques, économiques, spatiaux de groupes culturels distincts ayant vécu durant 30 000 ans dans un cadre géomorphologique et plus globalement naturel, relativement identique. Dépassant le jeu de mot facile « palethnographie ou pâle ethnographie ? » à Ormesson « les Bossats », nous proposons ici quelques éléments de réponse
    • …
    corecore