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Abstract

Plants respond to pathogens through dynamic regulation of plasma membrane-bound sig-

naling pathways. To date, how the plant plasma membrane is involved in responses to

viruses is mostly unknown. Here, we show that plant cells sense the Potato virus X (PVX)

COAT PROTEIN and TRIPLE GENE BLOCK 1 proteins and subsequently trigger the acti-

vation of a membrane-bound calcium-dependent kinase. We show that the Arabidopsis

thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3-interacts with group 1 REMORINs

in vivo, phosphorylates the intrinsically disordered N-terminal domain of the Group 1

REMORIN REM1.3, and restricts PVX cell-to-cell movement. REM1.3’s phospho-status

defines its plasma membrane nanodomain organization and is crucial for REM1.3-depen-

dent restriction of PVX cell-to-cell movement by regulation of callose deposition at plasmo-

desmata. This study unveils plasma membrane nanodomain-associated molecular events

underlying the plant immune response to viruses.

Author summary

Viruses propagate in plants through membranous channels, called plasmodesmata, link-

ing each cell to its neighboring cell. In this work, we challenge the role of the plasma
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membrane in the regulation of virus propagation. By studying the dynamics and the acti-

vation of a plant-specific protein called REMORIN, we found that the way this protein is

organized inside the membrane is crucial to fulfill its function in the immunity of plants

against viruses.

Introduction

The cell plasma membrane (PM) constitutes a regulatory hub for information processing [1].

Current knowledge suggests that PM proteins and lipids dynamically associate with each

other to create specialized sub-compartments or nanodomains [2], that regulate the cellular

responses in space and time [3–5]. For instance, modeling of the localization behavior of a

PM-bound receptor and its downstream interactor before and after ligand perception in ani-

mal cells suggests that PM-partitioning into nanodomains improves the reliability of cell sig-

naling [6]. In plants a recent example of PM partitioning shows that despite sharing several

signaling components, the immune and growth receptors FLS2 and BRI1 are divided into con-

text-specific nanodomains to confer signaling specificity [7]. The REMORIN (REM) family is

one of the best-characterized PM nanodomain-associated proteins in plants [7–12]. The asso-

ciation of REMs to the PM is mediated by a short sequence at the extremity of the C-terminus

of the protein, called REM-CA (REMORIN C-terminal Anchor) [13, 14]. The REM C-termi-

nal domain contains a coiled-coil (residues 117–152, [15]) which is thought to regulate REM

oligomerization [11, 14, 16] and may be involved in regulating REM spatial organization at the

PM [15]. Members of the REM family have been associated with plant responses to biotic [9,

17, 18], abiotic stress [19, 20] and developmental clues [12] and current view suggests they

could regulate signaling events through nanodomain association [21]. However, the molecular

mechanisms leading to REM-associated downstream events remain elusive.

Several REM proteins have been identified as components of the plasmodesmata-plasma

membrane subcompartment (PD-PM) [8, 22, 23]. PD are membranous nanopores, crossing

the plant cell wall and enabling cytoplasmic, endoplasmic reticulum and PM continuity

between adjacent cells. They regulate the intercellular transport of proteins and small mole-

cules during development and defense [24, 25]. The PD-PM is a particular subcompartment of

the PM, which displays a unique molecular composition, notably enriched in sterols [26]. The

movement of macromolecules through PD can be tightly controlled through modulation of

the PD size-exclusion limit (SEL) via hypo- or hyper-accumulation of callose at the PD neck

region [27–29]. Overexpression of GRAIN SETTING DEFECT 1 (GSD1) encoding a phyloge-

netic-group 6 REM protein from rice, restricts PD aperture and transport of photo-assimilates

[23].

PDs are also the only route available for plant viruses to spread from cell-to-cell. Potato
virus X (PVX) promotes its cell-to-cell movement via modification of PD permeability [30]

through the action of TRIPLE GENE BLOCK PROTEIN 1 (TGBp1) [31]. Overexpression of

StREM1.3 (Solanum tuberosum REM from group 1b, homolog 3 [32], further referred as

REM1.3) hampers TGBp1’s ability to increase PD permeability [33]. How REM1.3 obstructs

TGBp1 action is still unknown. Here, we used REM1.3 and PVX pathosystem in the solanaceae

Nicotiana benthamiana, because PVX cannot infect Arabidopsis [34] and N. benthamiana is a

widely used model for research on plant-virus interaction [35]. We previously showed that

REM1.3 lateral organization into nanodomains at the PM is directly linked with its ability to

restrict PVX movement and regulate PD conductance [36].

REM phosphorylation and viral infection
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REM1.3 was the first REM family member discovered and initially described as a protein

phosphorylated upon treatment with oligogalacturonides, which are plant cell wall compo-

nents and elicitors of plant defense [37, 38] The biological relevance of REM phosphorylation

is not known of different REM phospho-statuses suggest that the activity of these proteins

could be regulated by phosphorylation during plant-microbe interactions [16, 17, 39, 40].

In the present paper, we show that phosphorylation of REM dictates its membrane dynam-

ics and antiviral defense by the reduction of PD permeability. Our data point towards a model

in which viral proteins such as the Coat Protein (CP), TGBp1 from PVX and 30K proteins

from Tobacco mosaic virus (TMV) elicit the activation of protein kinase(s), which in turn phos-

phorylate(s) REM1.3 at its N-terminal domain. In turn, REM1.3’s phospho-status regulates its

spatial-temporal organization at the PM and association with PD. The latter is associated with

PD closure by induction of callose deposition at PD pit fields and restriction of viral cell-to-

cell movement. Last, we further provide evidence that the membrane bound Arabidopsis CAL-

CIUM-DEPENDENT PROTEIN KINASE 3 (CPK3) interacts with the taxonomic group 1b

REMs in vivo, phosphorylates REM1.3 in vitro and restricts PVX propagation in a REM-

dependent manner. Collectively, this study brings valuable information about the involvement

of PM nanodomains dynamics during the establishment of membrane-bound signaling

processes.

Results

PVX triggers changes in REM1.3’s membrane dynamic behavior and

REM1.3 association with plasmodesmata

Group 1 and group 6 REM have been described as proteins regulating PD size-exclusion limit

[8, 23, 33]. REM1.3 plays a role in restricting PVX passage through PD channels [8], [33] coun-

teracting PVX movement proteins which promote PD opening [41]. To study the potential

function of REM1.3 at PD in response to PVX infection, we surveyed simultaneously PD cal-

lose content and REM1.3 PD localization in healthy or PVX-infected N. benthamiana tran-

siently expressing YFP-REM1.3 [42] (S1 Fig). Our analysis showed a significant increase in

callose deposition in PVX-infected cells compared to mock conditions (Fig 1A and 1B). This

finding suggests the recognition of PVX-encoded elicitors and the mobilization of a plant

defense response leading to an increase of callose accumulation at PD pit fields.

Since protein activation is often linked to changes in subcellular localization [3, 44], we

next examined whether PVX infection triggers changes in REM1.3 association with PD. Calcu-

lation of the PD index (ratio between fluorescence intensity of YFP-REM1.3 at the aniline-

labeled PD pit fields and fluorescence at the PM around the pit fields [28], S1 Fig). Fig 1A and

1B showed that despite its role on PD regulation, YFP-REM1.3 is not enriched in the PD

region of healthy N. benthamiana epidermal cells. We however reproducibly observed a slight

increase of YFP-REM1.3 PD index upon PVX infection suggesting that PVX perception mod-

ulates REM1.3 localization and association with the PD pitfields (Fig 1A and 1B).

To gain further insights into REM1.3 dynamic localization at the PM upon PVX infection,

we applied single-particle tracking Photoactivated Localization Microscopy in Variable Angle

Epifluorescence Microscopy mode (spt-PALM VAEM) in living N. benthamiana epidermal

cells [45] in absence or presence of PVX. We used the photoconvertible fluorescent protein

EOS [46, 47] fused to REM1.3 to visualize, track, and characterize mobility behavior of single

REM1.3 molecules. In addition, nanoscale localizations of single molecules observed overtime

were computed to obtain super-resolution images and analyze REM1.3 organization at a

molecular level. By this approach, we recently studied the protein organization and mobility

parameters of single EOS-REM1.3 molecules in non-infected conditions and found that

REM phosphorylation and viral infection
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Fig 1. REM1.3 modulates plasmodesmata callose accumulation and displays altered PM organization and

dynamic following PVX infection. (A) Representative confocal images of aniline blue stained N. benthamiana leaf

epidermal cells transiently expressing YFP-REM1.3 in the absence (mock is infiltration with empty A. tumefaciens) or

the presence of PVX at 2 days after infiltration (DAI). Color-coding indicates fluorescence intensity. (B) Left, Pit field

aniline blue fluorescence intensity was quantified by ImageJ as described in S1 Fig and expressed as the percentage of

the mock control. Right, Quantification of the PD residency of YFP-REM1.3 in the absence (mock) and in the presence

of PVX using the PD index [28] as described in S1 Fig. Graphs represent quantifications from 3 independent biological

experiments. At least 15 cells per condition were analysed per experiment. Significant differences were determined by

Mann-Whitney comparisons test ��� p<0.001. (C) Super-resolved trajectories of EOS-REM1.3 molecules (illustrated

by different colours) in the PM plane in the absence (Mock) and presence of PVX obtained by high-resolution

microscopy spt-PALM. EOS-REM1.3 was transiently expressed in N. benthamiana (D) Diffusion coefficients (D) of

EOS-REM1.3 expressed as log(D) in the absence (Mock) and presence of PVX. Statistical significances were assessed

by Mann-Whitney test ��� p<0.001 using data collected over two independents experiments. (E) Mean Square

Displacement (MSD) over time for the global trajectories of EOS-REM1.3 followed during at least 600 ms reflecting

two independent experiments. (F) Live PALM analysis of EOS-REM1.3 localization in the absence (mock) and

presence of PVX by tessellation-based automatic segmentation of super-resolution images. (G) Computation of

EOS-REM1.3 single molecule organization features based on tessellation-based automatic segmentation images. For

REM phosphorylation and viral infection
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EOS-REM1.3 displays an immobile and confined PM localization pattern, as commonly

observed for plant membrane-associated proteins (Fig 1C–1E) [48], [36]. Reminiscent of these

data, previous studies using different techniques described REM-associated PM domains to be

predominantly laterally static [36, 48, 49]. Analysis of PVX-infected cells demonstrated an

increase of EOS-REM1.3 diffusion coefficient (D) and mean square displacement (MSD),

reflecting an increase of REM1.3 mobility (Fig 1C–1E). We next apply mathematical computa-

tion (Voronoï tessellation method [36, 50]) to compare the supra-molecular organization of

EOS-REM1.3 of live PALM data in mock- and PVX-infected conditions (Fig 1F and 1G).

Computation of EOS-REM1.3 single molecule organization features demonstrated a modula-

tion of REM1.3 nanodomain-organization upon PVX infection (Fig 1G). Following PVX

infection, the EOS-REM1.3-formed nanodomains are bigger in size, and there is a slight

decrease of the proportion of molecules that localized into nanodomains as well as a decrease

in the number of nanodomains formed. Overall, in both conditions, EOS-REM1.3 nanodo-

mains represented similar proportions of the total PM surface. Additionally, a decrease in the

localization density (number of molecules observed per μm2 per s) showed that upon PVX

infection, there was less REM1.3 protein at the PM level. Overall, the changes of REM1.3 distri-

bution under PVX infection i.e. enrichment of YFP-REM1.3 in the PD pit field regions, the

increase of REM1.3’s mobility and the modulation of REM1.3 nanodomain organization, sug-

gest that the plant cell modulates PD-PM and PM nanodomain dynamics to circumvent PVX

infection.

Perception of PVX proteins by plant cells leads to the activation of kinase

(s) phosphorylating REM1.3
REM1.3 overexpression restricts PVX local and systemic spreading in both Solanum lycopersi-
cum [8] and Nicotiana benthamiana [33, 36] (S2A and S2B Fig). Because REM1.3 protein level

is not affected by PVX infection (S2C and S2D Fig), we assumed that neither synthesis nor

degradation of the protein is modified by PVX, but perhaps post-translational modifications.

As REM1.3 was originally discovered as a PM-associated phosphorylated protein [38], we first

asked whether REM1.3 could be phosphorylated by leaf protein extracts. Equal protein

amounts of microsomal and soluble extracts from N. benthamiana leaves were used as a poten-

tial kinase source to phosphorylate affinity-purified full-length 6His-REM1.3 in an in vitro
kinase assay in the presence of ATP [γ-33P]. Autoradiography revealed the presence of a clear

band corresponding to a phosphorylated form of 6His-REM1.3 by kinase(s) present in the

microsomal fraction (Fig 2A). The intensity of this band was completely abolished by competi-

tion with cold ATP, but not cold AMP, indicating a valid experimental set-up to study a genu-

ine transphosphorylation event (S3A Fig). Phosphorylation of 6His-REM1.3 was almost

undetectable in soluble fractions, representing cytosolic kinases (Fig 2A). In silico analysis pre-

dicted phosphorylation sites throughout REM1.3 sequence (Diphos, DEPP and NETPHOS

prediction softwares). In agreement with the location of the sites presenting the highest phos-

phorylation potential, we experimentally found that REM1.3 was phosphorylated in its N-ter-

minal domain (residues 1–116, hereafter 6His:REM1.3N) whereas the C-terminal domain

REM1.3 nanodomain size distribution for the indicated conditions, the Gaussian fits in absence (mock) and presence

of PVX are indicated by lines. Total nanodomain area is expressed as percentage of the total PM surface. Percentage of

EOS-REM1.3 molecules localizing into nanodomains, relative to all molecules observed. Localization density refers to

the number of molecules observed per μm2 per second. Statistics were performed on at least 10 data sets per condition,

from two independent experiments. Significant differences were determined by Mann-Whitney test � p<0.05, ���

p<0.001.

https://doi.org/10.1371/journal.ppat.1007378.g001
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(residues 117–198, hereafter 6His:REM1.3C) did not present any detectable phosphorylation

(S3B and S3C Fig).

We next tested whether PVX activates the kinase(s) that phosphorylate(s) REM1.3. Our

results unveiled that microsomal and PM fractions extracted from symptomatic PVX-infected

leaves promoted higher levels of 6His-REM1.3 phosphorylation compared to non-infected

plants (Fig 2B and 2C). Studies have shown that functionally different viral components, such

as virus-encoded proteins and double-stranded RNA, can trigger plant defense responses [51–

56]. We therefore examined whether the PVX genome in its free form was an eliciting signal

for kinase activation. We found that the addition of total RNAs extracted from PVX-infected

plants in the kinase reaction mix did not alter the levels of 6His-REM1.3 phosphorylation (Fig

2D). We then examined whether the sole expression of individual viral movement proteins

was sufficient to trigger REM1.3 phosphorylation (Fig 2E). Importantly, our results demon-

strated that the expression of TGBp1 and Coat Protein (CP) fused to GFP triggered the stron-

gest levels of 6His-REM1.3N phosphorylation to the same extent as the full PVX-GFP

construct (Fig 2F and 2G and S3E Fig for controls of viral fluorescent-tagged protein expres-

sion as described in [41]). In good agreement, expression of a TGBp1-deleted version of PVX

(PVXΔTGBp1) decreased 6His-REM1.3 phosphorylation levels compared to wild-type PVX

extracts (S3D Fig). Expression of TGBp2 and infiltration of the empty Agrobacterium strain

alone protein also induced 6His-REM1.3N phosphorylation, albeit less effective than TGBp1

and CP proteins (Fig 2F and 2G). In accordance with previous reports suggesting REM phos-

phorylation during plant-microbe interactions [9], Agrobacterium infected N. benthamiana
extracts induced much stronger REM1.3 phosphorylation than the water control condition

(Fig 2F and 2G). Furthermore, we found that the 30K-RFP protein from Tobacco mosaic virus
(TMV) also induces REM phosphorylation (S3D Fig). Similar to PVX-TGBp1, REM1.3 inter-

feres with the ability of TMV-30K to increase PD permeability [33] and overexpression of

REM1.3 restricts TMV-GFP cell-to-cell movement in N. benthamiana epidermal cells (S4A

Fig).

Altogether our data suggest an additional role of REM-mediated plant response against

TMV and possibly to bacteria. Our results also indicate that REM1.3 phosphorylation status is

modulated by the perception of viral proteins by plant cells.

Phosphorylation of REM1.3 regulates its function in restricting PVX

spreading via PD aperture modulation

Since phosphorylation of REM occurs upon PVX infection, we next aimed to functionally

characterize the importance of REM1.3 phosphorylation for the regulation of PVX cell-to-cell

movement. Despite our efforts, the identification of in vivo phosphorylation sites of REM1.3

appeared technically challenging and remained unsuccessful. In silico predictions and in vitro

Fig 2. PVX and viral proteins induce REM1.3 phosphorylation in its N-terminal domain. (A, B) In vitro protein phosphorylation assays were

performed by incubation of recombinant affinity-purified 6His-REM1.3 and N. benthamiana extracts with [γ-33P]-ATP. The samples were run on

SDS-PAGE gels and developed by autoradiography. Soluble (Sol) or microsomal (μ) extracts of healthy leaves in (A), or microsomal and PM extracts

from healthy and PVX-infected plants in (B) were used. (C) In vitro phosphorylation of 6His-REM1.3N by leaf microsomal extracts of healthy or PVX-

infected N. benthamiana leaves. Bars show the quantification of phosphorylated 6His-REM1.3N bands from 5 independent repeats. (D) In vitro
phosphorylation of 6His-REM1.3 by leaf microsomal extracts in the presence of total RNA extracts from PVX-infected leaves. (E) Experimental flow-

chart to study the role virus protein in membrane-bound kinase activation. (F) 6His-REM1.3N phosphorylation by microsomal extracts infected with

PVX-GFP or expressing the indicated viral proteins at 4 DAI. Leaves expressing GFP alone, infiltrated with water or with A. tumefaciens strain GV3101

alone served as controls. Expression of the viral proteins is presented in S3 Fig. (G) Graph represents the quantification of 6His-REM1.3N bands from

three independent repeats (n = 3), as a percentage of the activity induced by A. tumefaciens strain GV3101 alone. Error bars show SE, and significance is

assessed by Dunnett’s multiple comparison test to water control (�, P< 0.1; ��, P< 0.05; ���, P< 0.001). Phosphorylated proteins were detected by

autoradiography and total proteins by stain free procedure. In all experiments 10μg of total protein extracts and 1μg of affinity purified 6His-REM1.3 or

6His-REM1.3N were loaded per lane.

https://doi.org/10.1371/journal.ppat.1007378.g002
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kinase assays however showed that REM1.3N displays regions of intrinsic disorder and pres-

ents the highest potential of phosphorylation (Fig 2C–2F and Fig 3A). For functional charac-

terization, we selected the three putative phosphorylation Serine(S) /Threonine(T) sites

present in REM1.3N, namely S74, T86 and S91, that presented high scores of phosphorylation

prediction in intrinsic disorder regions (Fig 3A). S74 and S91 are conserved across the phylo-

genetic group 1b of REM proteins, suggesting functional redundancy (S5A Fig) [32, 57]. S74

and S91 were the analogous residues identified as phosphorylated in vivo in the group 1b REM

AtREM1.3 (At2g45820) of Arabidopsis thaliana (hereafter Arabidopsis) in a stimuli-dependent

manner [39, 40, 57]. Biochemical analysis showed that α-1,4-poly-D-galacturonic acid (PGA)-

induced phosphorylation of StREM1.3 occurs on T32, S74 and T86 [58]. T86 is not conserved

in Arabidopsis but it is conserved in Solanaceae REM proteins, such as in N. benthamiana
(S5A Fig). By an in vitro kinase assay, we show that phosphorylation occurs within three

potential phosphor-residues, since mutation of S74, T86 and S91 to the non-phosphorylatable

Aspartic acid (D), generating the 6His-REM1.3DDD mutant abolished REM phosphorylation

by the PVX-activated kinase(s) (Fig 3B and 3C).

To discriminate which residues are functionally relevant in the context of PVX-GFP propa-

gation, we generated RFP-tagged REM1.3 phosphomutants, individually mutated at those sites

to the non-phosphorylatable Alanine. Transient expression in N. benthamiana coupled with

PVX-GFP infection assays demonstrated that individual phospho-null mutations at those sites

induce a loss of function of REM1.3 in restricting PVX-GFP spreading (Fig 3D). This result

suggests that phosphorylation of either S74, T86 and S91 is important for REM1.3 function.

To further characterize the relevance of different REM1.3 phospho-statuses in the context

of PVX-GFP propagation and PD-aperture regulation, we analysed RFP-tagged REM1.3DDD

to mimic constitutive phosphorylation hereafter termed phosphomimetic mutant, or to Ala-

nine (REM1.3AAA) hereafter termed phosphodead mutant. Infection assays in N. benthamiana
confirmed that the phosphodead mutant completely lost REM1.3 ability to restrict PVX-GFP

cell-to-cell movement, while the phosphomimetic mutant maintained this ability (Fig 3D).

TMV-GFP propagation was similarly affected by the phospho-status of REM1.3 (S4A Fig). We

then analyzed the capacity of REM1.3 phosphomutants to regulate PD aperture in the absence

of viral infection. As previously described [33, 36], RFP-REM1.3 reduces the PD size-exclusion

limit as measured by free-GFP cell-to-cell diffusion (Fig 3E). Detailed analysis of REM1.3

phosphorylation mutants demonstrated that the phosphomimetic mutant recapitulated

REM1.3 activity towards PD-aperture regulation, while the phosphodead mutant did not (Fig

3E).

Altogether, these results provide strong evidence that REM1.3’s phosphorylation state at

the evolutionarily conserved positions of S74, T86 and S91 is linked to its function in control-

ling viral infection and PD conductance.

REM1.3 phospho-status modulates its dynamic lateral segregation in the

PM and PD sub-compartments

Both REM1.3 phosphomimetic and phosphodead mutants maintained PM localization, simi-

larly to wild-type REM1.3, when transiently expressed in fusion with YFP in N. benthamiana
(S4B Fig). Upon PVX infection we observed a modulation of REM1.3 PD-association and PM

dynamics (Fig 1), linked to REM1.3 phosphorylation (Fig 2) that is required for REM1.3 func-

tion against PVX infection (Fig 3). We then asked whether different REM1.3 phospho-statuses

might regulate its lateral organization at the PM and PD compartments in the absence of PVX.

We examined the enrichment of REM1.3 YFP-tagged phosphomutants at the PD pit fields,

previously calculated by the PD index (S1 Fig) and found that similarly to YFP-REM1.3, none
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of the phosphomutants appeared enriched at the pit field level (Fig 4A and 4C). The phospho-

dead mutant appeared statistically more excluded than YFP-REM1.3, whereas the phosphomi-

metic mutant displayed an increase of its PD index (Fig 4C), reminiscent of the REM1.3

localization phenotype under PVX infection (Fig 1A and 1B). Importantly, REM1.3 phospho-

mutants’ association with PD was directly correlated with callose content at PD (Fig 4B).

These observations reinforced the hypothesis that REM1.3-mediated increase of callose levels

at PD is associated with a dynamic and phosphorylation-dependent redistribution of REM1.3

to the PD surroundings.

We next used spt-PALM VAEM to characterize the localization and mobility behaviour of

the EOS-REM1.3 phosphomutants in the PM plane. The analysis of reconstructed trajectories

and corresponding super-resolved localization maps indicated slight modifications of lateral

mobility behavior between the phosphomutants (Fig 4D and 4E). Quantification of the diffu-

sion coefficient values (D) extracted for each individual molecule revealed that EOS-RE-

M1.3AAA displayed a more immobile behavior than EOS-REM1.3DDD and EOS-REM1.3.

Consistently, EOS-REM1.3DDD exhibited a higher mobility illustrated by higher diffusion coef-

ficient and mean square displacement values (Fig 4D and 4E). Analysis of the supra-molecular

organization of the phosphomutants by Voronoï tessellation (Fig 4F) firstly showed that all

mutants displayed similar nanodomain size and localization density compared to EOS--

REM1.3WT. Compared to EOS-REM1.3AAA, the EOS-REM1.3DDD nanodomains occupied a

smaller area of the total PM and their density in the PM plane appeared slightly reduced (Fig

4F and 4G). A higher number of nanodomains were formed with the EOS-REM1.3AAA

mutant. Hence, the phosphomimetic mutations favor a less confined and a more dynamic

localization pattern of REM1.3 at the PM, reminiscent to the phenotype of EOS-REM1.3WT

in the context of PVX infection (Fig 1C and 1D).

These results suggest that differential REM1.3 phosphorylation is involved in regulating

REM1.3 mobility and PM domain organization and support the hypothesis that REM1.3 phos-

phorylation on S74, T86 and S91 reflects an ‘active form’ of the protein necessary for

REM1.3-mediated defense signaling.

Fig 3. Mutational analysis reveals three critical phospho-residues required for REM1.3 regulation of PVX-GFP

propagation and PD conductance. (A) In silico analysis of REM1.3 protein sequence. Prediction of putative

phosphorylation sites was performed by Diphos, DEPP and NETPHOS coupled with published MS data. Predictions

highlight three residues S74, T86 and S91 with high probability to be phosphorylated. Disordered prediction was

performed by pDONR VL XT. Numbers indicate amino acid position. (B) In vitro kinase assay on recombinant

affinity purified 6His-REM1.3 or 6His-REM1.3DDD by incubation with [γ-33P]-ATP and microsomal extracts of

PVX-infected N. benthamiana leaves, as described in Fig 2. Phosphorylated proteins were detected by autoradiography

and total proteins by silver staining. Asterisk � indicates phosphorylation of a N. benthamiana protein of close

molecular weight not detected by silver staining. (C) Graph represents the relative quantifications from 4 independent

reactions, using WT signal as a reference. (D) Left, Representative epifluorescence microscopy images of PVX-GFP

infection foci on N. benthamiana leaf epidermal cells at 5 DAI. Graph represents the mean relative PVX-GFP foci area

in cells transiently expressing RFP alone, wild-type RFP-REM1.3 or carrying single serine /threonine mutations to

alanine. Co-infiltration of PVX-GFP with an empty A. tumefaciens strain served as mock control. Approximately 160

foci per condition from 3 independent biological repeats were measured. Letters indicate significant differences

revealed by Dunn’s multiple comparisons test p<0.001. Right, Graph represents the mean relative PVX-GFP foci area

in cells transiently expressing wild-type RFP-REM1.3 or triple RFP-REM1.3 phosphodead and phosphomimetic

mutants compared to mock control (co-infiltration of PVX-GFP with an empty A. tumefaciens strain). Approximately

250 foci per condition from 5 independent biological repeats were measured Letters indicate significant differences

revealed by Dunn’s multiple comparisons test p<0.001. Epifluorescence microscopy images show representative

PVX-GFP infection foci on N. benthamiana leaf epidermal cells at 5 DAI. (E) GFP diffusion to neighbor cells was

estimated by epifluorescence microscopy at 5 DAI in N. benthamiana cells transiently expressing RFP-REM1.3 or

phosphomutants. Measurements from 3 independent biological repeats were normalized to mock control (co-

infiltration with an empty A. tumefaciens strain). Letters indicate significant differences determined by Dunn’s

multiple comparisons test p<0.001.

https://doi.org/10.1371/journal.ppat.1007378.g003
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Fig 4. REM1.3’s dynamic localization in PD and PM nanodomains is regulated by its phospho-status. (A) Representative

confocal mages showing aniline blue staining of callose deposition at the PD pitfields in N. benthamiana leaf epidermal cells

transiently expressing YFP-REM1.3 or phosphomutants. Color-coding indicates fluorescence intensity. (B) Graphs show aniline
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AtCPK3 phosphorylates REM1.3

To gain more insights into the signaling processes leading to REM1.3 phosphorylation, we

aimed to biochemically characterize the kinase(s) involved in the phosphorylation of REM1.3.

Previous evidence suggested that the kinase(s) phosphorylating REM1.3 are membrane-associ-

ated (Fig 2) [38]. We therefore biochemically analyzed the localization of the kinase(s) phos-

phorylating REM1.3. Plant material from healthy and PVX-GFP-infected leaves was cell-

fractionated to obtain crude extracts, soluble and microsomal fractions [59] to perform in vitro
kinase assays on REM1.3N. Analysis confirmed a maximal kinase activity in purified micro-

somes (Figs 5A and 2A). Since a kinase in close proximity with its substrate would enhance

reaction kinetics [60] and signal fidelity [61], and given that REM1.3 is enriched in detergent-

resistant membranes (DRM) [8], we investigated whether the kinase activity towards 6His-

REM1.3 is enriched in this biochemical fraction. We included “control PM” (C-PM) prepara-

tions, submitted to discontinuous sucrose gradients but in the absence of Triton-X100 treat-

ments [62]. In vitro kinase assays on 6His-REM1.3N showed that the kinase activity in C-PM

was 5 times inferior than in freshly purified PM not submitted to the sucrose gradient, suggest-

ing that the kinase is not stable during the overnight purification procedure. Only half of the

specific activity of the kinase was found in DRMs compared to the C-PM fraction, indicating

that the kinase(s) phosphorylating REM1.3 is (are) only partially located in the DRM fraction

(Fig 5B).

To gain more information concerning the biochemical characteristics of the kinase phos-

phorylating REM1.3, we analyzed its activity in the presence of known inhibitors. We firstly

tested staurosporine, [63, 64] a general inhibitor that prevents ATP binding to kinases. We

found an inhibition of REM1.3 phosphorylation starting at very low concentrations (30 nM)

(S6A Fig). We further tested the effect of poly-L-lysine, described to stimulate the activity of

the CK2 kinases and inhibit several CDPK kinases [65, 66]. No significant differences on

REM1.3 phosphorylation levels were observed under increasing concentrations of poly-L-

lysine (S6B Fig). The addition of the wide range of Ser/Thr phosphatases inhibitor β-glycero-

phosphate (BGP) [66] to the reaction mix did not alter the levels of phosphorylated 6His-

REM1.3, indicating that the observed data was due to the activation of kinase activity by PVX

rather than by inhibition of phosphatases (S6B Fig). Competition assays in the presence of

cold AMP and GTP showed that only cold ATP even at 2 mM caused 20-fold depletion in

[γ-33P] incorporation, suggesting that ATP is the major phosphoryl-donor for the kinase (S6B

Fig). Addition in the reaction mix of 0,2 mM of EGTA, a chelator of Ca2+, strongly inhibited

the kinase activity suggesting that the kinase(s) phosphorylating REM1.3 in healthy leaves is

blue fluorescence intensities in cells transiently expressing YFP-REM1.3 and phosphomutants relative to control cells expressing

YFP alone. Three independent biological experiments were performed and at least 15 cells per condition and per experiment were

analyzed. Letter indicate significant differences revealed by Dunn’s multiple comparisons test p<0.001. (C) PD index of

YFP-REM1.3 phosphomutants was calculated as described in S1 Fig. Graphs present quantifications from 3 independent biological

experiments. Letter indicate significant differences revealed by Dunn’s multiple comparisons test p<0.002. (D) Super-resolved

trajectories (illustrated by different colours) of transiently expressed EOS-REM1.3, and phosphomutants, transiently expressed in N.

benthamiana cells, observed by spt-PALM. Scale bars, 2 μm. (E) Distribution of diffusion coefficients (D) represented as log(D) of

the different fusion proteins. Mean Square Displacement (MSD) over time for the global trajectories of each EOS-REM1.3 construct

followed during at least 600ms. 27 cells for EOS-REM1.3, 15 cells for EOS-REM1.3AAA and 17 cells for EOS-REM1.3DDD were

analyzed in 3 independent experiments. Statistical analysis was performed by Mann-Whitney test � p<0.05 �� p<0.01. (F) Live

PALM analysis of EOS-REM1.3 phosphomutants by tessellation-based automatic segmentation of super-resolution images. (G)

Computation of EOS-REM1.3 and phosphomutants single molecule organization features based on tessellation-based automatic

segmentation images. For REM1.3 and phosphomutants nanodomain size distribution and the Gaussian fits are indicated. Total

nanodomain area is expressed as percentage of the total PM surface. Percentage of EOS-REM1.3 molecules localizing into

nanodomains, relative to all molecules observed. Localization density refers to the number of molecules observed per μm2 per

second. Statistics were performed on at least 13 data sets per condition extracted from 3 independent experiments. Statistical

differences determined by Mann-Whitney test � p<0.05, �� p<0.01.

https://doi.org/10.1371/journal.ppat.1007378.g004
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Fig 5. AtCPK3 phosphorylates REM1.3 in a calcium-dependent manner. (A, B) In vitro phosphorylation of purified 6His:REM1.3N by

kinase(s) from different cellular fractions of N. benthamiana leaves, CEs, leaf crude extracts; Sol, Soluble fraction; μ, microsomal fraction;

PM, Plasma Membrane; C-PM: “Control-PM” is PM fraction not treated by TX100, but submitted to sucrose gradient; DRM, Detergent
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calcium sensitive (S6C Fig). Calcium is a conserved second messenger in signal transduction

during biotic and abiotic stress. In plants, kinases harboring different calcium sensitivities can

perceive calcium variations and translate them into downstream signaling activation [67, 68].

To determine whether the PVX-activated kinase phosphorylating REM1.3 is sensitive to cal-

cium regulation, in vitro kinase assays from microsomes of healthy and PVX-infected N.

benthamiana leaves were assayed in the presence of free calcium (Ca2+) concentrations rang-

ing from 10 nM to 0,1 mM. Fig 5C shows that the kinase(s) displays a high sensitivity to cal-

cium with an optimal activity in the presence of 10 μM of free Ca2+. At this concentration, a

5-fold increase of 6His-REM1.3N phosphorylation was observed in PVX-infected leaves (Fig

5C). These experiments allowed us to narrow-down the kinase(s) phosphorylating REM1.3

after PVX infection to the group of membrane-bound Ca2+-dependent protein kinases [67].

Plants possess three main families of calcium-regulated kinases: calmodulin-binding

kinases (CBKs), calcineurin B-like-interacting protein kinases (CIPKs) and calcium-depen-

dent protein kinases (CPKs) [67]. CPKs have the unique feature of calcium sensing and

responding activities in one single polypeptide, best characterized in the model plant Arabi-
dopsis [67]. Based on the measured calcium dose response (Fig 5C), we correlated the kinase

phosphorylating REM1.3 in N. benthamiana with homologs of Arabidopsis subgroup II

AtCPKs [69], and we aimed to capitalize on the knowledge of Arabidopsis CPKs to test

REM1.3 phosphorylation. Among the characterized members of subgroup II AtCPKs, we

selected the Arabidopsis AtCPK3 as a good candidate to test its putative role in REM1.3 phos-

phorylation, since previous proteomics studies in Arabidopsis have identified both AtCPK3
and AtREM1.3 as being enriched in PM, PD and DRM fractions [22, 70]. In addition, one

study showed that AtREM1.3 from microsomal fractions is phosphorylated in vitro by AtCPK3
[71]. We therefore predicted that REM1.3 might share common functions with the evolution-

arily conserved group 1b Arabidopsis REMs [32]. AtREM1.2 and AtREM1.3 are close homo-

logs to REM1.3 and group 1 N. benthamiana REMs (NbREMs) in term of protein sequence

[32, 36] and they conserved at least the S74 and S91 phosphorylation sites [39], [40, 57] (S5A

Fig). Using super-resolution microscopy, Demir et al. showed that, when co-expressed in Ara-

bidopsis leaves, REM1.3 and AtREM1.3 co-localized in the same PM-nanodomains [72].

Importantly, transient expression of AtREM1.2 and AtREM1.3 in N. benthamiana epidermal

cells impaired PVX-GFP cell-to-cell movement, as REM1.3 does (S5B Fig), strengthening the

hypothesis that the function of group 1 REMs might be conserved between homologs in differ-

ent plant species [36].

We assayed the in vitro phosphorylation activity of the affinity-purified AtCPK3-GST

towards the 6His-REM1.3, the 6His-REM1.3N and the 6His-REM1.3C, as well as the homolo-

gous substrate 6His-AtREM1.2. Similar to our previous results (S3B and S3C Fig),

AtCPK3-GST could phosphorylate strongly both 6His-REM1.3 and 6His-REM1.3N, but not

6His-REM1.3C (Fig 5D). In accordance with the effect of AtREM1.2 in PVX-GFP propagation

(S5B Fig), AtCPK3-GST can also phosphorylate 6His-AtREM1.2 (Fig 5E). Addition of Ca2+ is

essential for a strong kinase activity as shown by both kinase auto-phosphorylation and trans-

phosphorylation (Fig 5D and 5E). AtCPK3-GST specifically phosphorylated S74, T86 and S91

resistant membranes [62]. The graph represents the relative quantification of 3 independent experiments normalized to the activity in

the PM fraction +/- SEM. (C) Quantification of the calcium dose response of kinase activity on 6His-REM1.3N phosphorylation by N.

benthamiana microsomal extracts from healthy and PVX infected leaves. (D, E, F) Autoradiography gels show in vitro phosphorylation

of 6His-REM1.3, 6His-REM1.3N and 6His-REM1.3C, 6His:REM1.3DDD or 6His:AtREM1.2 by affinity purified GST-AtCPK3 in the

presence or the absence of Ca2+. Bands corresponding to autophosphorylation of AtCPK3-GST and transphosphorylation of 6His-

tagged group 1 REM variants are indicated. Gels were stained by coomassie blue to visualize protein loading. Asterisk� indicates a non-

specific band present in both 6His-REM1.3C and 6His-REM1.3N preparation.

https://doi.org/10.1371/journal.ppat.1007378.g005
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residues of REM1.3, since the phosphorylation was abolished in the phosphomimetic mutant

6His-REM1.3DDD (Fig 5F).

These results suggest that AtCPK3 is a good candidate for group 1b REM phosphorylation

and further support that the S74, T86, and S91 are the phosphorylation sites of REM1.3 (Figs

3A and 5E).

AtCPK3 interacts with group 1b REMs and restricts PVX propagation in a

REM-dependent manner

CPKs harbor a variable N-terminal domain, a Ser/Thr kinase domain, an auto-inhibitory junc-

tion region and a regulatory calmodulin-like domain. The calmodulin-like domain contains

four EF-hand binding motifs that determine the sensitivity of each kinase to calcium [73, 74].

To investigate the role of AtCPK3 in REM-dependent signalling, we generated AtCPK3

mutants presenting altered kinase activities. Deletion of the inhibitory junction region and the

regulatory calmodulin-like domain in CPKs creates a constitutive active kinase while mutation

of the aspartic acid residue in the catalytic center ‘DLK’ motif of the kinase domain to an ala-

nine (D202A) creates a catalytically inactive or ‘dead’ kinase [67] (Fig 6A). We generated

AtCPK3 full-length (AtCPK3), constitutive active (AtCPK3CA, residues 1–342) and kinase-

dead (AtCPK3CAD202A) constructs for transient protein expression (Fig 6A). We evaluated

their catalytic activities by expressing them transiently in Arabidopsis mesophyll protoplasts

and performing immunoprecipitation coupled to kinase assays using 6His-REM1.3 and his-

tone as a generic substrate [67]. Autoradiography confirmed that in vivo purified AtCPK3-

CA-HA could trans-phosphorylate both 6His-REM1.3 and histone without the addition of

calcium, while the point mutation D202A drastically abolished kinase activity (S7 Fig).

We next examined the sub-cellular localization of both AtCPK3 and AtCPK3CA fused to

YFP and found that both proteins disclosed a partial association with the PM, which was fur-

ther confirmed by their presence, after cell fractionation, in the microsomal fraction at the

expected molecular weight (Fig 6B) in good agreement with [71]. We further used AtCPK3CA

to test the interaction with group 1b REMs. Bimolecular Fluorescence Complementation

(BiFC) experiments showed that AtCPK3CA and REM1.3, REM1.3AAA and REM1.3DDD inter-

act together at the level of the PM in planta. Importantly, we also confirmed the interaction

of AtCPK3CA with homologous AtREM1.2 and AtREM1.3 (Fig 6C). REM1.3/REM1.3 interac-

tion was used as a positive control, and AtCPK3CA /AtCPK3CA as a negative control.

We finally aimed to functionally characterize the AtCPK3- and REM1.3-mediated signaling

in the context of PVX infection. Transient over-expression of AtCPK3-RFP alone induces a

reduction of PVX-GFP infection foci suggesting that AtCPK3 is indeed important for antiviral

responses in plant cells (Fig 6D). Expression of the constitutively-active AtCPK3CA-RFP had

a stronger effect on PVX-GFP spreading and to a similar degree with the over-expression of

REM1.3 alone (Fig 6D). AtCPK3’s function towards PVX movement was observed to be medi-

ated by its kinase activity, as the expression of the catalytically inactive mutant AtCPK3-

CAD202A had no effect on PVX-GFP propagation (Fig 6D).

This raised the question whether the effect of AtCPK3CA on PVX propagation was REM-

dependent. To tackle this question, we stably transformed N. benthamiana plants with a hair-

pin construct, to induce post-transcriptional gene silencing, which resulted in lowering RNA

and protein expression of group 1 endogenous NbREMs (S8A and S8B Fig). Consistent with

previous studies [8], silencing of group 1 REM correlates with an increase of PVX-GFP cell-to-

cell movement in inoculated leaves (S8C Fig). No difference was observed by ELISA when

measuring PVX accumulation in systemic leaves (S8D Fig). Importantly, PVX assays demon-

strated that AtCPK3CA ability to restrict PVX movement was impaired in two independent N.
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Fig 6. AtCPK3 physically interacts in vivo with group 1b REMs and impairs PVX cell-to-cell movement in a REM-

dependent manner. (A) Primary sequence of AtCPK3. EF-hands are helix E-loop-helix F structural domains able to bind

calcium. Ai: Autoinhibitory domain. The position of the DLK motif (Aspartic acid-Leucine-Lysine) at the catalytic domain

conserved in all CPKs is indicated. (B) Confocal images showing AtCPK3-YFP and AtCPK3CA-YFP localization in N.

REM phosphorylation and viral infection
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benthamiana lines underexpressing group 1 REM levels, (namely lines 1.4 and 10.2 with

expression levels decreased respectively by 2 and 20 times) (Fig 6E), indicating that REMs

might be the direct substrate of CPK3 in vivo.

Altogether, these data suggest that CPK3 and group 1 REMs are major regulators involved

in signaling and antiviral defense at the PM level.

Discussion

Protein phosphorylation is a ubiquitous and specific mechanism of cell communication [75].

The addition of a phosphate group on one or more critical residues of a given protein can

induce important conformational changes that affect energetically favorable interactions and

may lead to changes in its interacting network, localization, abundance and may influence the

activity of protein signaling pools [76]. Although, since the initial discovery of REM1.3 in

1989, accumulating evidence suggests that the functions of REM proteins are regulated by pro-

tein phosphorylation [38–40]. The biological significance of this phosphorylation remained

unclear to this date. REM proteins were among the first plant proteins described which sup-

ported the notion of PM sub-compartmentalization to functional protein-lipid nanodomains

[8, 11, 77], also named membrane rafts [3, 4, 21]. In the present paper, we used REM1.3 and

PVX as an experimental system to study the role of protein phosphorylation and membrane

dynamics in the context of stress response.

REM1.3 functions likely involve distinct PM compartments during plant

PVX-sensing

Understanding how plants defend themselves against viruses remains a challenging field. The

canonical plant immune response against viruses is mainly represented by the mechanism of

RNA silencing [78, 79], while additional mechanisms of plant antiviral defense involve hor-

monal signaling, protein degradation, suppression of protein synthesis and metabolic regula-

tion [51, 78, 80]. Antiviral defense presents similarities to the immune response against

microbes [81–83]. Compelling evidence suggests that cell-surface as well as intracellular plant

immune receptors recognize viral elicitors [55, 84–89]. An additional number of host cell com-

ponents have been shown genetically to affect viral replication or cell-to-cell movement [8,

90], indicating that more sophisticated plant defense mechanisms against viruses may exist.

For instance, manipulation of REM levels in transgenic Solanaceae suggested that REM is

as a positive regulator of defense against the PVX by affecting viral cell-to-cell movement [8,

14, 36]. We recently showed that REM1.3 does not interfere with the suppressor ability of PVX

movement protein TGBp1, but specifically affects its gating ability [33]. Group 1 REMs could

benthamiana epidermal cells. Scale bar shows 10 μm. Western blot against GFP showing AtCPK3-YFP and

AtCPK3CA-YFP expression in the microsomal fraction (μ) of N. benthamiana leaves. (C) In planta Bimolecular

Fluorescence Complementation (BiFC) analysis showing interaction of AtCPK3 with Group 1 REMs. REM1.3-YFPN/

REM1.3-YFPC was used as a positive control, and AtCPK3CA-nYFP/ AtCPK3CA-cYFP as a negative control. Mean

fluorescence intensity at the cell boundary level was recorded using ImageJ. Statistical differences were determined by

Mann-Whitney test compared to AtCPK3CA +AtCPK3CA.��� p = 0.0002, ���� p<0.0001. All scale bars indicate 20μm.

(D) PVX-GFP spreading in N. benthamiana cells expressing RFP-REM1.3 or AtCPK3FL-RFP, AtCPK3CA-RFP,

AtCPK3CAD202A-RFP Graph represents the area of PVX-GFP infection foci relative to the mock control (co-infiltration

of PVX-GFP with empty A. tumefaciens). At least 200 PVX-GFP infection foci from at least 3 independent repeats were

imaged at 5DAI. Letters indicate significant differences revealed by Dunn’s multiple comparisons test p<0.001. (E) Effect of

AtCPK3CA on PVX-GFP cell-to-cell movement in WT N. benthamiana or in transgenic lines constitutively expressing

hairpin REM (hpREM) constructs. At least 200 PVX-GFP infection foci from at least 3 independent repeats were imaged at

5DAI. For each N. benthamiana line the effect of AtCPK3CA is expressed as a percentage of the corresponding mock

control (empty Agrobacteria). Absolute values of the average foci area for each mock control are indicated.

https://doi.org/10.1371/journal.ppat.1007378.g006
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be a target for viruses (and other pathogens) to circumvent infection as illustrated by the case

of Rice Stripe Virus that targets NbREM1 for degradation by 26S proteasome [91]. Neverthe-

less, in this study we show that REM1.3 protein levels are not altered during PVX infection

(S2C and S2D Fig).

In this paper, we provide supporting mechanistic evidence that REM1.3 regulates the levels

of callose accumulation at PD pit fields during PVX infection (Fig 1). Whether this function is

mediated by a direct interaction with callose synthase/glucanase complexes remains however

still unknown. Surprisingly, we found that REM1.3 is not dramatically recruited to PD pit

fields, although its PD index is slightly increased after PVX infection (Fig 1). This suggests that

association of a sub-fraction of the REM1.3 to the PD-PM region may be sufficient to increase

callose accumulation, although we cannot rule out the possibility that REM1.3 may regulate

PD permeability via a more indirect mechanism. The spt-PALM VAEM microscopy data sup-

ports an increase of protein mobility and redistribution to distinct domains during PVX infec-

tion (Fig 1). These findings indicate the existence of a mechanism that operates at specific

REM1.3-associated PM nanodomains, capable of regulating PD permeability (Fig 1). The

dynamic partitioning between PM nanodomains and PD pit fields needs to be further studied.

Plant PVX-sensing induces the activation of a calcium-dependent protein

kinase

Since various studies have reported REM phosphorylation during plant-microbe interactions

[16, 17, 39, 40], we set out to address which kinase phosphorylates REM and whether REM1.3

phosphorylation plays a role in REM-mediated anti-viral defense. Indeed, our experimental

findings show that plant PVX sensing induces the activation of a membrane-bound calcium-

dependent protein kinase that in turn phosphorylates REM1.3 (Fig 2, Fig 5). Importantly, we

show that the kinase able to phosphorylate REM1.3 is activated specifically by the expression

of two PVX proteins, namely CP and TGBp1. Deciphering the exact mechanisms allowing the

molecular recognition of those PVX components will be a crucial step toward understanding

REM-mediated anti-viral defense. Intriguingly, the finding that the presence of Agrobacterium
also induces REM1.3 phosphorylation (Fig 2G) is in agreement with previous reports suggest-

ing phosphorylation of REMs under bacterial infection [39, 40] and suggests that phosphoryla-

tion should be also a way to regulate -yet unknown functions- of REM1.3 in bacterial defense.

Genetic studies have established that different CPKs comprise critical plant signaling hubs

by sensing and translating pathogen-induced changes of calcium concentrations [67, 68]. Bio-

chemical characterization of the kinase phosphorylating 6His-REM1.3 showed that its strong

sensitivity to calcium (Fig 5C) corresponds to homologs of phylogenetic subgroup II CPKs

from Arabidopsis [67]. CPK3 is a prominent member of subgroup II, shown to function in sto-

matal ABA signaling [92], in salt stress response [71, 93] and in a defense response against an

herbivore [94]. Interestingly, it was suggested that AtREM1.3 from taxonomical group 1 of

REMs could be a substrate for AtCPK3 in response to salt stress [71]. Here we show that

AtCPK3 can interact in vivo with group 1 REM (Fig 6C) and that AtCPK3 phosphorylates

group 1 REM in an in vitro kinase assay (Fig 5D). Transient overexpression of AtCPK3 in N.

benthamiana resulted in a reduction of PVX propagation in a REM-dependent manner, pro-

viding compelling evidence that CPK3 together with REM contribute to the plant antiviral

immunity. This is the first report demonstrating the participation of CPKs in plant basal

immunity against viruses.

Although [95] reports that there is no calcium signal during early recognition of PVX, the

activation of CPKs by PVX supports the notion that calcium might be involved in some other

late steps of plant-virus interaction like the control of intercellular connectivity. These changes
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in calcium concentrations in the cell are sensed by the CPKs and translated via the phosphory-

lation of REM and/or other unknown downstream components. In Nicotiana tabacum cal-

modulin isoforms are critical for the plant resistance against Tobacco Mosaic Virus and

Cucumber Mosaic Virus, further illustrating the existence of virus-specific patterns of calcium

signals [96, 97]. More work is needed to identify the CPK family members participating to the

response and also the nature and specificity of those PVX-induced calcium changes.

Phosphorylation regulates group 1 REM’s function during PVX cell-to-cell

movement

AtCPK3 specifically phosphorylated REM1.3 at its N-terminal domain (residues 1–116), a

domain displaying a mostly intrinsically disordered secondary structure (Figs 3A and 5). In sil-
ico analysis followed by a mutagenesis approach coupled with in vitro kinase assays revealed

three major putative phosphorylation sites for REM1.3, namely S74, T86 and S91 on REM1.3.

The in vitro phosphorylation of REM1.3 (Figs 3A and 5E) is almost totally lost when S74, T86

and S91 are mutated to non-phosphorylable residues, confirming these residues as major

REM1.3 phosphorylation sites. Individual phospho-null mutations at those sites impaired

REM1.3 ability to restrict PVX cell-to-cell movement to various extent (Fig 3D). The triple

phospho-null mutant, YFP-REM1.3AAA totally obliterated REM1.3’s capability to restrict PVX

cell-to-cell movement (Fig 3D) and to regulate PD permeability (Fig 3E). Reciprocally,

REM1.3 triple phosphomimetic mutant, RFP-REM1.3DDD appeared fully functional (Fig 3E

and 3F). These results strongly support the functional involvement of single or combined

phosphorylation in the N-terminal domain of S74, T86 and S91 to establish REM’s function in

the context of PVX infection. This is in contrast with LjSYMREM1 from Lotus japonicus
which was shown to be phosphorylated at its C-terminal domain in vitro by SYMRK [16].

Despite the fact that phosphorylation of REM proteins has been widely reported [16, 17, 39,

40, 57], this work firstly describes an associated role of REM-induced phosphorylation with its

function.

Toward the understanding of REMORIN function

Our finding that overexpression of AtREM1.2 and AtREM1.3 also restricts PVX-GFP cell-to-

cell movement (S5B Fig) suggests that REM phosphorylation and its associated functions

might be conserved for some REMs of taxonomic group 1b. In good agreement, AtREM1.2
and AtREM1.3 localize to the same PM nanodomains [72] and maintain conserved phosphor-

ylation sites with REM1.3 (S5A Fig). By contrast, AtREM4.1 from subgroup 4, presenting a dif-

ferent N-terminal domain and different expected phosphorylation profile has an opposite

effect against geminiviral propagation by promoting susceptibility to Beet curly top virus and

Beet severe curly top virus [17, 57]. This further argues that REMs might be phosphorylated by

diverse families of kinases in order to respond to different stimuli [57].

Overexpression of REM1.3 restricts TMV propagation (S4A Fig), and additionally modu-

lates the movement proteins from different virus genera [33, 91]. These findings suggest that

the initial hypothesis that REM1.3 causes the sequestration of the PVX virions at the PD [8]

might not hold true, but rather that REM1.3 might have a more general role in plant stress and

PD regulation (Figs 1 and 3). Interestingly, REM1.3 promotes susceptibility to Phytophthora
infestans in N. benthamiana and localizes exclusively to the PM and the extrahaustorial mem-

brane around non-callosic haustoria [42]. The exact role of REM1.3 as a common regulator of

different signaling pathways and its role in PD permeability regulation remains to be

determined.
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It has been speculated that phosphorylation in intrinsically disorder regions of proteins

may act as a molecular switch and confer potential protein-protein interaction plasticity [76,

98]. The intrinsically disordered REM1.3 N-terminal domain exhibits the most sequence vari-

ability in REM proteins, presumably conferring signaling specificity [32, 57]. Phosphorylation

of AtREM1.3’s N-terminal domain could stabilize coil-coiled-associated protein trimerization

and protein-protein interactions [57]. Phosphorylated REM1.3 seems to be further targeted to

PD-PM to trigger callose deposition. In good agreement, we found that the mobility in the PM

of REM1.3 changed depending on its phospho-status (Fig 4). The triple phosphomimetic

mutant exhibited a less confined and more mobile behavior at the PM, reminiscent of the WT

protein in the context of PVX infection (Fig 4D). Similarly to the role of 14.3.3 proteins in

plants [99], REM1.3 could act as a scaffolding protein, interacting with multiple members of a

signaling pathway and tethering them into complexes to specific areas of the membrane.

Hence, REM1.3 phosphorylation could act as a regulatory switch of protein conformations

that would modulate REM1.3 specific interaction patterns and transient signalosomes at the

PM. The triple phosphomimetic REM mutant might reflect a ‘functionally active’ form that

constitutes REM-guided signalosomes against PVX-infection at the PM and should be

exploited in future studies. The study of the phosphorylation-dependent interactions of

REM1.3 (and related phosphocode) in regard to the modulation of REM1.3 PM dynamics and

molecular function is the topic for future studies.

Materials and methods

Plant material

Nicotiana benthamiana plants were cultivated in controlled conditions (16 h photoperiod,

25 ˚C). Proteins were transiently expressed via Agrobacterium tumefaciens-mediated transfor-

mation for virus and PD functional assays as in [14, 33] or for the localization experiments as

described in the appendix. For subcellular localization studies and protein extractions, plants

were analyzed 2 or at 4 days after inoculation (DAI) in the phosphorylation assays. Imaging

for PVX-GFP spreading assays and plasmodesmata GFP-diffusion experiments were done at

5 DAI. PVX inoculation for test ELISA was performed at 4-week-old N. benthamiana plants.

Details on molecular cloning and protein work, transgenic lines generation are described in

the Appendix.

Cloning and molecular constructs

All vectors constructs were generated using classical Gateway cloning strategies (www.

lifetechnologies.com), pDONR211 and pDONR207 as entry vectors, and pK7WGY2,

pK7YWG2, pK7WGR2, pK7RWG2, and pGWB14 and pGWB15 as destination vectors [100].

The REM1.31–116, REM1.3117–198 and REM1.3 single S74A, T86A and S91A and triple

S74/T86/S91AAA and S74/T86/S91DDD mutants were synthesized in a pUC57 vector

(including the AttB sites) by Genscript (http://www.genscript.com/) or GENEWIZ (http://

www.genewiz.com/) and next cloned to Gateway destination vectors. AtCPK3D202A mutant

was generated by site-directed mutagenesis as previously described [101] with minor modifica-

tions. For BiFC experiments, the genes of interest were cloned into pSITE-BIFC- C1nec,

-C1cec, -N1nen, and–N1cen destination vectors [102]. To map the dynamics of single mole-

cules with sptPALM, REM1.3 and phosphomutants were cloned in fusion with EOS in the

gateway compatible vector pUBN-Dest::EOS [103]. EOS protein has been widely use for single

molecule localization microscopy in mammals, bacteria, and plant cells. It corresponds to the

name of a fluorescent protein from the stony coral Lobophyllia hemprichii which peculiarity

resides in its photoconvertability. The energy of UV light can break the core polypeptidic
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chain of EOS fluorescent protein inducing changes in EOS spectral fluorescence properties.

Due to the stochasticity of EOS photoconversion at low UV radiation (space and number of

events/sec can be controlled by modulating UV laser power), single molecules can be con-

verted, localized and tracked.

Generation of transgenic stable hairpin REM and 35S::GFP-REM1.3 N.

benthamiana lines

Leaf discs were cut from N. benthamiana leaves, transferred on petri plates containing culture

medium (complete Murashige and Skoog medium (MS) supplemented with 30g/L saccharose,

pH 5,8; phytoagar HP696 (Kalys) 5,5 g/L and the hormones: AIA 0,1 mg/L, BAP 2 mg/L) and

incubated for 48 h in the growth room (16 h photoperiod, 30 μmol photons.m2.s-1, 23 ˚C).

For the transformation, the N. benthamiana plants disk leaves were incubated with the Agro-
bacterium cultures (GV3101 strain) carrying the plasmid of interest for 20 min. The leaf sam-

ples were next placed on plates with the complete medium previously described. 48 hours

later, the leaf fragments were washed 3 times with sterile water (with 0,1% Tween20). The leaf

fragments were next washed with MS complete medium supplemented with Timentin

(300 μg/mL). The leaves were next placed on plates with regeneration medium (MS culture

medium, as previously described, supplemented with 300 mg/L of timentin and 150 mg/l of

kanamycin). The plates were next incubated in the growth room. The explants were trans-

ferred to fresh regeneration medium with a maximum periodicity of 7 days until the develop-

ment of callus. The regenerated seedlings were transferred to a rooting medium (MS, sucrose

30 g/L, phytoagar 5,5 g/L, timentin 200 mg/L, kanamycin 150 mg/L). The regenerated plants

(T0) were transferred to the greenhouse for growth and self-fertilization. Homozygous T2

lines carrying a single transgene insertion were selected by segregation analysis on selective

Kanamycin media and used for physiological studies and phenotypic characterization. The

expression of the GFP-REM1.3 or silencing levels of endogenous NbREMs was controlled by

cytological, biochemical and expression analysis. Cytological analysis of the GFP-REM1.3

expression in all leaf cells was performed to avoid chimeric expression, see S2A and S2B Fig.

Transient expression in N. benthamiana
Four-week-old N. benthamiana greenhouse plants grown at 22–24 ˚C were used for Agrobacter-
ium tumefaciens-mediated transient expression. A. tumefaciens were pre-cultured at 28 ˚C

overnight and used as inoculum for culture at initial OD600nm of 0.15 in pre-warmed media.

Cultures were grown until OD600nm reached 0.6 to 0.8 values (3–5 h). Cultures were then cen-

trifuged at 3,200 g for 5 min, pellet were washed twice, using water to the desired OD600nm.

Bacterial suspensions at OD600nm of 0.2 and 0.1 were used for subcellular localization and Spt-

PALM experiments, respectively. The bacterial suspensions were inoculated using a 1-mL

syringe without a needle by gentle pressure through a<1mm-hole punched on the lower epi-

dermal surface [104]. Transformed plants were incubated under normal growth conditions for

2 days at 22–24 ˚C. Transformed N. benthamiana leaves were analyzed 2–5 DAI depending on

the experiment.

Viral spreading, GFP diffusion assays

PVX-GFP cell-to-cell movement experiments were performed as previously described [14,

36], with minor modifications. Briefly, A. tumefaciens strain GV3101 carrying the constructs

tested were infiltrated at a final optical density at 600 nm (OD600nm) = 0.2 together with the

same strain carrying the plasmid pGr208, which expresses the PVX-GFP complementary

DNA harboring GFP placed under the control of a Coat protein promoter, as well as the helper
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plasmid pSoup [105] at final OD600nm of 0.001. Viral spreading of PVX-GFP was visualized by

epifluorescence microscopy (using GFP long pass filter on a Nikon Eclipse E800 with x4 objec-

tive coupled to a Coolsnap HQ2 camera) at 5 DAI and the area of at least 30 of PVX-GFP

infection foci was measured using Fiji software (http://www.fiji.sc/) via a homemade macro or

ImageJ. The expression levels of transiently expressed constructs were confirmed by Western

blot. ELISA tests in systemic N. benthamiana leaves were performed similarly to [8] to follow

the global virus accumulation. Briefly, GFP-REM1.3 or hpREM plants were mechanically inoc-

ulated with PVX, and viral accumulation in systemically invaded leaves (at 3 nodes above the

inoculated leaf) was evaluated at 10 or 14 DAI with a specific anti-PVX coat protein antibody

(Sediag). Five plants per line for GFP-REM1.3 and 8 for hpREM plants were tested per experi-

ment. GFP diffusion at PD experiments was performed as previously described [33]. All the

experiments were repeated at least three times.

Epidermal cells live imaging and quantification. Bimolecular Fluorescence

Complementation

Live imaging was performed using a Leica SP5 confocal laser scanning microscopy system

(Leica, Wetzlar, Germany) equipped with Argon, DPSS and He-Ne lasers and hybrid detec-

tors. N. benthamiana leaf samples were gently transferred between a glass slide and a cover slip

in a drop of water. YFP and mCitrine (cYFP) fluorescence were observed with similar settings

(i.e., excitation wavelengths of 488 nm and emission wavelengths of 490 to 550 nm). In order

to obtain quantitative data, experiments were performed using strictly identical confocal

acquisition parameters (e.g. laser power, gain, zoom factor, resolution, and emission wave-

lengths reception), with detector settings optimized for low background and no pixel satura-

tion. Pseudo-colored images were obtained using the “Red hot” look-up-table (LUT) of Fiji

software (http://www.fiji.sc/). All quantifications were performed for at least 10 cells, at least

two plants by condition with at least 3 independent replicates. BiFC images were taken 2 DAI

by confocal microscopy (Zeiss LSM 880). Quantification of fluorescent intensities was per-

formed by ImageJ, as described in [36].

Spt-PALM, single molecule localization and tracking

N. benthamiana epidermal cells were imaged at room temperature (RT). Samples of leaves of

2-week-old plants expressing EOS constructs were mounted between a glass slide and a cover

slip in a drop of water to avoid dehydration. Acquisitions were done on an inverted motorized

microscope Nikon Ti Eclipse (Nikon France S.A.S., Champigny-sur-Marne, France) equipped

with a 100× oil-immersion PL-APO objective (NA = 1.49), a TIRF arm, a Perfect Focus System

(PFS), allowing long acquisition in oblique illumination mode, and a sensitive Evolve EMCCD

camera (Photometrics, Tucson, USA). Images acquisitions and processing were done as previ-

ously described [45].

Single molecule fluorescent spots were localized in each image frame and tracked over time

using image processing techniques such as a combination of wavelet segmentation [106] and

simulated annealing algorithms [107]. The software package used to extract quantitative data

on protein localization and dynamics is custom written as a plug-in running within the Meta-

Morph software environment. This plugin is now property of Molecular devices company

(https://www.moleculardevices.com/sites/default/files/en/assets/product-brochures/dd/img/

metamorph-super-resolution-software.pdf).

Single molecule localization organization analysis, Log(δ1/δ) correspond to the ratio

between the local molecule density to overall molecule density at the PM. After correction for

artefacts due to multiple single-molecule localization (described in [36] and now presented in
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materiel and methods section), we computed potential nanodomain by applying a threshold

δ1i>2δN, where δN is the average localization density at PM level and δ1i is the density in pre-

sumed protein-forming nanodomain, with a minimal area of 32 nm2 and with at least 5 locali-

zations per nanodomain.

SR-Tesseler software was used to produce Voronoï diagrams, and subsequently quantify

molecule organization parameters as previously recommended [50]. Taking in account fluoro-

phore photophysical parameters, localization accuracy and the first rank of local density of

fluorescent molecules, correction for multiple detections occurring in a vicinity of space (w)

and blinking tolerance time interval (t) are identified as the same molecule, merged together

and replaced by a new detection at a location corresponding to their barycentre. Because first

rank of local density of fluorescent molecules was below 0.5 mol/mm2 (c.a ranking from 0.1 to

0.3 mol/mm2), we used a fixed search radius w of 48 nm as recommended [50]. To determine

the correct time interval t, the photophysics of the fluorophore namely the off-time, number of

blinks per molecule and on-time distributions are computed for each cell. For example, for a

dataset composed of 618,502 localizations, the average number of blinks per molecule was

1.42, and the number of molecules after cleaning was 315,929. As a control, the number of

emission bursts (439,331), counted with t = 0, divided by the average number of blinks per

molecule (1.42) was only 2.15% different. After correction for artefacts due to multiple single-

molecule localization, we computed potential cluster using a threshold d1i>2dN, where dN is

the average localization density at PM level and d1i is the density in presumed protein-forming

nanocluster, with a minimal area of 32 nm2 and with at least five localization by cluster.

Over the two independent experiments 54 446 single molecule trajectories have been

observed (34 740 Mock / 19 706 PVX). We then computed single molecule mobility behavior

(Diffusion coefficient and Mean square displacement) using trajectories of at least 8 time

points (tracked for at least 0.16 s; representing 19495 trajectories in total, 12073 for Mock con-

dition and 7422 for PVX condition).

In silico analysis of REM1.3 protein sequence

Prediction of putative phosphorylation sites was performed by Diphos, DEPP and NETPHOS

coupled with published data. Disordered domains were performed by pDONR VL XT.

In vitro REM1.3 phosphorylation assays

6His-REM1.3 and mutant recombinant proteins were purified from bacteria using fast flow

chelating sepharose resin (Amersham) according to manufacturer’s instructions and as in

[14]. For the in vitro REM1.3 phosphorylation assays about 2 μg of total plant extracts were

incubated with 1 μg of affinity-purified 6His:REM1.3 protein variants for 10 minutes at room

temperature and in a phosphorylation buffer (Tris-HCl 30mM, EDTA 5mM, MgCl2 15mM,

DTT 1mM, Na3VO4 2,5 mM, NaF 10 mM and 10 μCi/reaction ATP [γ-33P]- (3000Ci/mmol,

Perkinelmer). The buffer contained also 10–5 M of free Ca2+ which allows the detection of

6His-REM1.3 phosphorylation also in mock conditions. Gradual concentrations of free Ca2+

as in [108] were added for Fig 5C. Reactions were performed for 15 minutes in a volume of

25 μl. The reactions were stopped by the addition of 15 μl of 6x loading buffer. Proteins were

separated by SDS-PAGE and phosphorylation status of REM1.3 was analysed by autoradiogra-

phy using a phosphor-Imager and quantified by ImageQuant TL program.

In vitro CPK3 kinase assays

CPK3-HA was transiently expressed in mesophyll protoplasts and immunopurified with anti-

HA antibodies as performed in [109] while CPK3-GST recombinant protein was purified
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from bacterial extracts as reported in [69]. For in vitro kinase assays, the tagged CPK was incu-

bated with 0.5–1 μg histone or 6His-REM1.3 proteins in the following kinase reaction buffer

(20 mM Tris HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 50 μM cold ATP, ATP [γ-33P] 2 μCi per

reaction, 1 mM CaCl2 or 5 mM EGTA) in a volume of 15 μL for 30 min at RT. The reaction

was stopped with 5 μL 4X Laemmli buffer, then samples were heated at 95 ˚C for 3 min. Pro-

teins samples were separated by SDS-PAGE on 12% acrylamide gel. After migration, the gel

was dried before exposing against a phosphorScreen to reveal radioactivity on a Storm Imag-

ing system (GE Heathcare). The gel was then rehydrated for Coomassie staining.

Protein work

SDS-PAGE, Western Blot analysis, protein extractions and recombinant protein purification

were performed in E. coli as in [14]. Cell fractionation and extractions followed the established

protocol from [59] and [62]. Anti-REM antibodies were previously described in [8].

Accession numbers

All relevant data are within the paper and its Supporting Information files are available from

Arabidopsis Genome Initiative (https://www.arabidopsis.org/index.jsp), and GenBank/EMBL

(https://www.ncbi.nlm.nih.gov/genbank/) databases under the accession numbers: StREM1.3
(NP_001274989), AtREM1.2 (At3g61260), AtREM1.3 (At2g45820), AtCPK3 (At4g23650).

Supporting information

S1 Fig. Callose quantification by aniline blue staining and PD index calculation. (A) Origi-

nal sample image is an 8-bit, single-channel image.

(B) Masks of total Region Of Interest (ROI) objects before particle analysis were created using

the following filters; background subtraction with a rolling ball radius as in [43]; “smooth”

twice and an auto-local threshold Max Entropy dark, creating a black and white mask, used for

particle detection.

(C) Overlay of outlines of the analyzed ROI (green; after particle analysis with particle size

3–100 pixel2 circularity (0.3–1) exclude on edge) with the original image. Scale bar indicates

10 μm.

(D) Quantification of PD Index; after aniline blue labeled pit-field detection, YFP-REM1.3

fluorescence intensity was manually measured at pit-field level (ROI2) and surrounding PM

(ROI1 and ROI3) using a circle of fixed area (0.18 μm2). The PD index was then calculated as

the ratio between YFP-REM1.3 pit-field fluorescence (ROI2) and the mean of YFP-REM1.3

fluorescence intensity at surrounding PM (ROI1+ROI3).

(TIF)

S2 Fig. Overexpression of GFP-REM1.3 results in reduced PVX accumulation in N.
benthamiana and REM1.3 protein levels are not affected by PVX infection. A. Top, Confo-

cal image showing GFP-REM1.3 localisation in the PM in N. benthamiana lines Bottom, The

GFP:REM1.3 expression in three independent transgenic lines #6, 7 and 16 was tested by

Western blot against REM and showed that it contains at least three times the amount of

endogenous N. benthamiana REM.

B. PVX infection assays in independent stably expressing GFP-REM1.3 and wild-type control

N. benthamiana lines. Viral charge was assayed by test DAS-ELISA using antibodies to PVX

coat protein on distal (3 nodes above inoculation) leaves at 14 DAI. Three independent experi-

ments were performed with five plants for each transgenic line and non-transgenic (WT).

Error bars show SE, and significance is assessed by Dunnett’s multiple comparison test against
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WT (�, P< 0.1; ��, P< 0.05; ���, P< 0.001).

C, Western blot against REM1.3 was performed on total protein extracts from wild type N.

benthamiana leaves infected by PVX-GFP at 0, 3, 5 and 7 DAI. Stain free loading is indicated

below.

D, Confocal images showing PVX-GFP foci at the indicated DAI, tested in C.

(TIF)

S3 Fig. Analysis of in vitro 6His-REM1.3 phosphorylation and viral proteins expression.

(A) Effect of the addition of ATP or AMP in in vitro phosphorylation assays of 6His-REM1.3

by kinase(s) in microsomal (μ) or PM extracts of N. benthamiana leaves developed by autora-

diography.

(B) 6His-REM1.3N and 6His-REM1.3 phosphorylation by healthy N. benthamiana leaf micro-

somal (μ) and plasma membrane (PM) extracts.

(C) 6His-REM1.3N and 6His-REM1.3C phosphorylation by kinase(s) in microsomal (μ) and

soluble extracts.

(D) 6His-REM1.3 was differentially phosphorylated by leaf microsomal extracts expressing the

indicated constructs i.e. PVX alone, PVX deleted for TGBp1 (PVXΔTGBp1), 30K protein from

Tobacco Mosaic Virus (TMV), PVX fused to GFP, and GFP alone at 4 DAI. See the rationale

Fig 2E. Control of loading is shown after stain free procedure. In all phosphorylation experi-

ments about 10μg of total protein extracts and 1μg of affinity purified 6His-REM1.3, REM1.3N

or REM1.3C were loaded per lane.

(E) Controls of expression of fluorescently-tagged viral proteins, namely CP, TGBp1, TGBp2

used in Fig 2.

(TIF)

S4 Fig. REM1.3 S74 T86 S91 phosphorylation is important to regulate Tobacco mosaic

virus movement and REM1.3 phosphorylation mutants maintain PM localization. (A)

Representative epifluorescence microscopy images of Tobacco Mosaic Virus (TMV-GFP)

infection foci in N. benthamiana leaf epidermal cells at 5 DAI. Graph represents the relative

foci area of REM1.3 or phosphomutants (S74, T86 and S91 into Alanine, AAA or Aspartic

Acid, DDD) compared to mock control (co-infiltration of PVX-GFP with an empty A. tumefa-
ciens strain). About 78–128 foci per condition were measured in 2 independent biological

repeats. Dunn’s multiple comparison tests were applied for statistical analysis, p<0.001.

(B) Confocal microscopy images of secant views of N. benthamiana epidermal cells expressing

YFP-REM1.3, YFP-REM1.3AAA and YFP-REM1.3DDD at 2 DAI. Scale bar indicates 10 μm.

(TIF)

S5 Fig. Group 1b AtREMs and REM1.3 have similar behavior against PVX cell-to-cell

movement in N. benthamiana epidermal cells. (A) Clustal alignments of protein sequences

of group 1b REMORINs: AtREM1.2, AtREM1.3, NbREM1.2, NbREM1.3 and REM1.3

(StREM1.3). Blue color-coding shows percentage of identity. The REM1.3 S74, T81 and S91

sites are highlighted.

(B) Left, Representative epifluorescence microscopy images of PVX-GFP infection foci on N.

benthamiana leaf epidermal cells transiently expressing RFP-REM1.3, RFP-AtREM1.2 or

RFP-AtREM1.3 at 5 DAI. Scale bar indicate 400 μm. Right, Graph represents the relative

PVX-GFP infection foci area in the presence of RFP-REM1.3 or Arabidopsis homologs com-

pared to mock control (co-infiltration of PVX-GFP with empty A. tumefaciens strain). At least

184 foci per condition in 4 independent biological repeats were measured. Statistical differ-

ences are indicated by letters as revealed by Dunn’s multiple comparisons test p<0.001.

(TIF)

REM phosphorylation and viral infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007378 November 12, 2018 25 / 33

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007378.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007378.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007378.s005
https://doi.org/10.1371/journal.ppat.1007378


S6 Fig. In vitro characterization of REM1.3 phosphorylation conditions. Autoradiography

reveals in vitro phosphorylated 6His-REM1.3N (A) or 6His-REM1.3 (B) by microsomal

extracts of healthy N. benthamiana leaves in the presence of increasing concentrations of staur-

osporine (A) or Polylysine, β-glycerophosphate (BGP), GTP, AMP and ATP (B).

(C) Effect of Ca2+ and EGTA on 6His-REM1.3N phosphorylation by kinase(s) in microsomal

extracts.

(TIF)

S7 Fig. AtCPK3CAD202A dead mutant does not phosphorylate REM1.3 in vitro. AtCPK3-

CA-HA and AtCPK3CAD202A-HA were expressed in Arabidopsis thaliana mesophyll proto-

plasts. Immunoprecipitated proteins were incubated with ATP [γ-33P] and submitted to an in
vitro kinase assay using 6His-REM1.3 or histone as substrates. In vitro kinase assays were

revealed by autoradiography. Trans-phosphorylation of the substrates 6His-REM1.3 or histone

is indicated. Western blot against HA shows the expression levels of the expressed proteins.

(TIF)

S8 Fig. Stable transgenic lines N. benthamiana under-expressing group 1 REMORINs. (A)

Protein expression levels of endogenous NbREMs in the hpREM lines, determined by Western

Blot analysis using anti-REM1.3 antibodies. Protein extracts from three independent plants

per line were used, namely lines 1.4, 2.1, 10.2.

(B) Expression of endogenous NbREMs in the hpREM lines determined by RT-qPCR analysis.

Results are expressed relative to the NbREMs expression levels in the WT background. RT-

qPCR signals were normalized to actin levels.

(C) PVX-GFP spreading is accelerated in the hpREM lines. Graph represents the PVX-GFP

infection foci area in the different hpREM lines compared to WT. At least three independent

experiments were performed. Error bars show +/- SEM. Statistical differences compared to

WT were determined by Mann- Whitney test ��� p<0.001.

(D) PVX systemic propagation is inversely correlated with REM levels in 4-week-old trans-

genic N. benthamiana leaves. Viral charges were assayed by DAS ELISA using antibodies to

PVX coat protein (diluted on 1/100) on distal leaves (at 3 nodes above the inoculated leaves) at

10 DAI. 3 independent experiments were performed with eight plants for each hpREM trans-

genic line and WT or empty vector control (mock). Error bars show SE, and significance is

assessed by Mann-Whitney non-parametric test (�, P< 0.1; ��, P< 0.05; ���, P< 0.001).

(TIF)
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