8 research outputs found

    Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    Get PDF
    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for longduration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sealevel trend to emerge from the noise reduces by up to 2 decades

    Antarctic icebergs distributions, 2002-2010

    No full text
    International audienceInterest for icebergs and their possible impact on southern ocean circulation and biology has increased during the recent years. While large tabular icebergs are routinely tracked and monitored using scatterometer data, the distribution of smaller icebergs (less than some km) is still largely unknown as they are difficult to detect operationally using conventional satellite data. In a recent study, Tournadre et al. (2008) showed that small icebergs can be detected, at least in open water, using high resolution (20 Hz) altimeter waveforms. In the present paper, we present an improvement of their method that allows, assuming a constant iceberg freeboard elevation and constant ice backscatter coefficient, to estimate the top-down iceberg surface area and therefore the distribution of the volume of ice on a monthly basis. The complete Jason-1 reprocessed (version C) archive covering the 2002-2010 period has been processed using this method. The small iceberg data base for the southern ocean gives an unprecedented description of the small iceberg (100 m-2800 m) distribution at unprecedented time and space resolutions. The iceberg size, which follows a lognormal distribution with an overall mean length of 630 m, has a strong seasonal cycle reflecting the melting of icebergs during the austral summer estimated at 1.5 m/day. The total volume of ice in the southern ocean has an annual mean value of about 400 Gt, i.e., about 35% of the mean yearly volume of large tabular icebergs estimated from the National Ice Center database of 1979-2003 iceberg tracks and a model of iceberg thermodynamics. They can thus play a significant role in the injection of meltwater in the ocean. The distribution of ice volume which has strong seasonal cycle presents a very high spatial and temporal variability which is much contrasted in the three ocean basins (South Atlantic, Indian and Pacific oceans). The analysis of the relationship between small and large (>5 km) icebergs shows that a majority of small icebergs are directly associated with the large ones but that there are vast regions, such as the eastern branch of the Wedell Gyre, where the transport of ice is made only through the smaller ones
    corecore