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Abstract

Recent studies have identified climatic drivers of the east-west see-saw of Pacific
Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceler-
ation assessments attempt to account for this. We investigate the effect of Pacific climate
variability, together with temporally-correlated noise, on linear trend error estimates and
determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans.
Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to ad-
equately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1)
noise. Standard error estimates are over- or under-estimated by an AR(1) model for much
of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend es-
timate only reduces standard errors across the tropics and we find noise characteristics
are largely unaffected. Of importance for trend and acceleration detection studies, formal
error estimates remain on average up to 1.6 times those from an AR(1) model for long-
duration tide gauge data. There is an even chance that the observed trend from the satel-
lite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans
and the south-west and north-east Pacific gyres. By including climate indices in the trend
analysis, the time it takes for the observed linear sea-level trend to emerge from the noise
reduces by up to 2 decades.

1 Introduction

A key issue when deriving robust local sea-level trends is the presence of interan-
nual and decadal period signals which mask the true long-term trend, particularly in rel-
atively short instrumental records. This phenomenon is well evidenced by the apparent
east-west see-saw of sea-level linear trends across the Pacific derived from satellite altime-
try observations. This pattern in the sea-level trends from two decades of satellite obser-
vations can be largely explained by interannual and decadal basin-scale variability forced
by internal climatic variability (Zhang and Church [2012], hereafter referred as ZC12).
Attempts have been made to account for, or remove, intrinsic climatic variability in the
Pacific Ocean and elsewhere in studies involving linear trend estimation and detection of
acceleration [Hamlington et al., 2012; Calafat and Chambers, 2013; Haigh et al., 2014];
in mean sea-level reconstructions [Hamlington et al., 2011]; and, in attempts to separate
natural and anthropogenic signals [Meyssignac et al., 2012; Calafat and Chambers, 2013;
Hamlington et al., 2014; Dangendorf et al., 2015].

In the vast majority of these types of sea-level studies, uncertainty estimation in-
volves the assumption that the residual exhibits either white noise (with an adjustment for
the effective degrees of freedom in the presence of temporally-correlated noise) or order 1
auto-regressive noise, AR(1). However, sea-level time series exhibit temporal correlation
with long-term memory [Dangendorf et al., 2014]. When considering periods from wind
wave (~5 s) to geological (millenial), sea-level time series exhibit a power-law relation-
ship with spectral index around -2 [Harrison, 2002], although a Monte Carlo test by Bos
et al. [2014] demonstrated that for most sea-level time series a non-random-walk stochastic
model is correct. Hughes and Williams [2010] consider the trend in global satellite altime-
try sea-level measurements at periods of 2–24 weeks, finding an order 5 auto-regressive,
AR(5), model is required to characterize the residual noise when fitting a linear trend for
the majority (88%) of gridded sea-level anomalies. However, for long-duration tide gauge
time series and global mean sea-level observations and reconstructions, a variety of differ-
ent noise models have been found to best fit the residual [Bos et al., 2014; Burgette et al.,
2013], all exhibiting temporal correlation.

Auto-correlation can significantly increase formal trend uncertainty estimates, af-
fecting confidence in conclusions relating to the detection of sea-level acceleration and
the anthropogenic signal. Here, we examine the stochastic nature of the noise from lin-
ear trend estimation of sea-level from tide gauge and satellite altimetry data, over three
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different durations from 105 to 22.7 years, including key Pacific climate variates in the
trend estimation and discuss formal trend error estimates. We demonstrate the effect of
Pacific Decadal Oscillation (PDO) and El Niño South Oscillation (ENSO) variability and
stochastic noise on the time of emergence (ToE) of a linear trend in sea level; the length
of data required for a given trend to emerge from the intrinsic noise of the system. The
implications for trend detection from satellite altimetry and long period tide gauge data are
subsequently discussed.

2 Data

2.1 Altimeter data

Along-track Level 3 altimeter data was used. The Level 3 DUACS altimeter data
was procured from AVISO, which is now continued by CMEMS [Mertz et al., 2017]. The
unfiltered version of the Level 3 reprocessed data was stacked for every track segment
over all available Topex/Poseidon, Jason-1 and OSTM/Jason-2 cycles. We only used data
from the reference mission on the reference track which gives continuity and regularity in
the downstream computations. The DUACS processing use all standard geophysical prod-
uct corrections. Sea level anomalies were aligned and averaged along-track at 6 km equal
spacing commencing at the equatorial crossing and following the nominal ground track.
Here we focus on sea level time series across the Indian and Pacific Oceans. The time se-
ries covers the period 1 January 1993 to 10 September 2015 at the nominal 9.9156 day re-
peat pass interval. For computational efficiency we downsample to every 5 samples along-
track, giving a nominal along-track spatial resolution of ~30 km. The duration of satellite
observations now available (22.7 years of data in this study) may approach an adequate
length to confidently detect a linear trend of 2 mm a−1 across most ocean basins except
the most energetic regions (Figure 3 of Jordá [2014]). Our focus here is to investigate the
effect of climatic and intrinsic variability on this detection time.

The mean of the time series for each calendar month is also calculated for each
along-track satellite altimetry time series. We only present results from sea-level time se-
ries with more than 67% completeness over the epochs studied.

2.2 Tide gauge data

Tide gauge records from the Indian and Pacific Oceans of monthly-mean sea-level
from the Permanent Service for Mean Sea Level (PSMSL; Holgate et al. [2013]; PSMSL
[2017]) are truncated to the period January 1993 to September 2015 coincident with the
altimetry data. Additionally, we investigate two longer epochs of monthly mean tide gauge
time series, one epoch starting arbitrarily in 1960 and ending in 2015, and the longest
epoch starting arbitrarily in 1900 and ending in 2005 due to the limited length of the ex-
tended multivariate ENSO time series, described below.

We have filled gaps up to 2 months in the tide gauge time series by a spline regres-
sion and reject tide gauge records where the time series has low correlation (<0.8) with
all neighbouring tide gauge time series (within a 2◦ box). All sites that are flagged by
PSMSL are removed. Further manual amendments have been made to long duration tide
gauge sites, as described in Supporting Information Table S1.

This data manipulation and completeness criteria reduces the tide gauge data set
in the Indo-Pacific region to 22, 176 and 321 monthly time series for the epochs 1900–
2005, 1960–2015 and 1993–2015 respectively and the satellite altimetry data to 55,776
time series.
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2.3 Climate data

Two major modes of Pacific climate variability, identified by ZC12 to account for
much of the sea-level pattern across the Pacific, are used in this study. The Pacific Decadal
Oscillation index Zhang et al. [1997]; N. Mantua [2016]) and the multi-variate and ex-
tended multi-variate ENSO indices [Wolter and Timlin, 1993, 2011; NOAA ESRL, 2016a,b]
have been filtered to isolate the spectral frequencies of an Interannual Climate Index (ICI)
from those of a Decadal Climate Index (DCI). These indices have been interpolated to
the monthly and 9.9 d repeat frequency of the sea-level data. Figure 1 presents the PDO
and ENSO time series and the filtered DCI and ICI used in this study. It is noted that due
to the filtering applied to these indices, the large El Niño event that peaked in the later
months of 2015 is not included in this analysis.

3 Method

3.1 Regression

We analyse each sea-level time series (monthly tide gauge and monthly and 9.9 d
repeat satellite altimetry) multiple times considering the effects of regressing against the
DCI and ICI climate indices and various noise models. Total sea-level time series are de-
composed by maximum likelihood estimation (MLE) regression into component terms:

SLi = α0 + α1t + α2 cos(2πt + φa) + α3 cos(4πt + φsa) + ε (1)

where α0 is a bias or offset term, α1 is the linear trend in time, α2, α3, φa, φsa are the am-
plitude and phase of the annual and semi-annual periodic signals respectively and ε is the
residual noise. Hereafter, equation 1 is referred to as ‘standard regression’.

The influence of Pacific climatic variability on the interannual to decadal scale is
investigated using the approach of ZC12, where a multivariate regression including the
DCI and ICI climate indices as variates is applied to each time series. The independence
of the DCI and ICI time series is ensured by filtering (here, the only difference to ZC12 is
the application of a Butterworth filter to the PDO time series rather than a running mean,
to better separate low and high frequencies):

SLi = α0 + α1t + α2 cos(2πt + φa) + α3 cos(4πt + φsa) + α4DCI + α5ICI + ε (2)

Parameters in equations 1 and 2 are estimated using Hector, a freely available and
fast MLE software [Bos et al., 2013]. The capabilities of the software were extended for
this study to allow multivariate analysis including climate indices. The design matrix was
augmented with two columns that were filled with the DCI and ICI values for the same
epochs as the observations. The rest of the least-squares and MLE process remained the
same.

We repeated the regression with five different stochastic noise model types: white
noise and four different colored plus white noise models. In the spectral frequency do-
main, power-law noise is proportional to frequency to the exponent κ, P( f ) = P0( f / f0)κ

where P0 and f0 are constants. The value of κ is mostly smaller than zero which implies
high power at low frequencies and low power at high frequencies. The auto-regressive
(AR) noise model describes stochastic processes where the noise is determined by the
immediate previous noise value(s) plus a white noise value. On a log-log power spectral
density, AR(1) noise follows a linear trajectory with κ = −2 at high frequencies, flatten-
ing to a constant power at lower frequencies. The auto-regressive fractionally-integrated
moving-average (ARFIMA) model additionally allows for integration of and moving av-
erage in the noise, which can model non-stationarity. The inclusion of the fractional in-
tegration means that the slope in the power spectral domain can take any value, whilst
the auto-regressive part dictates there remains a change of slope at some crossover fre-
quency. A generalized form of auto-regressive and integrated noise model was proposed
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by Langbein [2004] and is referred to as the generalized Gauss Markov (GGM) noise
model. This generalized stochastic model has two parameters that fit the auto-regressive
order and power-law exponent. On a log-log power spectral density plot, the GGM a lin-
ear slope which flattens to a constant power at low and very high frequencies. In this
study we use the colored noise models AR(1) plus white; ARFIMA(1, d, 0) plus white;
GGM plus white; and, power-law plus white. Here, d is proportional to the spectral in-
dex by κ = −2d. The MLE fits parameters to each of these models, with the approach
described fully in Bos et al. [2013] and Bos and Fernandes [2016].

The appropriateness of a given stochastic noise model is assessed through the Akaike
Information Criteria (AIC; Akaike [1973]) and Bayesian Information Criteria (BIC; Schwarz
[1978]). For each time series each noise model is scored by the lowest values of the AIC
and BIC and the score is scaled by the range of AIC or BIC values for each regression.
This scaling takes into account slight (<2), moderate (2-6) and strong (>6) differences be-
tween the BIC values for each noise model. The most appropriate noise model is then
determined as that with the lowest mean score of both the AIC and BIC. For most time
series, the most appropriate model is judged the same by both the AIC and BIC.

For computational efficiency many sea-level trend studies have used a simplified
least squares approach to determine sea-level trend estimates and the uncertainty of that
linear trend estimate. In this approach, the effect of auto-correlation in the residuals on
the trend error estimate is accounted for, by reducing the number of degrees of freedom
in the standard error calculation (because the n observations are not independent in time;
von Storch and Zwiers [1999]; Emery and Thomson [2001]). Whereas the MLE trend error
estimate is derived explicitly from the observation covariance matrix and varies with the
parameterisation of each noise model [Bos et al., 2008].

3.2 Time of emergence

We also consider the time of emergence (ToE), here taken to mean the duration of
record needed for a given trend to exceed a surrogate stochastic noise time series based
on our optimal noise model for each time series. Particularly with the growing focus on
predicting local to regional sea-level change for adaptation and mitigation purposes, ToE
is an important metric to diagnose when a signal emerges from the noise of the system.
In this case, we assume the linear trend is the signal of interest (which may be of long-
period natural or anthropogenic origin) and remove the variability from PDO and ENSO
by multivariate linear regression. We subsequently identify when the observed trend signal
exceeds the remaining noise in the system at each time series location.

We determine when a trend signal emerges from the noise following a similar ap-
proach to that used in studies to detect anthropogenic signals in global climate models
(GCM) sea-level projections (e.g. Lyu et al. [2014]). For each location, and for fixed noise
model parameters derived by MLE regression with and without climate indices, we cal-
culate 1,000 surrogate stochastic noise time series of 100 year length using Hector. The
noise is simulated by the convolution of an impulse response with white noise, using FFT,
which implicitly assumes the noise is zero before the first observation. Therefore for the
power-law noise model, the surrogates include a spin-up of 1,000 time steps to allow the
appropriate growth of representative low frequency noise. Note that for GCM projections,
the ToE method usually compares a multi-model ensemble mean with the ensemble spread
of ‘natural’ model runs. Here, we determine the time taken for a trend to exceed each sur-
rogate noise time series. The time taken for a given target trend, of 0.5 to 10 mm a−1

to exceed each surrogate noise time series give a distribution of the ToE for each target
trend, at each location (refer to Supporting Information Figures S1, S2). For the satellite
altimetry era, here covering 22.7 years, we apply a spline interpolation on the probabil-
ity distribution of ToE for a given location and noise model to determine what magni-
tude of trend exceeds the noise, and compare against the observed trend from the satellite
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altimetry era. This is because we want to capture the influence of the colored nature of
the noise, where the noise signal may grow in time. As a result, the method applied here
gives longer ToE than applying a signal to noise ratio where the noise threshold is two
standard deviations.

It is noted that, due to the larger variability in observations compared with GCM
and noting that the along-track satellite altimetry data here is not spatially smoothed, the
ToE derived here are expected to be longer than those determined from previous studies of
observations and GCM.

An alternative approach is commonly used in observed sea-level rise detection and
attribution studies (e.g. Jordá [2014]; Richter and Marzeion [2014]; Haigh et al. [2014]),
where the apparent trend is calculated for each surrogate noise time series for different
sizes of sliding window, giving an apparent ToE for a given magnitude of trend. How-
ever, applying this approach to determine the trend by MLE with the most appropriate
noise model for each time series is too computationally expensive when applied to the
large number of sea-level time series investigated here.

From the ToE distributions, the detectable trend for a given duration of record is
calculated by spline interpolation on the implied confidence intervals of the 50th, 75th and
95th percentile of the distribution.

This approach identifies the time at which an observed signal becomes detectable
beyond the known explainable variables and residual noise.

4 Results and Discussion

4.1 Noise in regression when including climate variability

Varying the duration of data coverage and sample frequency of the sea-level time
series affects the spectral shape of the residual noise. Linear regression on shorter time
series are prone to over-estimating the linear trend, by assigning variance due to long-
period oscillations (long relative to the sample data length) to the trend rather than the
noise term. For observations that include long period variability, it is therefore expected
that the noise spectra from longer duration samples should exhibit higher power at the
lowest frequency than a shorter sample of the same data. If the longer period oscillations
in sea level are dominated by PDO and ENSO climate variability, it would be expected
that including these variates in a linear regression would reduce the power in the noise at
the longest period for all sample lengths, changing the shape of the spectra.

Figure 2 presents the proportion of each data set best described by each noise model
(values are provided in Supporting Information Table S2) and Figure 3 presents these pro-
portions binned by latitude bands for the satellite altimetry data and coincident epoch of
tide gauge data. The duration and sampling frequency of the sea-level time series has a
significant effect on the most appropriate noise model, determined through the mean AIC /
BIC score.

For the longest duration tide gauge time series from the epoch 1900–2005, every site
exhibits colored noise and for 77% (63%) of sites the noise is best described by a non-
AR(1) model, when including (excluding) climate indices in the regression.

For the 55 year duration tide gauge time series from the epoch 1960–2015, every
site exhibits colored noise but the proportion of sites best described by AR(1) noise is
greater than the longest duration data. For 33% (48%) of sites, the noise is best described
by a non-AR(1) model, when including (excluding) climate indices in the regression.

For both the tide gauge data and the monthly satellite altimetry data over the 1993–
2015 epoch, the majority of the time series display white or AR(1) noise (71-87% of time
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series are best described by white or AR(1) noise with the range depending on the sea-
level observation method and the inclusion or not of climate indices in the regression).
However, the noise in the satellite altimetry data at its original 9.9156 day repeat pass fre-
quency are more appropriately described by colored noise models other than AR(1) in
54% (56%) of time series including (excluding) climate indices in the regression.

Therefore, this analysis shows that including climate indices in the multivariate re-
gression significantly affects the trend (refer to ZC12 Figure 4e) but does not substantially
affect the most appropriate choice of noise model (Figures 2 and 3), indicating that these
climate variables may not represent the dominant noise process.

Figure 3b,c show a clear distinction of the most appropriate noise model between
equatorial, tropical and mid-latitude regions. In the monthly mean satellite altimetry data,
the most appropriate noise model in the equatorial and tropical (±20◦ latitude) regions
is best described by AR(1) type models, whereas the noise in the mid tropics to mid-
latitudes in the open ocean is often best described by a GGM type model. In the 9.9 d
altimetry data, the AR(1) noise model is dominant at the equator, but within the tropics a
mixture of AR(1), ARFIMA(1, d, 0), GGM and power-law noise models are most appropri-
ate.

Given sea level observations are an aggregation of numerous geophysical signals, it
is not surprising that the noise may be best described by a power-law or integrated noise
model, but it is clear that data sets with a smaller number of points can be adequately de-
scribed by an AR(1) noise model.

We re-analyse the 22 longest duration tide gauge records over the satellite altimetry
era (1993–2015). The residual noise from both regression analyses (without and including
climate indices) for the shorter sample length is best described by an AR(1) noise in all
cases (not shown). Yet, considering longer sample lengths of data the most appropriate
noise model varies by location.

The sensitivity of the most appropriate noise model selected to the time series du-
ration and sampling frequency may be due to a number of reasons. Since sea level time
series exhibit long term memory (a Hurst exponent H > 0.5, Dangendorf et al. [2014]), it
might be expected that a noise model with integrated white noise (such as ARFIMA(1, d, 0)
or GGM), for which the auto-covariance sequence decays hyperbolically, should better
fit the noise than an AR(1) process, for which the auto-covariance sequence decays ex-
ponentially [Hosking, 1981]. The preference for the AR(1) model for shorter duration or
lower sample frequency data implies a systematic influence of the method applied here. It
may be that the smaller number of data points in the time series represent a limit on noise
model accuracy and the AIC/BIC scores are dominated by the parsimony principle, choos-
ing the simplest model (AR(1) or power-law) over more complex models (ARFIMA(1, d, 0)
or GGM). Additionally, the data set for the altimetry epoch 1993–2015 is shorter than the
longest periodicity in the signal and therefore some of the noise could be attributed to a
linear trend in the shorter duration data. At high frequencies there is considerable variance
in the noise and none of the noise models fit particularly well to the high frequency part
of the noise spectra.

Figure 4 presents power spectral density plots for the noise from 4 long duration
tide gauges. The effect of the different sample period and climate indices in the regression
differs across the sites. At Sydney, San Francisco and Seattle, the noise when including
climate indices has reduced power at decadal periods, compared with the noise from the
standard regression. There is a consistent reduced power in the noise from the 1993–2015
data set, than the 1900-2005 data set, for Sydney and San Francisco (and to a lesser extent
at Seattle), but it is unclear from the trend coefficient estimates if this power is being erro-
neously assigned to trend rather than noise. At San Francisco and Seattle, there is a clear
reduction in power at the inter-annual frequencies associated with the ICI (the inter-annual

–7–



Confidential manuscript submitted to JGR-Oceans

periodicity of ENSO). At San Francisco, the preferred noise model is unchanged by in-
cluding climate indices in the regression (AR(1) for 1993–2015 data and ARFIMA(1, d, 0)
for 1900–2005), but the difference in the spectral shape leads to a large variation in the
subsequent formal trend error estimates (refer to Supporting Information Table S3 for full
details for the 1900–2005 data set). At Seattle, the reduction in power at inter-annual peri-
ods by including climate indices changes the preferred noise model from ARFIMA(1, d, 0)
to power-law, substantially increasing the formal trend error estimate. At Honolulu, in-
cluding climate indices in the 1993–2015 data set has a significant impact on the power
in the noise at both inter-annual and decadal periods, which is not apparent in the longer
1900–2005 data set (where the preferred noise model is GGM for both regressions). This
is indicative of the issue raised by Frankcombe et al. [2015] whereby the relationship be-
tween PDO and ENSO climate indices and sea level is not stationary in time, and may be
more pronounced in the more recent past than over the full tide gauge record. Addition-
ally, note the large difference in the trend identified over the 1993–2015 data between the
standard regression and that including climate indices, which implies the time series is too
short to adequately separate the trend, climate indices and noise components.

The preference for colored but non-AR(1) noise models in the 9.9 d frequency satel-
lite altimetry data, over the monthly data, matches the findings of Bos et al. [2014] where
it was found that annual average tide gauge records appear better fit by an AR(1) model.
Averaging effectively reduces the high frequency content in the time series, resulting in
a smaller bandwidth. This makes it easier for the AR(1) to fit the power spectrum of the
residuals, affecting the AIC and BIC scores.

The robustness of the noise model and therefore spectral shape of the noise suggests
that the ratio of short-period to long-period spectral energy is only partially affected by
the natural climatic variability applied in this study (noting the DCI and ICI here describe
variability in the Pacific) and is additionally related to other signals in the sea-level data.

The primary drivers of sea-level change over the instrument record, thermal expan-
sion and mass exchange with the cryosphere and hydrosphere (including terrestrial wa-
ter storage), exhibit temporal and spatial non-linearities [Xue et al., 2012; Marzeion et al.,
2014; Chen et al., 2017]. Furthermore, many geophysical signals will also contribute non-
linearities to the sea-level signal, such as oceanographic physics as described for high fre-
quency by Hughes and Williams [2010]. For each time series, the regression applied here
accounts for the annual and semi-annual signal in the (local) steric sea level and for a lin-
ear relationship with the DCI and ICI indices, which derive from climatic varibility in the
Pacific. Natural climatic variability not described by a linear relationship with the PDO
and ENSO will contribute to the noise term [Palanisamy et al., 2015a]. Over the satellite
altimetry epoch from 1993–2015, the DCI shows a general decline not wholly independent
of a linear trend in time. There may have been a shift in the response of sea level to Pa-
cific variability between the satellite altimetry epoch and earlier epochs [Frankcombe et al.,
2015], such that the relationship between sea level and the ICI and DCI is not expected
to be constant in time between the epochs investigated here. Considering other climate
variates may help more fully represent the drivers of the intrinsic long-period variability
in sea-level time series, such as integrated equatorial and longshore wind stress or wind
stress curl components (Calafat and Chambers [2013]; Thompson et al. [2014]; Newman
et al. [2016]), but this approach is not feasible for an assessment with basin-scale cover-
age. Also, natural and human-induced causes of vertical land motion at tide gauges are
local and non-linear in time and will be present in the noise.

4.2 Formal error estimates

Allowing for non-AR(1) noise models in a sea-level linear trend regression can sig-
nificantly effect the formal error estimates for the trend [Bos et al., 2014], and this remains
true for our multivariate regression including climate indices. Figure 5 presents histograms
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of the ratio of the standard error in the trend estimate from the most appropriate noise
model, over that from an AR(1) model fit. Ratios greater than 1 represent time series
where the trend error is under-estimated if the noise is represented by an AR(1) model,
and visa versa. We only present the non-AR(1) ratios for brevity with the number of time
series best fit by a non-AR(1) model indicated in each panel. The proportion of time se-
ries with standard errors greater or less than those from an AR(1) model varies as a func-
tion of the duration and sampling frequency of the data, with variation in the preferred
noise model.

For the longest duration tide gauges, 68% of sites have larger standard errors after
allowing for non-AR(1) noise models, including climate indices in the regression (45% for
standard regression; Table 1). For the longest duration tide gauges, including climate in-
dices changes the appropriate noise model for some sites from AR(1) to ARFIMA(1, d, 0)
and power-law (Figure 2a). As a result, the median standard error increases to 1.58 times
that produced assuming an AR(1) noise model. In all other cases of duration and fre-
quency, the median standard error is equal to that from an AR(1) noise model, but a no-
table proportion of the records have higher error estimates. For the 9.9 d repeat frequency
satellite altimetry data, only 46% of time series are best described with an AR(1) noise
model, when including climate indices in the regression (44% for standard regression). In
most cases the noise model is colored but not AR(1) and the standard error estimates are
greater than those from an AR(1) model in 24% of cases, including climate indices in the
regression (30% for standard regression).

The standard error is greatest in regions of high energy, such as the western bound-
ary currents, but also in the equatorial Pacific, the south Tropical Indian Ocean and south-
west Tropical Pacific Ocean around the Fiji Basin (Figure 6a,e). These later regions ex-
hibit strongly auto-regressive noise (Supporting Information Figures S4, S5), which leads
to the high error estimates in the MLE approach.

Variations in the most appropriate noise model lead to over- and under-estimates of
the trend error. The spatial coherency with latitude in the most appropriate noise model
(Figure 3) feeds in to spatial coherency in the ratio of the standard error in the trend com-
pared with assuming an AR(1) noise model, as shown in Figure 6b,f. Under-estimates of
the trend error correspond to regions where the noise is best described by an ARFIMA(1, d, 0)
or power-law noise model, in the satellite altimetry data. Over-estimates generally cor-
respond with regions where a GGM noise model is most appropriate. High ratios are
also apparent along eastern coastal boundaries (the Americas and Australian west coast),
around New Zealand and into the Aleutian Sea. In the monthly mean satellite altimetry
data (Figure 6f), the noise in the tropics is generally best described by an AR(1) model.
There remain patches of higher standard error around New Zealand and the Aleutian Sea.
In both frequency data sets, there is a strong band of lower standard error at 5-10◦ N in
the Pacific Ocean (where the most appropriate noise model is GGM).

The inclusion of climate indices in the regression reduces the standard error in the
tropics in line with flattening the noise spectra at low frequencies (Figures 6c,g), but leads
to an overall increase in the standard error due to the additional degrees of freedom in
the model. Large magnitude coefficients are calculated for the DCI and ICI variates in the
equatorial and tropical Pacific and Indian Oceans. The DCI variate has large magnitude
coefficients into the north Pacific Ocean and on the Australian North West Shelf and along
the western coast (Supporting Information Figure S5). The reduction in standard error by
including climate indices is most pronounced where the ICI and DCI indices have largest
coefficients in the regression, hence removing the most power from the noise. Aligned
with this, the AR(1) coefficient is reduced in these regions, likely due to the reduction in
longer period power relative to the 22.7 year duration of the record (Supporting Informa-
tion Figure S3). The largest reduction in the standard error corresponds to the equatorial
and tropical oceans but also patches of ocean where recent sea-level rise is associated with
wind field changes (gyre spin-up and thermocline adjustment) in the south Indian Ocean
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[Thompson et al., 2016], south-west Pacific Ocean [Roemmich et al., 2016], north-east Pa-
cific Ocean as well as West Australian and Pacific North American coastal sites where
coastally-trapped boundary waves propogate equatorial sea-level disturbances [Thompson
et al., 2014; White et al., 2014].

The observed trend estimates for the satellite altimetry era 1993–2015 including the
DCI and ICI climate indices in the regression are given in Figure 6d,h. Stippling indicates
regions where the trend is significantly different than zero (to 2 standard errors) using our
revised error estimates based on the most appropriate noise model determined by MLE.
The standard error estimates in the 9.9 d sample frequency satellite altimetry data are sig-
nificantly affected by the presence of colored but non-AR(1) noise, whereas the monthly
mean data is dominated by AR(1) type noise. But it can be seen that the spatial patterns
of regions displaying observed trends significantly different from zero are consistent be-
tween these two differently sampled data sets, which are dominated by large observed
trend or very quiescent oceans (such as the south-eastern tropical Pacific). The mean trend
over the study area for this period is 3.08 mm a−1 in both data sets.

4.3 When does a trend emerge from the intrinsic noise?

In addition to determining the formal error on a trend estimate, to determine when
the trend is different from zero at a given level of statistical significance, it is also inter-
esting to look at the problem of detecting a forced signal within an intrinsically noisy sys-
tem.

By removing climatic variability associated with the major modes in the Pacific(relating
to the PDO and ENSO) and allowing for a range of colored noise models, we improve on
estimates of when a given sea-level trend emerges from the noise of the system.

The ToE for the observed trend to emerge from 95% of surrogate stochastic noise
time series are presented in Figure 7, parameterized from the multivariate regression in-
cluding climate indices over the satellite altimetry era (1993–2015). The mean of the
observed trend from the satellite altimetry in this period and this region is 3.08 mm a−1.
The ToE varies from less than 20 to 100 years, associated with regions of lower to higher
variability and hence standard error (Figures 6b,f and 7b,f), with a mean ToE over this re-
gion of 66 (76) years for the monthly mean (9.9 d repeat) satellite altimetry data. The ToE
for the observed trend is greater than 50 years for 64% (78%) of the Pacific and Indian
Ocean covered in this analysis from the monthly mean (9.9 d repeat) satellite altimetry
data. These time scales are much higher than equivalent model studies because the obser-
vations have much greater high frequency variation than climate models.

The ToE determined from the most appropriate noise model varies by up to 6 years
compared with an AR(1) model, in satellite altimetry data, with an incoherent spatial dis-
tribution (Figure 7c,g). This difference is dictated by the spread in the distribution of ToE
values obtained over the 1,000 surrogate noise time series for different noise models (Sup-
porting Information Figure S2). Taking the mean observed trend of 3.08 mm a−1 (includ-
ing climate indices in the regression), the lower magnitude of residual noise reduces the
ToE by up to 2 decades (compare Figure 7d,h with Figure 6d,h).

In Figure 8 the observed trend from the regression model including climate indices
is presented, together with regions where the trend emerges from 50%, 75% and 95%
of surrogate stochastic noise time series over the same period as the observations (22.7
years).

By including DCI and ICI climate indices as variates in the regressions for data in
the altimetry era the east-west see-saw of sea-level trends is somewhat levelled, particu-
larly in the equatorial zone, as discussed by ZC12 (Figure 8). With 22.7 years of altimetry
data, we now find that the very large positive trend immediately to the east of the Philip-
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pines (between longitudes 120◦ E and 140◦ E) is reduced to be insignificant from zero by
including climate indices in the regression.

There is a clear decrease in the extent where the observed trend exceeds the noise
with an increasing percentage of surrogates exceeded. There is an even chance (50% of
surrogates exceeded; Figure 8) that the observed trends across large areas of the equato-
rial and tropical Pacific Ocean, the south-west Pacific gyre off New Zealand, the north-east
Pacific gyre, and, the tropical south-west Indian Ocean off Madagascar, exceed the noise
within the available data duration. The gyre regions have been noted as regions of re-
cent increased sea-level rise, spun-up by changes in wind stress [Roemmich et al., 2016;
Thompson et al., 2016]. Similarly, changes to the wind stress regime have been linked to
thermohaline adjustment leading to increased sea-level rise in the tropical Pacific Ocean
[Palanisamy et al., 2015b; Peyser et al., 2016]. It is noted in this analysis, the trend and
noise in the majority of these regions are modified by the inclusion of climate indices in
the regression, aiding the signal-to-noise ratio. An exception is the south-west Pacific gyre
located to the east of New Zealand, which shows a large magnitude positive trend and col-
ored, but non-AR(1), noise that is not affected by the DCI and ICI in this analysis. Here,
applying different co-variates in the regression could improve the signal-to-noise ratio fur-
ther.

However, the distribution of ToE for a given location from the 1,000 sample surro-
gates can be significantly spread, particularly when the most appropriate noise model is
ARFIMA(1, d, 0) or power-law (Supporting Information Figure S2). As a result, a more
conservative threshold of 95% of surrogate noise time series exceeded leads to consid-
erably smaller regions with an observed trend from the satellite altimetry era exceeding
the noise (Figure 8). For the monthly mean satellite altimetry data, 14.6% of the Pacific
and Indian Oceans’ time series covered in this analysis exhibit an observed trend that is
greater than 50% of the surrogate noise time series, decreasing to 11.1% and 6.4% ex-
ceeding 75% and 95% of surrogate noise time series. For the 9.9 d repeat satellite altime-
try data, only 5.1%, 3.2% and 1.5% of the time series’ observed trends exceed 50%, 75%
and 95% respectively of the surrogate noise time series.

As discussed in Section 4.1, the most appropriate noise model is sensitive to the
length of the sea-level time series record. It should be expected that, as the length of
satellite altimetry data increases, a colored but non-AR(1) noise model will more often
best describe the noise and therefore, the emergence of the trend for the monthly mean
satellite altimetry data (Figure 8b) may under-estimate the true intrinsic variability and
over-estimate the areal extent where a sea-level rise signal exceeds the noise.

With 22.7 years of satellite altimetry data, there are only two regions where the ob-
served trend exceeds 95% of the surrogate noise time series (highlighted by stippling in
Figure 8). In both the 9.9 d and monthly mean altimetry data, the south-west Pacific gyre
is apparent. In the monthly mean data, there is a band of observed trends significantly ex-
ceeding the intrinsic noise in the central Pacific Ocean, around 10◦ S and across the equa-
tor in the western tropical Pacific Ocean. For the long-duration tide gauge time series, the
observed trends over the full length of data are generally lower than those from the satel-
lite altimetry era (Supporting Information Figure S6). Therefore, there are a number of
tide gauges for the epoch 1900–2005 where the signal-to-noise ratio is small and the ToE
is of the order of 100 years.

5 Conclusions

Large uncertainties in trend estimates are not only limited to regions of high energy
and therefore to high variance in the sea-level anomaly time series. Large uncertainties
in a linear trend estimate also occur where the residual noise is temporally-correlated and
highly non-linear.
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Previous work has demonstrated the colored nature of noise in sea-level time se-
ries [Hughes and Williams, 2010; Bos et al., 2014; Burgette et al., 2013]. Here, we further
show that the inclusion of indices representing key modes of Pacific climate variability
in a regression analysis: (i) only lessens the auto-regressive noise coefficient in the trop-
ics and along certain coastlines, and (ii) does not significantly affect the most appropriate
noise model.

In most regions of the open ocean in the 9.9 day repeat satellite altimetry data and
in long tide gauge records, the residual noise is characteristically colored, but non-AR(1).
Trend error estimates assuming a noise model that best fits the residual differ from those
from AR(1) noise models, with between 30% smaller and 58% larger error estimates de-
pending on the duration and frequency of the observation data set. The error estimates
increase by a ratio of up to 1.6 for long-duration tide gauges.

The variability demonstrated here of the most appropriate noise model by the fre-
quency and span of the sea-level data set indicates that the underlying noise process is
integrated (and therefore best described by a colored but non-AR(1) noise model), where
an AR(1) noise model is an adequate approximation over shorter spans of data. When us-
ing the sample resolution satellite altimetry data, long duration tide gauge time series, or,
as satellite altimetry data has longer coverage, we should expect the time series to be best
described by non-AR(1) noise models, giving different trend error uncertainties.

Using these noise models we simulate when a given trend emerges, and remains out-
side of, 1,000 sample surrogate noise time series, identifying regions where the observed
trend exceeds that which could be produced by the intrinsic noise in the system. There
is an even chance that the observed trends exceed the intrinsic noise (exceeds 50% of the
surrogate noise time series) for substantial areas of the Pacific and Indian Oceans, that are
known to have enhanced recent sea-level rise due to intensification or changes in wind
stress regimes. Given that the most appropriate noise model for longer sea-level time se-
ries is colored, but non-AR(1), the extents given by the 9.9 d repeat frequency data are
more robust to the noise model type than the monthly mean data.

Including climate indices in a multivariate regression lessens the spectral power of
the residual noise at inter-annual and greater periods in the tropics and along waveguides
and reduces the time taken for a given trend to emerge from the noise by up to 2 decades.
The effect of colored, but non-AR(1), noise generally changes the ToE by a few years.

Even when allowing for PDO and ENSO related Pacific climatic variability in the
regression to improve the signal-to-noise ratio, only the central tropical Pacific Ocean,
extending eastwards to the south of the equator and the south-west Pacific gyre off New
Zealand, presently exhibit estimated trends that exceed 95% of the surrogate noise time
series over the satellite altimetry period (1993–2015). Extending this analysis for other
modes of natural variability could reduce the signal-to-noise ratio and provide improved
ToE estimates for sea-level trends in additional regions. The small extent of these re-
gions is due to the increased spread in the ToE distribution across the 1,000 sample sur-
rogate noise time series, that is greater for colored, but non-AR(1), noise models. Thus,
the methodology gives high confidence that the satellite altimetry data in these regions
contain a sea-level rise signal additional to PDO and ENSO variability and the inherent
noise.
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Table 1. Proportion of time series with standard error estimates less than, equal to, or greater than those
assuming an AR(1) noise model

Data set Epoch Regression Proportion
Less than Equal to Greater than

Tide gauge 1900–2005 Standard 0.18 0.37 0.45
Tide gauge 1900–2005 Inc. climate ind. 0.09 0.23 0.68
Tide gauge 1960–2005 Standard 0.08 0.52 0.40
Tide gauge 1960–2005 Inc. climate ind. 0.10 0.67 0.23
Tide gauge 1993–2015 Standard 0.12 0.83 0.05
Tide gauge 1993–2015 Inc. climate ind. 0.15 0.78 0.07
9.9 d altimetry 1993–2015 Standard 0.26 0.44 0.30
9.9 d altimetry 1993–2015 Inc. climate ind. 0.30 0.46 0.24
Monthly altimetry 1993–2015 Standard 0.24 0.70 0.06
Monthly altimetry 1993–2015 Inc. climate ind. 0.26 0.68 0.06
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Figure 1. Time series of the Pacific Decadal Oscillation (PDO, monthly), multivariate El Niño Southern
Oscillation (ENSO, bimonthly), filtered Decadal Climate Index (DCI) and Interannual Climate Index (ICI)
used in this study.
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Figure 2. Histograms of the most appropriate noise model type from tide gauge data for the epochs (a)
1993–2015, (b) 1960–2015 and (c) 1900–2005, and from satellite altimetry at (d) 9.9 day repeat and (e)
monthly mean, for the standard regression (dark grey) and including climate indices (light grey).
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Figure 3. Histograms by latitude of the most appropriate noise model type comparing the standard regres-
sion (left) and including climate indices (center) models. The total count of records is given for informa-
tion (right): (a) tide gauge data for the epoch 1993–2015, (b) 9.9 day repeat satellite altimetry data, and (c)
monthly mean satellite altimetry data.
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Figure 4. Power spectral density plots of noise for 4 long-duration tide gauge time series, with (blue) and
without (red) climate indices included in the regression: (a) Sydney Fort Denison II, (b) Honolulu, (c) San
Francisco and (d) Seattle. α1 is the trend coefficient estimate given in eqns 1,2.
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Figure 5. Histograms of the ratio between the standard error from the most appropriate noise model over
that from an AR(1) noise model; from tide gauge data for the epochs (a) 1993–2015, (b) 1960–2015 and (c)
1900–2005, and from satellite altimetry at (d) 9.9 day repeat and (e) monthly mean, for the standard regres-
sion (dark grey) and including climate indices (light grey).
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Figure 6. Standard errors and the observed trend estimates for regression including climate indices on 9.9 d
repeat satellite altimetry (left) and monthly mean satellite altimetry and 1993–2015 tide gauge (right) data:
(a,e) one standard error (mm a−1) from the MLE assessment assuming an AR(1) noise model; (b,f) the ratio
of the standard error from the most appropriate noise model to that from an AR(1) noise model; (c,g) the
difference in the standard error (mm a−1) from MLE assessment with the most appropriate noise model due
to the inclusion of climate indices in the regression; and (d,h) observed trend (mm a−1). Tide gauge data are
shown as filled circles. In (d,h) stippling over the altimetry data and tide gauge symbols with a black border
indicate the observed trend is significantly different from zero (2 s.e.).
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Figure 7. Time of emergence, ToE, (a) for a given magnitude trend to emerge from 95% of surrogate
stochastic noise time series. 9.9 day repeat satellite altimetry (left) and monthly mean satellite altimetry and
1993–2015 tide gauge (right) data: (a,d) ToE for the observed trend from 1993–2015, (b,e) the difference in
the ToE from the most appropriate noise model against an AR(1) noise model for the observed trend, and (c,f)
the difference in the ToE (a) due to including climate variables in the regression for the observed trend. Tide
gauge data are shown as filled circles.
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Figure 8. Observed sea-level trend (mm a−1) for (a) 9.9 d repeat satellite altimetry, and (b) monthly mean
satellite altimetry and 1993–2015 tide gauge data. Observed trend over the satellite altimetry era 1993–2015,
including climate indices in the regression. Light to dark grey contours highlight regions where the observed
trend exceeds 50%, 75% and 95% respectively of surrogate noise time series within 22.7 years.
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