189 research outputs found

    Myeloid-derived suppressor cell, arginase-1, IL-17 and cl-CD95L: an explosive cocktail in lupus?

    Get PDF
    International audienceComment on: Wu H, Zhen Y, Ma Z, et al. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016;8:331ra40

    FAS (Fas cell surface death receptor)

    Get PDF
    CD95 (also known as Fas) is a death receptor that belongs to the TNF-receptor superfamily. Expressed at the cell surface as a homotrimer, this receptor implements both apoptotic and non-apoptotic signalling pathways. While the apoptotic signalling pathway is involved in tumor surveillance, peripheral tolerance and immune homeostasis (Strasser et al., 2009), its non-apoptotic cues seem to promote oncogenesis (Chen et al., 2010; Hoogwater et al., 2010; Kleber et al., 2010; Malleter et al., 2013; Steller et al., 2011)

    Precise mapping of the CD95 pre-ligand assembly domain.

    Get PDF
    International audiencePre-association of CD95 at the plasma membrane is mandatory for efficient death receptor signaling. This homotrimerization occurs through self-association of an extracellular domain called the pre-ligand assembly domain (PLAD). Using novel molecular and cellular tools, we confirmed that CD95-PLAD is necessary to promote CD95 multimerization and plays a pivotal role in the transmission of apoptotic signals. However, while a human CD95 mutant deleted of the previously described PLAD domain (amino acids 1 to 66) fails to interact with its wild-type counterpart and trigger autonomous cell death, deletion of amino acids 1 to 42 does not prevent homo- or hetero (human/mouse)-oligomerization of CD95, and thus does not alter transmission of the apoptotic signal. Overall, these findings indicate that the region between amino acids 43 to 66 corresponds to the minimal motif involved in CD95 homotypic interaction and is necessary to convey an efficient apoptotic signal. Interfering with this PLAD may represent a new therapeutic strategy for altering CD95-induced apoptotic and non-apoptotic signals

    Mycophenolic Acid overcomes imatinib and nilotinib resistance of chronic myeloid leukemia cells by apoptosis or a senescent-like cell cycle arrest.

    Get PDF
    International audienceWe used K562 cells sensitive or generated resistant to imatinib or nilotinib to investigate their response to mycophenolic acid (MPA). MPA induced DNA damage leading to cell death with a minor contribution of apoptosis, as revealed by annexin V labeling (up to 25%). In contrast, cell cycle arrest and positive staining for senescence-associated β-galactosidase activity were detected for a large cell population (80%). MPA-induced cell death was potentialized by the inhibition of autophagy and this is associated to the upregulation of apoptosis. In contrast, senescence was neither decreased nor abrogated in autophagy deficient K562 cells. Primary CD34 cells from CML patients sensitive or resistant to imatinib or nilotinib respond to MPA although apoptosis is mainly detected. These results show that MPA is an interesting tool to overcome resistance in vitro and in vivo mainly in the evolved phase of the disease

    Role of metalloproteases in the CD95 signaling pathways

    Get PDF
    CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed

    The Naturally Processed CD95L Elicits a c-Yes/Calcium/PI3K-Driven Cell Migration Pathway

    Get PDF
    Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca2+/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells

    The Necrotic Signal Induced by Mycophenolic Acid Overcomes Apoptosis-Resistance in Tumor Cells

    Get PDF
    The amount of inosine monophosphate dehydrogenase (IMPDH), a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP), is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA) are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42.Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA–mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL–overexpressing cells). All tested cells remained sensitive to MPA–mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers.These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells

    CD95-mediated calcium signaling promotes T helper 17 trafficking to inflamed organs in lupus-prone mice

    Get PDF
    CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment

    The cleaved FAS ligand activates the Na+/H+ exchanger NHE1 through Akt/ROCK1 to stimulate cell motility

    Get PDF
    International audienceTransmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na+/H+ exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways

    CD95 recruits PLCγ1 to trigger a calcium response promoting Th17 accumulation in inflamed organs of lupus mice

    Get PDF
    CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L, and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway may be attractive therapeutic approach for SLE treatment
    corecore