261 research outputs found
Vitual kitchen : A dual-modal virtual reality platform for (re)learning of everyday life cooking activites in Alzheimerâs disease
International audienc
An Inverse Method for Policy-Iteration Based Algorithms
We present an extension of two policy-iteration based algorithms on weighted
graphs (viz., Markov Decision Problems and Max-Plus Algebras). This extension
allows us to solve the following inverse problem: considering the weights of
the graph to be unknown constants or parameters, we suppose that a reference
instantiation of those weights is given, and we aim at computing a constraint
on the parameters under which an optimal policy for the reference instantiation
is still optimal. The original algorithm is thus guaranteed to behave well
around the reference instantiation, which provides us with some criteria of
robustness. We present an application of both methods to simple examples. A
prototype implementation has been done
The Serums Tool-Chain:Ensuring Security and Privacy of Medical Data in Smart Patient-Centric Healthcare Systems
Digital technology is permeating all aspects of human society and life. This leads to humans becoming highly dependent on digital devices, including upon digital: assistance, intelligence, and decisions. A major concern of this digital dependence is the lack of human oversight or intervention in many of the ways humans use this technology. This dependence and reliance on digital technology raises concerns in how humans trust such systems, and how to ensure digital technology behaves appropriately. This works considers recent developments and projects that combine digital technology and artificial intelligence with human society. The focus is on critical scenarios where failure of digital technology can lead to significant harm or even death. We explore how to build trust for users of digital technology in such scenarios and considering many different challenges for digital technology. The approaches applied and proposed here address user trust along many dimensions and aim to build collaborative and empowering use of digital technologies in critical aspects of human society
Statistical Model Checking for Stochastic Hybrid Systems
This paper presents novel extensions and applications of the UPPAAL-SMC model
checker. The extensions allow for statistical model checking of stochastic
hybrid systems. We show how our race-based stochastic semantics extends to
networks of hybrid systems, and indicate the integration technique applied for
implementing this semantics in the UPPAAL-SMC simulation engine. We report on
two applications of the resulting tool-set coming from systems biology and
energy aware buildings.Comment: In Proceedings HSB 2012, arXiv:1208.315
A Hierarchy of Scheduler Classes for Stochastic Automata
Stochastic automata are a formal compositional model for concurrent
stochastic timed systems, with general distributions and non-deterministic
choices. Measures of interest are defined over schedulers that resolve the
nondeterminism. In this paper we investigate the power of various theoretically
and practically motivated classes of schedulers, considering the classic
complete-information view and a restriction to non-prophetic schedulers. We
prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic
reachability. We find that, unlike Markovian formalisms, stochastic automata
distinguish most classes even in this basic setting. Verification and strategy
synthesis methods thus face a tradeoff between powerful and efficient classes.
Using lightweight scheduler sampling, we explore this tradeoff and demonstrate
the concept of a useful approximative verification technique for stochastic
automata
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Statistical Epistemic Logic
We introduce a modal logic for describing statistical knowledge, which we
call statistical epistemic logic. We propose a Kripke model dealing with
probability distributions and stochastic assignments, and show a stochastic
semantics for the logic. To our knowledge, this is the first semantics for
modal logic that can express the statistical knowledge dependent on
non-deterministic inputs and the statistical significance of observed results.
By using statistical epistemic logic, we express a notion of statistical
secrecy with a confidence level. We also show that this logic is useful to
formalize statistical hypothesis testing and differential privacy in a simple
and abstract manner
- âŠ