

Edinburgh Research Explorer

Policy synthesis for collective dynamics

Citation for published version:
Piho, P & Hillston, J 2018, Policy synthesis for collective dynamics. in A McIver & A Horvath (eds), 15th
International Conference on Quantitative Evaluation of SysTems (QEST 2018). Lecture Notes in Computer
Science , vol. 11024, Springer, Beijing, China, pp. 356–372, 15th International Conference on Quantitative
Evaluation of SysTems, Beijing, China, 4/09/18. https://doi.org/10.1007/978-3-319-99154-2_22

Digital Object Identifier (DOI):
10.1007/978-3-319-99154-2_22

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
15th International Conference on Quantitative Evaluation of SysTems (QEST 2018)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/323961487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/jane-hillston(b223964a-b6ef-4ca3-a6f4-8d8eca420a49).html
https://www.research.ed.ac.uk/portal/en/publications/policy-synthesis-for-collective-dynamics(5b452260-869f-4d43-8cea-152b6486cd5e).html
https://doi.org/10.1007/978-3-319-99154-2_22
https://doi.org/10.1007/978-3-319-99154-2_22
https://www.research.ed.ac.uk/portal/en/publications/policy-synthesis-for-collective-dynamics(5b452260-869f-4d43-8cea-152b6486cd5e).html

Policy synthesis for collective dynamics

Paul Piho and Jane Hillston

University of Edinburgh, UK

Abstract. In this paper we consider the problem of policy synthesis for
systems of large numbers of simple interacting agents where dynamics of
the system change through information spread via broadcast communi-
cation. By modifying the existing modelling language Carma and giving
it a semantics in terms of continuous time Markov decision processes we
introduce a natural way of formulating policy synthesis problems for such
systems. However, solving policy synthesis problems is difficult since all
non-trivial models result in very large state spaces. To combat this we
propose an approach exploiting the results on fluid approximations of
continuous time Markov chains to obtain estimates of optimal policies.

1 Introduction

The study of collective dynamics has a wealth of interesting applications in col-
lective adaptive systems (CAS) where examples range from swarming behaviour
of insects to patterns of epidemic spread in humans. Such systems are highly
distributed and robust in nature and for that reason are an interesting paradigm
for the design of highly-distributed computer-based systems.

The study of such systems concentrates on the emergent behaviour arising
from simple behaviour and communication rules at the level of individuals. How-
ever, due to CAS exhibiting non-linear dynamics it is difficult to verify or predict
the emergent behaviour. It is harder still to know a priori how to design the be-
haviour and capabilities of individual agents in order to achieve a system level
goal. Moreover, the individual agents in such systems are often unreliable and
prone to failure making it natural to express objectives at the collective level in
terms of a proportion of the population achieving a goal within a time bound.

We seek to develop a framework in which the flexibility afforded by having
a homogeneous population of agents can be leveraged in planning decisions and
explore how communication can alter the likelihood of satisfying the collective
goals. The basis of the framework is a process algebra supporting formal expres-
sion of basic behaviour of population members, including patterns of communi-
cation in the collective. Based on the formal specification the policy synthesis
problems are framed in terms of continuous time Markov decision processes (CT-
MDP) which give a versatile framework for a variety of stochastic control and
planning problems.

Policy synthesis for CT-MDP models is a computationally complex problem
in general. Consequently, there have been a number of recent works on policy
synthesis and closely related model checking of CT-MDPs e.g. [1,2]. Our problem

II

domain, the collective dynamics of homogeneous agents, offers a way to approx-
imate system dynamics through fluid approximation describing the state of the
system in terms of continuous variables. In many cases this alleviates the prob-
lem of state space explosion. We study leveraging fluid approximation results,
inspired by similar results for discrete time Markov decision processes [3], in the
context of policy synthesis for collective dynamics. We note that broadcast com-
munication is a natural way to model information spread in collective systems.
However, this makes it impossible to directly apply the existing results like [4].
Thus, we propose an approximations for a class of systems involving broadcast
communication.

The paper makes the following contributions. Firstly, we propose a class of
systems arising from collective systems involving broadcast communication. Sec-
ondly, we present a process algebra based on the existing language Carma [5]
which together with specification of goals from [6] provides a high level frame-
work for formulating policy synthesis problems. Next, we propose an efficient
policy synthesis approach, exploiting the structure suggested by the language
level description, to find configurations that can satisfy the defined collective
goals. We concentrate on applications of fluid approximation results in cases in-
volving broadcast communication where standard results do not apply. Finally,
we frame a simplified foraging example, inspired by the design of a robot swarm,
in the presented framework and consider the policy synthesis.

The paper is structured as follows: in Section 2 we detail the formal speci-
fication of policy synthesis for collective dynamics. Particularly, in Section 2.1
we introduces a class of systems arising from broadcast communication in col-
lectives being treated as a switch in the dynamics. The Section 2.2 outlines a
process algebraic language with its semantics for specifying models in the CT-
MDP framework. In Section 3 we discuss ideas arising from fluid approximations
and adapting them for policy synthesis for collective dynamics. In particular, we
suggest an approximation, based on, fluid results for dealing with broadcast com-
munication. In Section 4 we present a simplified case-study inspired by swarm
robotics to motivate the developed framework. Finally, we end with concluding
remarks and discussion of further work in Section 5.

2 System specification

Carma process algebra Carma [5] is a stochastic process algebra designed
to support specification and analysis of CAS. A Carma system consists of a
collective operating in an environment. The collective describes a set of interact-
ing agents and models the behaviour of a system. The description of an agent
consist of a process, that describes the agent’s behaviour, and of a store, that
models its knowledge. Here knowledge is limited to the values of key attributes.

The processes described within components interact via a rich set of com-
munication primitives. In particular, the language supports both broadcast and
unicast communication. Both are attribute-based so that a component can only

III

receive a message when its store satisfies the sender’s target predicate and re-
ceivers use a predicate to identify acceptable message sources.

The environment is responsible for setting the rates and probabilities gov-
erning action execution and message exchange. Thus the environment models all
aspects intrinsic to the context the system operates in, e.g., the rate at which a
component moves may depend on the terrain at the given location.

The formal semantics give rise to a continuous time Markov chain (CTMC) –
the state space of the system is represented as a finite, discrete set of states and
the times of transitions are governed by the rates given in the model description
where each rate is taken to be the parameter of an exponential distribution.

Continuous-time Markov decision processes Our target mathematical
object for policy synthesis is a continuous-time Markov decision process (CT-
MDPs) rather than a CTMC. CT-MDPs are a common framework in stochastic
control theory and operations research providing a natural formalisation of policy
optimisation problems. Here we give relevant standard definitions for CT-MDPs.

Definition 1. Continuous-time Markov decision process is defined by the tuple
{S,A, {A(i), i ∈ S}, q(j | i, a)} where S is the countable set of states, A is the
Borel measurable set of actions, {A(i), i ∈ S} is the set of feasible actions in
state i and q(j | i, a) gives the transition rates i→ j given the control action a.

The evolution of CT-MDPs is described by the following: after the process
reaches some state and an action is chosen the process performs a transition
to the next state depending only on the current state and the chosen action.
The time it takes for state transitions to happen is governed by exponential
distributions with rates given by the function q in Definition 1. The actions at
every such step are chosen according to some policy as defined below.

Definition 2. A policy is a measurable function π : R≥0×S ×A → [0, 1] which
for every time t ∈ R≥0, state s ∈ S and action a ∈ A(s) assigns a probability
π(t, s, a) that the action a is chosen in s at time t. We call a policy where for
every t ∈ R≥0 and s ∈ S we have that π(t, s, a) ∈ {0, 1} a deterministic policy.
A policy π independent of t is a stationary policy.

For the purpose of leveraging fluid approximations we introduce the concept
of population CT-MDPs which result from models where components are only
distinguished through their state. Thus the state of the system is represented as
a vector of counting variables detailing the number of components in each state.

Definition 3. A population CT-MDP is a tuple (X, T ,A, β) defined by: X =
(X1, · · · , Xn) ∈ S = Zn≥0 where each Xi takes values in a finite domain Di ⊂
Z≥0; β is a function such that β(a,X) returns a boolean value indicating whether
action a ∈ A is available from state X; T is a set of transitions of the form
τ = (a,vτ , rτ (X)) such that β(a,X) = 1, vτ is an update vector specifying that
the state after execution of transition τ is s+ vτ and rτ (X) is a rate function.

IV

A population CT-MDP is associated with a CT-MDP in the following way:
the state and action space of the corresponding CT-MDP is the same as for the
population CT-MDP; the set of feasible actions for state i ∈ S, denoted A(i), is
defined by A(i) = {a ∈ A | β(a, i) = 1}; the rate function q is defined as

q(i | j, a) =
∑
{rτ (j) ∈ T | τ = (a,vτ , rτ (j)) ∧ i = j+ vτ}

2.1 Broadcast communication

Broadcast is a natural communication pattern to consider in CAS. However, in
general it makes it impossible to apply the fluid approximation results which
informally rely on the effect of actions being bounded as more components are
introduced to the system. This limits the usefulness of fluid approximation meth-
ods when analysing collective systems.

We propose a class of population systems for which the problems arising
from broadcast communication can be mitigated. In particular, we consider cases
where broadcast can be thought of as a switch between dynamic modes of the
population. More generally, we consider population processes in the CT-MDP
framework with the mode switching dynamics as described in the following. Let
M = (X, T ,A, β) be a population CT-MDP with X = (X1, · · · , X2n). The
model M exhibits mode switching dynamics if, up to reordering of variables,
there exist X1 = (X1, · · · , Xn) and X2 = (Xn+1, · · · , X2n) (X is the concatena-
tion of X1 and X2) such that

– X1 6= 0 if and only if X2 = 0 – the system can be in one mode or the other.
– there is a transition (a,vτ , rτ (X)) ∈ T with an update vector (−s1, . . . ,−sn,
s1, . . . , sn) that happens with a non-zero rate from state (s1, . . . , sn, 0, · · · , 0).
This ensures there exists at least one transition between the modes.

– There is no state (0, · · · , 0, sn+1, · · · , sn) for which there exists a transition
with an update vector (sn+1, · · · , sn,−sn+1, · · · ,−sn) happening at a non-
zero rate – we consider models where the mode switching is unidirectional.

– (X1, T ,A, β) and (X2, T ,A, β) define a population CT-MDP.

Although the definition is given for two dynamic modes we can easily extend
it. As mentioned, such population models can arise from considering broadcast
communication. In particular, we study situations where broadcast is used to
propagate knowledge acquired by a component in the system to the rest of the
components leading to a change in component behaviour. Such knowledge, once
acquired, is not lost or forgotten leading to unidirectional mode changes. In the
following section we introduce a process algebra based language for constructing
such models and set up our running example of mode switching.

2.2 Language and configuration

We propose a process algebra based language, Carma-C, which uses a sub-
set of syntactic constructs of Carma to simplify the creation of the described

V

population models. We focus on models of collectives involving broadcast com-
munication and thus retain the constructs of Carma for broadcast communica-
tion, knowledge stores and the environment. For specification of policy synthesis
problems, we introduce non-determinism in transitions interpreted as possible
control actions. The control actions are encoded in terms of attributes in knowl-
edge stores where the values of such attributes are left partially specified —
instead of particular values we define the value domains for the attributes.

As unicast and attribute based communication are not the focus of this paper
we do not carry over the syntactic constructs for these from Carma. However,
note that the material in this section can easily be extended to specify systems
making use of unicast and attribute based communication.

2.3 Syntax

As in Carma, we say a system consists of a collective N operating in an envi-
ronment E . We let Sys be the set of systems S, and Col be the set of collectives
N where a collective is either a component C in the set of components Comp or
the parallel composition of collectives. A component C can either be the inactive
component, denoted 0, or a term of the form (P, γ) where P is a process and γ
is a store. In particular, systems, collectives and components are generated by
the following grammar:

S ::= N in E N ::= C | N1 ‖N2 C ::= 0 | (P, γ)

The grammar for the processes is given by the following:

P,Q ::= nil | act.P | P +Q | P | Q | [π]P | A (A
4
= P)

act ::= α∗〈 #»e 〉σ | α∗ (#»e)σ

The processes are defined using standard constructs — action prefix, choice,
and parallel composition — from process algebras literature. In addition we al-
low the definition of the inactive process nil and guards on processes. The action
primitives are defined for broadcast output in the form α∗〈 #»e 〉σ and broadcast in-
put in the form α∗ (#»e)σ. The broadcast output action is defined as non-blocking
and an output action with no corresponding input is interpreted as a spontaneous
action of a component.

The following notation is used: α is an action type used to distinguish between
different actions; #»e is an expression specifying the message sent over broadcast
communication; π is a boolean expression such that a process guarded by π is
only activated when π evaluates to true; σ is an update specifying a probability
distribution over the possible store configurations following the given action.

Example 1. For the running example we consider a scenario where robots need
to locate a source by sensing their local environment and move to the location
of the source. Components in the system correspond to the robots with the
following behaviour: robots can move on a grid, take measurements from their

VI

Move | ListenNil | Listen

[πr]random
∗〈〉

+ [πd]directed
∗〈〉

[πf]fail
∗〈〉

[πs]sense
∗〈〉

aux∗〈L〉

Fig. 1: Behaviour of individual Robot components.

location and broadcast this information to the rest of the swarm. The model we
use to describe the behaviour of the robots is illustrated in Figure 1. The action
random∗ corresponds to the robot exploring the environment through a random
walk while directed∗ corresponds to moving towards a found source location. The
action sense∗ models the robot taking measurements of its locale. If a source
is detected then the auxiliary action aux∗ immediately broadcasts the set of
source locations L. The action fail∗, resulting in the robot not performing further
actions, models failure. Finally, the process Listen receives the corresponding
broadcast input action aux∗(L).

2.4 Semantics

The novelty of relating a Carma-C model to a CT-MDP lies in defining the
set of admissible controls via the stores. In particular, instead of fully specifying
store variables, as done in Carma, we allow them to take values in a general
Borel measurable set defined in the model. The set of feasible actions (as in
Defn 1) then corresponds to possible refinements of stores to particular values.

Store In Carma a store is a function that maps attribute names to particular
values which are then used in the semantics for the transition rate calculations.
In Carma-C, we instead define the store as a function that maps attribute names
to permitted value domains. That is, a store γ maps a set of attribute names
a0, · · · , an in its domain to the value domains of the attributes. This introduces
non-determinism in the choice of particular store values. Such non-determinism
for system specification has previously been considered in the case of interval
Markov chains (IMC) [7], constraint Markov chains (CMC) [8] and probabilistic
constraint Markov chains (PCMC) [9]. The non-determinism in these cases is
treated as arising from a transition probability or a rate for which the true value
is not known or that the probability can take any value in the given region. In
our approach the non-determinism will be resolved by a policy maker.

Example 2. For the running example we define the local store of each robot con-
sisting of attributes location giving the location of the robot, and source holding
the set of locations identified as source. Figure 2 illustrates the effects of actions
on the local stores. In particular, random∗ and directed∗ change the location of
the robot. The former picks with uniform probability a target location reachable
from location (x, y) – the corresponding update is denoted by R(x, y). The latter
picks a location that takes the robot closer to the source L – update denoted by

VII

γ = {location = (x, y)

source = L}
γ = {location = R(x, y)

source = L}

γ = {location = (x, y)

source = L ∪ L′}
γ = {location = (x, y)

source = L ∪M(x, y)}
γ = {location = D((x, y), L)

source = L}

random∗〈〉

directed∗〈〉

aux∗(L′) sense∗〈〉

Fig. 2: Local component store changes induced by actions.

D((x, y), L). If the robot’s location corresponds to a source location the action
sense∗ includes the location in the set of sources with some probability thus
modelling the possibility of false negatives resulting from noisy measurements.
In particular, we define M such that if the location (x, y) is a source then M
returns (x, y) with probability p and the empty set with probability 1− p. The
input action aux∗(L′) adds the locations L′ in the message to the set of sources.

We use guards to achieve the desired behaviours of components. Specifically,
the guard πr for random∗ is true when the attribute source corresponds to the
empty set – source location has not yet been found. For simplicity, we also allow
the action sense∗ only if the source has not been discovered. Conversely, the
guard for directed∗ is true when the attribute source defines a non-empty set of
locations. The guard πf for fail∗ evaluates to true everywhere except when the
robot is at the source location.

Environment Like in Carma, the environment in Carma-C models aspects
intrinsic to the context where the agents under consideration are operating – it
sets the rates of actions and mediates the interactions between components.

For a system S ∈ Sys we say that the environment E is defined by the global
store γg and an evolution rule ρ. The evolution rule ρ is a function which given a
global store γg and the current state of the collective N ∈ Col returns a tuple of
functions ε = 〈µp, µr, µu〉 called the evaluation context. The functions given by
the evaluation context are interpreted as follows: µp expresses the probability of
receiving a broadcast; µr specifies the execution rates of actions; µu determines
the updates on the environment store.

Example 3. For the running example we define the following environment: the
global store γg defines a store attribute failr ∈ [0, 1); the probability of receiving
the broadcast for the aux∗ action is set to 1; the constant rate of spontaneous
actions random∗ and directed∗ is given by rm and the rate of sense∗ is given
by rs; the action aux∗ emulates an instantaneous action with its rate set very
high; the rate rf of fail∗ is set equal to the store attribute failr introducing non-
determinism in the behaviour of the system; we set µu such that the global store
remains unchanged through the evolution.

Resolving non-determinism The semantics for the construction of a CT-
MDP model from a syntactic description of a Carma-C model is done in two
stages. The first part of the semantics resolves the non-determinism in the model.
In particular, we consider a system S defined by (P1, γ1) | · · · | (Pn, γn) in (γg, ρ).

VIII

The set of control actions A(S) available from S is defined by the following:
let A(S) be a set of functions such that for all γ ∈ {γ1, · · · , γn, γg}, f ∈ A(S)
maps all attributes a in the domain of γ to particular value in γ(a). That is, a
set of feasible control actions from a system S corresponds to the set of possi-
ble functions that fix the store values. In the formal semantics we introduce a
refinement step labelled by a chosen control action f that transforms S into

Sf
def
= (P1, f(γ1)) | · · · | (Pn, f(γn)) in (f(γg), ρ)

Let us define the sets Sysf , Colf and Compf as sets of systems, collectives
and components after application of f . We assume that elements of Sysf , Colf

and Compf are derived only from elements in Sys, Col and Comp for which f
is sufficient to fully resolve the non-determinism in the behaviour. We call such
sets resolved systems, collectives and components, respectively.

Example 4. For the running example the set of control actions corresponds to
the possible assignments of failr. Lower values of failr correspond to lower failure
rate and thus more robust components.

Interleaving semantics The second stage of the semantics determines the
rates at which a system changes state given a control action. This is achieved
through construction of functions Cf , Nε,f and Sf parametrised by a chosen
control action f . In particular, the function Cf takes a resolved component in
Compf and an action label and returns a probability distribution over com-
ponents in Comp. Components assigned a non-zero probability are reachable
from the resolved component. The function, Nε,f builds on Cf to describe the
behaviour of collectives. Based on a resolved collective in Colf and an action
label and it returns a probability distribution over Col. As before non-zero
probabilities are assigned to reachable collectives. Finally, function Sf takes a
resolved system in Sysf and an action label and returns a function over systems
Sys that specifies the rate at which the transitions happen. As for Carma, these
function are constructed via FuTS-style [10] operational semantics. The seman-
tic rules for the second step resulting in the transition rates between systems
closely match the semantics given for Carma in [5] and are not detailed here.

Population model The population CT-MDP model M = (X, T ,A, β) for
a system S ∈ Sys can be derived iteratively based on the assumption that
components with the same configuration (same process state and store) are in-
distinguishable. We start with S consisting of a collective C1 ‖ · · · ‖CN operating
in an environment E . The function Cf can be used to determine all possible
future configurations of each of the components Ci. If the union of all possible
component configurations is finite we can define the finite state space S ofM as
the space of counting vectors specifying all possible future configurations of S.

For each state s ∈ S we have a set Syss ⊂ Sys of corresponding Carma-C
systems. For each system S ∈ Syss the set of feasible actions will be the same

IX

by construction. For the derivation of the population model we add a restriction
that any control action acts in the same way on the set of indistinguishable
components. The rates corresponding to chosen actions and the reachable states
are found using the function Sf . In particular, given a control action f denote
the system S resolved by f by Sf . The rate of transition from s ∈ S to s′ ∈ S
given control action f is then given by∑

S∈Syss

∑
S′∈Syss′

∑
`∈LabS

Sf [Sf , `](S′)

3 Policy synthesis

The main contribution in this paper is a method leveraging fluid approxima-
tion results for CTMCs to policy synthesis in the context of collective dynam-
ics involving broadcast communication. Here we state the relevant optimisation
problem and discuss how fluid approximation results can be exploited.

Fluid approximations of CTMCs The aim of fluid approximation of CTMCs,
as introduced by Kurtz in [4], is to derive a set of ordinary differential equations
(ODEs) for which the sample paths of the CTMC lie, with high probability, close
to the solution of the chosen set of ODEs.

Consider a system ofN components each evolving in a finite state space SS =
{1, · · · ,K} and where components are only distinguishable through their state.
Let the state of the object n at time t be denoted by Y (N)

n (t). Let the variable
X(N)(t) ∈ RK be a counting vector giving the state of the system at time t. In
particular, the i-th entry of X(N)(t) is given by X(N)

i (t) =
∑
n 1{Y

(N)
n (t) = i}.

Next consider the set of transitions, denoted T (N), consisting of elements τ =

(Rτ , r
(N)
τ) where Rτ is a multi-set of update rules of the form i → j specifying

that an agent in state i goes to state j if the transition τ fires. The r(N)
τ denotes a

rate function r(N)
τ : RK → R≥0 depending on the state of the system. We assume

that Rτ is independent of the population size N — all transitions involve a finite
and fixed number of individuals. The update vector vτ is constructed from Rτ
so that the transition τ changes the state of X(N) to X(N) + vτ . We define the
Markov population model by a tuple X (N) = (X(N), T (N),X

(N)
0) where X

(N)
0

denotes the initial state of the system. Given X (N) it is trivial to construct the
underlying CTMC X(N)(t) describing the time-evolution of the model.

The fluid approximation is achieved by first considering the normalised pop-
ulation counts obtained by dividing each variable by the total population N —
X̂(N) = X(N)

N . The initial conditions are scaled similarly — X̂
(N)
0 =

X
(N)
0

N . The
transitions are scaled as follows: for each (Rτ , r

(N)
τ) ∈ T (N), let r̂(N)

τ (X̂) be the
rate function expressed in terms of normalised variables. The corresponding tran-
sition in the normalised model is (Rτ , r̂

(N)
τ (X̂)) with update vector 1

N vτ . Suppose
that for all transitions τ ∈ T (N) there exists a bounded and Lipschitz continuous

X

function fτ : RK → R≥0 such that 1
N r̂

(N)
τ (X̂)→ fτ (X̂) uniformly as N −→ ∞.

To define the limit ODEs, we introduce the drift F(X̂) =
∑
τ∈T̂ (N) vτfτ (X̂).

Theorem 1 (Deterministic approximation theorem [4]). With X̂(N)(t)

we assume there exists a point x0 such that X̂(N)(0) → x0 in probability. Let
x(t) be a solution to dx

dt = F(x) with x(0) = x0. Then, for any finite time horizon
0 ≤ t ≤ T , ε ∈ R≥0 we have

P
(

sup
0≤t≤T

‖X̂N (t)− x(t)‖ ≥ ε
)

N→∞−−−−→ 0

Policy optimisation Consider a population modelMN = (X(N), T ,A, β) de-
rived from a Carma-C model with N components. We can easily extend the
normalisation of CTMC described previously to consider the corresponding nor-
malised population CT-MDP denoted M̂N . We deal with the following problem:
find a policy π in the space of stationary deterministic policies of M̂N that max-
imises some reward function over a finite time horizon. In particular, consider
the functional QN : Π → R, where Π is the set of stationary deterministic
policies. The optimisation problem is thus defined as maximising some defined
functional QN , i.e., finding a policy π∗ that satisfies

QN [π∗] = sup
π∈Π

QN [π]

Suppose we fix a policy π and consider the resulting normalised population
CTMC model denoted X̂ (N)

π . As before, let X̂(N)
π (t) denote the stochastic process

describing the time-evolution of the population CTMC. Let V : DS → R be a
reward function on the space of trajectories of the stochastic process X̂

(N)
π (t).

Corresponding reward functional on the space of policies is then given by

QN [π]
def
= V (X̂(N)

π (t))

Example 5. Take a state reward function r : S → R≥0 mapping the states of
the CT-MDP to positive real values. Define a value function corresponding to
reward function r and policy π as the expected finite time-horizon (0 ≤ t ≤ T)
cumulated reward:

QN [π]
def
= V (X̂(N)

π (t))
def
= E

∫ T

0

r(X̂(N)
π (t))dt

3.1 Policy synthesis via fluid approximation

Evaluating a given functional Q usually reduces to considering the transient
evolution or steady state of X̂ (N)

π which, especially for large population sizes N ,
is computationally expensive. One way to alleviate this problem is to consider
Monte Carlo estimates of the functionals based on simulated trajectories of X̂ (N)

π ,

XI

e.g. , using the Gillespie algorithm. This is done in the context of statistical model
checking [11] and has recently been applied to learning effective time-dependent
policies for CT-MDPs [12]. Here, we argue that in the case of some reward
functionals a good estimate can be achieved via fluid approximation. Indeed,
suppose that X̂(N)

π converges to xπ in the sense of Theorem 1. Then as a simple
consequence of the Portmanteau lemma [13] we can say that for any bounded
and continuous reward function V we get

QN [π] = E(V (X̂N
π (t)))

N→∞−−−−→ E(V (xπ(t))) = q[π]

Example 6. For the running example consider the system of N robots and the
global goal: at least 80% of the robots reach the source location in time T . We
translate this goal into a value function by considering a logistic function I(x) =
1/(1 + e−2k(x−0.8)) which for large k approximates a step function. We define a
reward function corresponding to the goal by V (X̂

(N)
π (t)) = I(X

(N)
π,s (T)) where

X
(N)
π,s (t) denotes the evolution of the population at the source location. Thus if

xπ approximates X̂(N)
π , in the sense of Theorem 1, then as I is both continuous

and bounded then E(V (xπ(t))) approximates E(V (X̂
(N)
π (t))).

3.2 Approximation for mode switching

In this section we present a method for approximating the behaviour of popula-
tion systems exhibiting switching behaviour described in Section 2.1. Again the
discussion here concentrates on systems with two such dynamic modes where
mode changes are unidirectional but the idea can be extended to more modes.
The method we propose is based on the observation that the behaviour of the
system within a single dynamic mode can be given a fluid approximation as
described in Section 3. Note that this has similarities to hybrid limit behaviour
of Markov population processes considered in [14]. However, for mode switches
arising form broadcast communication the rate of switching can depend on the
population size which restricts the applicability of results provided in [14].

In detail, consider a normalised population model M̂N with two modes de-
scribed by (X1, T ,A, β) and (X2, T ,A, β). Fix a policy π of M̂N and consider
the resulting stochastic processes X̂(N)

π,1 and X̂
(N)
π,2 corresponding to the two modes

for which we can give a fluid approximation. Denote the resulting approximations
by xπ,1 and xπ,2. The difficulty now is related to combining the two approxi-
mations into an approximation for the mean behaviour of the full process. We
propose the following method: identity a variable and a threshold in the fluid
approximation of the first mode which serves as an indicator for the mode switch
– when the variable reaches the given threshold we expect the mode switch to
take place; use this to estimate the switching time t∗; approximate the behaviour
of the full process by xπ(t) = 1{t ≤ t∗}xπ,1 + 1{t > t∗}xπ,2. In the following
section we evaluate the accuracy of such approximation for the running example
and use it to obtain estimates for policy synthesis tasks.

XII

(0,0)

(0,1)

(1,0)

(1,1)

F

(1, 1) B

1
2
rm rm

1
2
rm

1
2
rm

rm 1
2
rm

rf

rf

rf

prs

(a) Before broadcast – random walk

(0,0)

(0,1)

(1,0)

(1,1)

F

(1, 1) B

rm

rm

rm

rf

rf

rf

(b) After broadcast – directed walk

Fig. 3: Behaviour of individual robots.

4 Analysis: running example

In this section we make use of the presented ideas to analyse the running example
of a foraging robot swarm. In particular, we consider the system consisting of
N robots and restrict the robots to a 2 × 2 grid with paths (0, 0) ↔ (1, 0),
(0, 0) ↔ (0, 1) and (1, 0) ↔ (1, 1) to keep the constructions manageable by
hand. All robots start by following the behaviour illustrated in Figure 3a where
the location (1, 1) is designated as the source location. At location (1, 1), with a
probability p = 0.1, the sense action results in a broadcast. A robot sending out
such broadcast at location (1, 1) causes the rest of the collective to follow the
behaviour given in Figure 3b giving rise to two dynamic modes for the system.

We construct an approximation for the system dynamics by considering vari-
ables x00, x10, x01, x11 giving the proportion of robots in locations (0, 0), (1, 0),
(0, 1) and (1, 1) respectively. Additionally, let s11 be the proportion of robots
that have sensed the source resulting in a broadcast being sent out and let f de-
note the proportion of robots that have broken down. We construct x1 and x2 as
below and claim that these give a fluid approximation for the system dynamics
before and after the broadcast respectively.

x1(t) = x2(t) = [x00 x01 x10 x11 s11 f]

dx1

dt
= [−x00(rm + rf) + rm(x10 +

1
2
x01)

1
2
rmx00 − x01(rm + rf)

1
2
rmx00 + rmx11 − x10(rm + rf)

1
2
rmx10 − x11(psrs − rm)

prsx11 rf (x00 + x10 + x01)]

dx2

dt
= [−x00(rm + rf) + rmx01 −x01(rm + rf) rmx00 − x10(rm + rf)

x01rm 0 rf (x00 + x10 + x01)]

Suppose all robots start from the location (0, 0), i.e. the initial condition for
the approximation is x1(0) = [1 0 0 0 0 0 0]. To combine the two modes we use
the estimate proposed in Section 3.2 by considering the time evolution of variable
s11 and taking the expected time till the first broadcast to be the time t∗ such
that s11(t∗) = 1. Thus, we approximate the mean behaviour of the system by

x̂(t) = 1{t ≤ t∗}x1(t) + 1{t > t∗}x2(t)

XIII

0 2 4 6 8 10
Time

0

20

40

60

80

100

E
xp

ec
te

d
nu

m
b

er
of

ro
b

ot
s

X100
00

X100
10

X100
01

X100
11

x00

x10

x01

x11

Fig. 4: Comparison of expected trajectories for failr = 0.05 = rf with rate of move
and sense actions set to 1 (mean and variance of 100 simulated trajectories: solid
lines and fluid approximations: dashed).

where x2 is such that x2(t
∗) = x1(t

∗). The trajectories are compared with the
stochastic simulation in Figure 4 and Table 1 for different parameters giving
an empirical justification for the approximation. Figure 4 suggests that a good
approximation is achieved for times away from the mode switching. For Table 1,
we consider the mean of relative errors between the stochastic and approximate
trajectories for location (1, 1) at time points t = 2.0, 4.0, 6.0, 8.0, 10.0. For each
parametrisation, the table gives a mean figure over 10 comparisons and shows
that as expected the approximation is better for larger population sizes.

4.1 Policy synthesis

In the context of the running example we consider the synthesis of failr param-
eter as a special case of policy synthesis. In particular, how robust should the
behaviour of the robots be for the collective to satisfy its goal. We provide a
simple application for the presented fluid approximation ideas by studying the
action (or parameter) space of the running example through logistic regression
and via direct optimisation of a more complex reward functional.

Logistic regression We consider the logistic reward function defined in Exam-
ple 6 and note that the reward function is defined so that the specified goal (at
least 80% of the collective reaches (1, 1)) is satisfied for rewards greater or equal
to 0.5. As a first example we consider the following question: what is the region
of failr values for which we are expecting the policy to be satisfied. We treat failr
as an indication of robustness of individual components and classify the different
possible values based on goal satisfaction. Throughout the rest of this section
we set rm = rs = 1.

Table 1: Mean approximation error.
(rm, rs, failr) pop. size mean error

(1, 1, 0.05) 100 10.8%

(0.8, 1, 0.01) 100 11%

(2.0, 1, 0.1) 100 4.3%

(1, 1, 0.05) 500 1.6%

(1, 1, 0.02) 500 2.0%

(2.0, 1, 0.1) 100 0.6%

Table 2: Logistic regression. Fit-
ting based on 100 trajetories.

decision boundaries

fluid 0.0566, 0.0553
0.0579, 0.0560

stochastic 0.0594, 0.0624
0.0616, 0.0610

XIV

0.00 0.02 0.04 0.06 0.08 0.10
failr

1

2

3

4

E
xp

ec
te

d
re

w
ar

d
(a) Fluid approximation.

0.00 0.02 0.04 0.06 0.08 0.10
failr

1

2

3

4

E
xp

ec
te

d
re

w
ar

d

(b) Stochastic simulation.

Fig. 5: Sampled reward functional.

The set-up for this is standard: consider a linear function y = w0 + w1r of
single explanatory variable (in this case value of failr, denoted r) and a logistic
function σ(r) = 1/(1 + e−w0−w1r) where σ(r) is interpreted as the probability
of success given failr value r. We are going to expect the goal to be satisfied if
σ(r) > 0.5. The weights for the regression model are going to be fitted based
on trajectories sampled using stochastic simulation and the constructed approx-
imation for 100 random failr values. Table 2 gives the comparison of decision
boundaries obtained by the two methods. Results suggest that for the considered
parameters we slightly under-approximate the proportion of robots at t = 10.0.

Direct optimisation of a reward functional Alternatively, we can consider
direct optimisation of a reward functional. For example, consider the following
functional to find maximal value for failr that results in the goal being satisfied

QN [π] =

{
I(X

(N)
π,s (T)) + log(π) + c0 for I(X(N)

π,s (T)) ≥ 0.5

I(X
(N)
π,s (T))− log(π) otherwise

where c0 is some chosen constant and π ∈ [0,∞) corresponds to the chosen
policy. The first part of the reward functional corresponds to the satisfaction of
the goal as defined previously. The constraint of failr being non-negative is taken
into account by adding a logarithmic barrier function. The term − log(π) is used
to penalise failr values that are further away from satisfying the goal. Figures 5a
and 5b show the reward functional sampled uniformly from π ∈ [0.0, 0.1]. Note
that due to stochastic variance we are going to have values of π for which we are
uncertain about whether the goal is going to be satisfied or not.

To optimise for this, currently discontinuous, reward functional we consider
the method of policy gradient presented, for example, in [15] with parametrised
policies π ∼ N (µ, σ2) — in a control scenario this would correspond to looking
at a stochastic controller. Figure 6 shows the expected reward functional for
π ∼ N (µ, 0.05) with 100 samples of µ taken uniformly from (0.0, 0.1].

Considering such Gaussian policies together with the approximation to mean
behaviour allows us to implement a fast policy gradient algorithm for synthesis-
ing approximations to optimal policies for the system. In particular, the gradient
of the functional at π is going to be estimated based on the ideas in Section 3
by ∇QN [π] ∼ (q[π + ε]− q[π])/ε where q is the functional corresponding to the
expected reward of the fluid approximation. The evolution of policy parameter
values for a simple gradient ascent algorithm is given in Figure 6.

XV

0.00 0.02 0.04 0.06 0.08 0.10
failr

1

2

3

4

E
xp

ec
te

d
re

w
ar

d

0.00 0.02 0.04 0.06 0.08 0.10
failr

1

2

3

4

E
xp

ec
te

d
re

w
ar

d

0 20 40 60 80 100
Iteration

0.01

0.02

0.03

0.04

0.05
fa

ilr

(a) Fluid approximation.

0 20 40 60 80 100
Iterations

0.01

0.02

0.03

0.04

0.05

fa
ilr

(b) Stochastic simulation.

Fig. 6: Sampled reward functional for Gaussian policies and the gradient ascent
initialised at π ∼ N (0.02, 0.005). Reward estimates based on 10 samples of π.

Performance Multiple stochastic trajectories are needed to get a good estimate
of the mean behaviour — for the model of 100 robots we used 100 trajectories,
which took about 3 sec of computing on a single thread. The approximation
took about 0.04 seconds translating into a non-trivial speed-up in cases where
trajectories for lots of parametrisations have to be considered. In particular,
when generating 100 samples for considered reward functional this translates into
roughly 5minutes via stochastic simulation and 4 seconds via the approximation.

5 Conclusion

In this paper we presented a framework for exploiting fluid approximation re-
sults in the context of policy synthesis for collective dynamics involving broadcast
communication. To that end we proposed a class of population CT-MDPs arising
from systems with broadcast communication where the communication can be
thought to separate the dynamics of the system into modes. To aid the construc-
tion of such models we introduced a language Carma-C, based on Carma, and
outlined the semantics which gives a natural way for specifying policy synthesis
problems in a high-level language. We discussed the application of fluid approx-
imation in policy synthesis and suggested an approximation for the population
models with mode switching for which the classic results cannot be applied di-
rectly. We used the proposed approximation to analyse the running example of
a robot swarm.

For further work we plan to give a more formal treatment for the approx-
imations for mode switching. In particular, the current method gives a good
approximation to mean behaviour for times sufficiently far from where the mode
change is expected to happen. However, this presents a limitation when we are
interested in the behaviour of the system around the time of mode change or in
the case of multiple modes where two mode changes can happen close to each
other. To address this we aim to devise a more sophisticated approximation for
switching time. For that we plan to consider the linear noise approximation [16],

XVI

as done for example in [17], to help recover information about stochasticity and
estimate the distribution of switching times.

Acknowledgement. This work was supported by EPSRC grant EP/L01503X/1
(CDT in Pervasive Parallelism).

References
1. Buchholz, P., Dohndorf, I., Scheftelowitsch, D.: Optimal decisions for continuous

time markov decision processes over finite planning horizons. Computers & OR
77 (2017) 267–278

2. Butkova, Y., Hatefi, H., Hermanns, H., Krcál, J.: Optimal continuous time markov
decisions. In: Automated Technology for Verification and Analysis, 2015, Proceed-
ings. (2015) 166–182

3. Gast, N., Gaujal, B.: A mean field approach for optimization in discrete time.
Discrete Event Dynamic Systems 21(1) (2011) 63–101

4. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
markov processes. Journal of Applied Probability 7(1) (1970) 49–58

5. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with
CARMA and its tools. In: Formal Methods for the Quantitative Evaluation of
Collective Adaptive Systems, Advanced Lectures. (2016) 83–119

6. Piho, P., Georgoulas, A., Hillston, J.: Goals and resource constraints in carma. In:
Proceedings of the Ninth International Workshop on the Practical Application of
Stochastic Modelling (PASM). (2018) 155 – 172

7. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proceedings of the Sixth Annual Symposium on Logic in Computer Science
(LICS ’91). (1991) 266–277

8. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.:
Constraint markov chains. Theor. Comput. Sci. 412(34) (2011) 4373–4404

9. Georgoulas, A., Hillston, J., Milios, D., Sanguinetti, G.: Probabilistic program-
ming process algebra. In: Quantitative Evaluation of Systems - 11th International
Conference. (2014) 249–264

10. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochas-
tic process calculi. ACM Comput. Surv. 46(1) (2013) 5:1–5:35

11. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Runtime Verification - First International Conference, Malta. (2010) 122–135

12. Bartocci, E., Bortolussi, L., Brázdil, T., Milios, D., Sanguinetti, G.: Policy learning
in continuous-time markov decision processes using gaussian processes. Perform.
Eval. 116 (2017) 84–100

13. Billingsley, P.: Convergence of probability measures. Second edn. John Wiley &
Sons Inc., New York (1999)

14. Bortolussi, L.: Hybrid behaviour of markov population models. Inf. Comput. 247
(2016) 37–86

15. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients.
Neural Networks 21(4) (2008) 682–697

16. Van Kampen, N.: Stochastic Processes in Physics and Chemistry. North-Holland
Personal Library. Elsevier Science (2011)

17. Bortolussi, L., Lanciani, R.: Model checking markov population models by central
limit approximation. In: Quantitative Evaluation of Systems, Proceedings. (2013)
123–138

	Policy synthesis for collective dynamics

