Stochastic automata are a formal compositional model for concurrent
stochastic timed systems, with general distributions and non-deterministic
choices. Measures of interest are defined over schedulers that resolve the
nondeterminism. In this paper we investigate the power of various theoretically
and practically motivated classes of schedulers, considering the classic
complete-information view and a restriction to non-prophetic schedulers. We
prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic
reachability. We find that, unlike Markovian formalisms, stochastic automata
distinguish most classes even in this basic setting. Verification and strategy
synthesis methods thus face a tradeoff between powerful and efficient classes.
Using lightweight scheduler sampling, we explore this tradeoff and demonstrate
the concept of a useful approximative verification technique for stochastic
automata