28 research outputs found

    Unsupervised deep learning of human brain diffusion magnetic resonance imaging tractography data

    Get PDF
    L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les approches classiques utilisées en tractographie. Par conséquent, les méthodes inspirées de l'apprentissage profond conviennent au changement de paradigme requis, et peuvent ouvrir de nouvelles possibilités de modélisation, en améliorant ainsi l'état de l'art en tractographie. Dans cette thèse, un nouveau paradigme basé sur les techniques d'apprentissage de représentation est proposé pour générer et analyser des données de tractographie. En exploitant les architectures d'autoencodeurs, ce travail tente d'explorer leur capacité à trouver un code optimal pour représenter les caractéristiques des fibres de la matière blanche. Les contributions proposées exploitent ces représentations pour une variété de tâches liées à la tractographie, y compris (i) le filtrage et (ii) le regroupement efficace sur les résultats générés par d'autres méthodes, ainsi que (iii) la reconstruction proprement dite des fibres de la matière blanche en utilisant une méthode générative. Ainsi, les méthodes issues de cette thèse ont été nommées (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), et (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectivement. Les performances des méthodes proposées sont évaluées par rapport aux méthodes de l'état de l'art sur des données de diffusion synthétiques et des données de cerveaux humains chez l'adulte sain in vivo. Les résultats montrent que (i) la méthode de filtrage proposée offre une sensibilité et spécificité supérieures par rapport à d'autres méthodes de l'état de l'art; (ii) le regroupement des tractes dans des faisceaux est fait de manière consistante; et (iii) l'approche générative échantillonnant des tractes comble mieux l'espace de la matière blanche dans des régions difficiles à reconstruire. Enfin, cette thèse révèle les possibilités des autoencodeurs pour l'analyse des données des fibres de la matière blanche, et ouvre la voie à fournir des données de tractographie plus fiables.Abstract : Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation learning techniques is proposed to generate and to analyze tractography data. By harnessing autoencoder architectures, this work explores their ability to find an optimal code to represent the features of the white matter fiber pathways. The contributions exploit such representations for a variety of tractography-related tasks, including efficient (i) filtering and (ii) clustering on results generated by other methods, and (iii) the white matter pathway reconstruction itself using a generative method. The methods issued from this thesis have been named (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), and (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectively. The proposed methods' performance is assessed against current state-of-the-art methods on synthetic data and healthy adult human brain in vivo data. Results show that the (i) introduced filtering method has superior sensitivity and specificity over other state-of-the-art methods; (ii) the clustering method groups streamlines into anatomically coherent bundles with a high degree of consistency; and (iii) the generative streamline sampling technique successfully improves the white matter coverage in hard-to-track bundles. In summary, this thesis unlocks the potential of deep autoencoder-based models for white matter data analysis, and paves the way towards delivering more reliable tractography data

    Tractostorm 2 : Optimizing tractography dissection reproducibility with segmentation protocol dissemination

    Get PDF
    The segmentation of brain structures is a key component of many neuroimaging studies. Consistent anatomical definitions are crucial to ensure consensus on the position and shape of brain structures, but segmentations are prone to variation in their interpretation and execution. White-matter (WM) pathways are global structures of the brain defined by local landmarks, which leads to anatomical definitions being difficult to convey, learn, or teach. Moreover, the complex shape of WM pathways and their representation using tractography (streamlines) make the design and evaluation of dissection protocols difficult and time-consuming. The first iteration of Tractostorm quantified the variability of a pyramidal tract dissection protocol and compared results between experts in neuroanatomy and nonexperts. Despite virtual dissection being used for decades, in-depth investigations of how learning or practicing such protocols impact dissection results are nonexistent. To begin to fill the gap, we evaluate an online educational tractography course and investigate the impact learning and practicing a dissection protocol has on interrater (groupwise) reproducibility. To generate the required data to quantify reproducibility across raters and time, 20 independent raters performed dissections of three bundles of interest on five Human Connectome Project subjects, each with four timepoints. Our investigation shows that the dissection protocol in conjunction with an online course achieves a high level of reproducibility (between 0.85 and 0.90 for the voxel-based Dice score) for the three bundles of interest and remains stable over time (repetition of the protocol). Suggesting that once raters are familiar with the software and tasks at hand, their interpretation and execution at the group level do not drastically vary. When compared to previous work that used a different method of communication for the protocol, our results show that incorporating a virtual educational session increased reproducibility. Insights from this work may be used to improve the future design of WM pathway dissection protocols and to further inform neuroanatomical definitions.Peer reviewe

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.Development of the BIDS Standard has been supported by the International Neuroinformatics Coordinating Facility, Laura and John Arnold Foundation, National Institutes of Health (R24MH114705, R24MH117179, R01MH126699, R24MH117295, P41EB019936, ZIAMH002977, R01MH109682, RF1MH126700, R01EB020740), National Science Foundation (OAC-1760950, BCS-1734853, CRCNS-1429999, CRCNS-1912266), Novo Nordisk Fonden (NNF20OC0063277), French National Research Agency (ANR-19-DATA-0023, ANR 19-DATA-0021), Digital Europe TEF-Health (101100700), EU H2020 Virtual Brain Cloud (826421), Human Brain Project (SGA2 785907, SGA3 945539), European Research Council (Consolidator 683049), German Research Foundation (SFB 1436/425899996), SFB 1315/327654276, SFB 936/178316478, SFB-TRR 295/424778381), SPP Computational Connectomics (RI 2073/6-1, RI 2073/10-2, RI 2073/9-1), European Innovation Council PHRASE Horizon (101058240), Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, ERAPerMed Pattern-Cog, and the Virtual Research Environment at the Charité Berlin – a node of EBRAINS Health Data Cloud.N

    Clustering in Tractography Using Autoencoders (CINTA)

    No full text
    International audienceClustering tractography streamlines is an important step to characterize the brain white matter structural connectivity. Numerous methods have been proposed to group whole-brain tractography streamlines into anatomically coherent bundles. However, the time complexity, or the initial streamline sorting in conventional methods, or still, using supervised deep learning models, may limit the results and/or restrict the versatility of the methods. In this work, we propose an autoencoder-based method for clustering tractography streamlines. CINTA, Clustering in Tractography using Autoencoders, is trained on unlabelled data, uses a single autoencoder model, and does not require any distance thresholding parameter. It obtains excellent classification scores on synthetic datasets, achieving a 0.97 F1-score on the clinical-style, realistic ISMRM 2015 Tractography Challenge dataset. Similarly, CINTA obtains anatomically reliable results on in vivo human brain tractography data. CINTA offers a time-efficient bundling framework, as its running time is linear with the streamline count

    Preprocessed diffusion data for SDC-BIDS-dMRI

    No full text
    Preprocessed data for data carpentry using dataset ds000221. (ds000030 deprecated

    phcerdan/ITKIsotropicWavelets: v0.3

    No full text
    External Module for ITK, implementing Isotropic Wavelets and Riesz Filter for multiscale phase analysis

    Filtering in tractography using autoencoders (FINTA)

    No full text
    International audienceCurrent brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses

    InsightSoftwareConsortium/ITKElastix: ITKElastix 0.19.1

    No full text
    <h2>What's Changed</h2> <ul> <li>DOC: Various README updates by @thewtex in https://github.com/InsightSoftwareConsortium/ITKElastix/pull/250</li> <li>Bump postcss from 8.4.28 to 8.4.31 in /wasm/typescript by @dependabot in https://github.com/InsightSoftwareConsortium/ITKElastix/pull/254</li> <li>ENH: Bump for ITK v5.4rc02 by @tbirdso in https://github.com/InsightSoftwareConsortium/ITKElastix/pull/260</li> </ul> <p><strong>Full Changelog</strong>: https://github.com/InsightSoftwareConsortium/ITKElastix/compare/v0.19.0...v0.19.1</p&gt
    corecore