26 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A Finger-Stick Whole-Blood HIV Self-Test as an HIV Screening Tool Adapted to the General Public.

    No full text
    BACKGROUND:In 2013, the French Health Authority approved the use of HIV self-tests in pharmacies for the general public. This screening tool will allow an increase in the number of screenings and a reduction in the delay between infection and diagnosis, thus reducing the risk of further infections. We previously compared 5 HIV-self test candidates (4 oral fluid and one whole blood) and demonstrated that the whole blood HIV test exhibited the optimal level of performance (sensitivity/specificity). We studied the practicability of an easy-to-use finger-stick whole blood HIV self-test "autotest VIH®", when used in the general public. METHODS AND MATERIALS:This multicenter cross-sectional study involved 411 participants from the Parisian region (AIDES and HF association) between April and July 2014 and was divided into 2 separate studies: one evaluating the capability of participants to obtain an interpretable result using only the information notice, and a second evaluating the interpretation of test results, using a provided chart. RESULTS:A total of 411 consenting participants, 264 in the first study and 147 in the second, were included. All participants were over 18 years of age. In the first study, 99.2% of the 264 participants correctly administered the auto-test, and 21.2% needed, upon their request, telephone assistance. Ninety-two percent of participants responded that the test was easy/very easy to perform, and 93.5% did not find any difficulty obtaining a sufficient good quantity of blood. In the second study, 98.1% of the 147 participants correctly interpreted the results. The reading/interpretation errors concerned the negative (2.1%) or the indeterminate (3.3%) auto-tests. CONCLUSIONS:The success rate of handling and interpretation of this self-test is very satisfactory, demonstrating its potential for use by the general public and its utility to increase the number of opportunities to detect HIV patients

    A computerized handheld decision-support system to improve pulmonary embolism diagnosis: a randomized trial

    Get PDF
    BACKGROUND: Testing for pulmonary embolism often differs from that recommended by evidence-based guidelines. OBJECTIVE: To assess the effectiveness of a handheld clinical decision-support system to improve the diagnostic work-up of suspected pulmonary embolism among patients in the emergency department. Design: Cluster randomized trial. Assignment was by random-number table, providers were not blinded, and outcome assessment was automated. (ClinicalTrials.gov registration number: NCT00188032). SETTING: 20 emergency departments in France. PATIENTS: 1103 and 1768 consecutive outpatients with suspected pulmonary embolism. Intervention: After a preintervention period involving 20 centers and 1103 patients, in which providers grew accustomed to inputting clinical data into handheld devices and investigators assessed baseline testing, emergency departments were randomly assigned to activation of a decision-support system on the devices (10 centers, 753 patients) or posters and pocket cards that showed validated diagnostic strategies (10 centers, 1015 patients). MEASUREMENTS: Appropriateness of diagnostic work-up, defined as any sequence of tests that yielded a posttest probability less than 5% or greater than 85% (primary outcome) or as strict adherence to guideline recommendations (secondary outcome); number of tests per patient (secondary outcome). RESULTS: The proportion of patients who received appropriate diagnostic work-ups was greater during the trial than in the preintervention period in both groups, but the increase was greater in the computer-based guidelines group (adjusted mean difference in increase, 19.3 percentage points favoring computer-based guidelines [95% CI, 2.9 to 35.6 percentage points]; P = 0.023). Among patients with appropriate work-ups, those in the computer-based guidelines group received slightly fewer tests than did patients in the paper guidelines group (mean tests per patient, 1.76 [SD, 0.98] vs. 2.25 [SD, 1.04]; P < 0.001). LIMITATION: The study was not designed to show a difference in the clinical outcomes of patients during follow-up. CONCLUSION: A handheld decision-support system improved diagnostic decision making for patients with suspected pulmonary embolism in the emergency department
    corecore