43 research outputs found

    Abiotic controls on macroscale variations of humid tropical forest height

    Get PDF
    Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS) satellite observations (2004–2008). We used top canopy height (TCH) of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and influencing patterns of aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.The research was funded by Gabon National Park (ANPN) under the contract of 011-ANPN/2012/SE-LJTW at UCLA. We thank IIASA, FAO, USGS, NASA, Worldclim science teams for making their data available. (011-ANPN/2012/SE-LJTW - Gabon National Park (ANPN) at UCLA

    Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest

    Get PDF
    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical structure of forests and thus hold great promise for remotely sensing the quantity and spatial organization of forest biomass. In this study, we compare the relationships between lidar measured canopy structure and coincident field measurements of forest stand structure at five locations in the Pacific Northwest of the U.S.A. with contrasting composition. Coefficient of determination values (r2) ranged between 41% and 96%. Correlations for two important variables, LAI (81%) and above ground biomass (92%), were noteworthy, as was the fact that neither variable showed an asymptotic response. Of the 17 stand structure variables considered in this study, we were able to develop eight equations that were valid for all sites, including equations for two variables generally considered to be highly important (aboveground biomass and leaf area index). The other six equations that were valid for all sites were either related to height (which is most directly measured by lidar) or diameter at breast height (which should be closely related to height). Four additional equations (a total of 12) were applicable to all sites where either Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) or Sitka spruce (Picea sitchensi) were dominant. Stand structure variables in sites dominated by true firs (Abies sp.) or ponderosa pine (Pinus ponderosa) had biases when predicted by these four additional equations. Productivity-related variables describing the edaphic, climatic and topographic environment of the sites where available for every regression, but only two of the 17 equations (maximum diameter at breast height, stem density) incorporated them. Given the wide range of these environmental conditions sampled, we conclude that the prediction of stand structure is largely independent of environmental conditions in this study area. Most studies of lidar remote sensing for predicting stand structure have depended on intensive data collections within a relatively small study area. This study indicates that the relationships between many stand structure indices and lidar measured canopy structure have generality at the regional scale. This finding, if replicated in other regions, would suggest that mapping of stand structure using lidar may be accomplished by distributing field sites extensively over a region, thus reducing the overall inventory effort required

    Estimates of forest canopy height and aboveground biomass using ICESat

    Get PDF
    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (ICESat) has collected an unparalleled dataset of lidar waveforms over terrestrial targets, processing of ICESat data to estimate forest height is complicated by the pulse broadening associated with large-footprint, waveform-sampling lidar. We combined ICESat waveforms and ancillary topography from the Shuttle Radar Topography Mission to estimate maximum forest height in three ecosystems; tropical broadleaf forests in Brazil, temperate broadleaf forests in Tennessee, and temperate needleleaf forests in Oregon. Final models for each site explained between 59% and 68% of variance in field-measured forest canopy height (RMSE between 4.85 and 12.66 m). In addition, ICESat-derived heights for the Brazilian plots were correlated with field-estimates of aboveground biomass (r(2) = 73%, RMSE = 58.3 Mgha(-1))

    Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004‐2014)

    Full text link
    Tropical secondary forests (SF) play an important role in the global carbon cycle as a major terrestrial carbon sink. Here, we use high-resolution TerraClass data set for tracking land use activities in the Brazilian Amazon from 2004–2014 to detect spatial patterns and carbon sequestration dynamics of secondary forests (SF). By integrating satellite lidar and radar observations, we found the SF area in the Brazilian Amazon increased from approximately 22 Mha (10^6 ha) in 2004 to 28 Mha in 2014. However, the expansion in area was also accompanied by a dynamic land use activity that resulted in about 50% recycling of SF area annually from frequent clearing and abandonment. Consequently, the average age of SF remained less than 10 years (age ~8.2 with one standard deviation of 3.2 spatially) over the period of the study. Estimation of changes of carbon stocks shows that SF accumulates approximately 8.5 Mg ha^−1 year^−1 aboveground biomass during the first 10 years after clearing and abandonment, 4.5 Mg ha^−1 year^−1 for the next 10 years followed by a more gradual increase of 3 Mg ha^−1 year^−1 from 20 to 30 years with much slower rate thereafter. The effective carbon uptake of SF in Brazilian Amazon was negligible (0.06 ± 0.03 PgC year^−1) during this period, but the interannual variability was significantly larger (±0.2 PgC year^−1). If the SF areas were left to grow without further clearing for 100 years, it would absorb about 0.14 PgC year^−1 from the atmosphere, partially compensating the emissions from current rate of deforestation in the Brazilian Amazon.Published versio

    Patterns of covariance between forest stand and canopy structure in the Pacific Northwest

    Get PDF
    In the past decade, lidar (light detection and ranging) has emerged as a powerful tool for remotely sensing forest canopy and stand structure, including the estimation of aboveground biomass and carbon storage. Numerous papers have documented the use of lidar measurements to predict important aspects of forest stand structure, including aboveground biomass. Other papers have documented the ability to transform lidar measurements to approximate common field measures, such as cover, stand height, and vertical distributions of foliage density and light transmittance. However, only a small number of existing works have thoroughly examined relationships between comprehensive assemblages of forest canopy and forest stand structure indices. In this work, canonical correlation analysis of coincident lidar and field datasets in western Oregon and Washington is used to define seven statistically significant pairs of canonical variables, each defining an axis of variation that stand and canopy structure have in common. The first major axis relates mean stand height, and related variables, to aboveground biomass. The second relates canopy cover and volume to leaf area index and stem density. The third relates canopy height variability to mean stem diameter and the basal area of deciduous species. Of the four remaining axes, three are related to contrasts between mature and old-growth stands. Canonical correlation analysis provides a method for ranking the importance of these effects, and for placing both canopy and stand structure indices within the overall covariance structure of the two datasets. In this sense, and for the study area involved, the first three factors (mean height, cover or leaf index area, height variability) represent the same kind of enhancement of lidar data that the tasseled cap indices [Crist, C.P., R.C. Cicone, 1984. A physically-based transformation of thematic mapper data—the TM tasseled cap. IEEE Transactions on Geoscience and Remote Sensing 22, 256–263.] represent for optical remote sensing

    Predictions of Tropical Forest Biomass and Biomass Growth Based on Stand Height or Canopy Area Are Improved by Landsat-Scale Phenology across Puerto Rico and the U.S. Virgin Islands

    No full text
    Remotely-sensed estimates of forest biomass are usually based on various measurements of canopy height, area, volume or texture, as derived from LiDAR, radar or fine spatial resolution imagery. These measurements are then calibrated to estimates of stand biomass that are primarily based on tree stem diameters. Although humid tropical forest seasonality can have low amplitudes compared with temperate regions, seasonal variations in growth-related factors like temperature, humidity, rainfall, wind speed and day length affect both tropical forest deciduousness and tree height-diameter relationships. Consequently, seasonal patterns in spectral measures of canopy greenness derived from satellite imagery should be related to tree height-diameter relationships and hence to estimates of forest biomass or biomass growth that are based on stand height or canopy area. In this study, we tested whether satellite image-based measures of tropical forest phenology, as estimated by indices of seasonal patterns in canopy greenness constructed from Landsat satellite images, can explain the variability in forest deciduousness, forest biomass and net biomass growth after already accounting for stand height or canopy area. Models of forest biomass that added phenology variables to structural variables similar to those that can be estimated by LiDAR or very high-spatial resolution imagery, like canopy height and crown area, explained up to 12% more variation in biomass. Adding phenology to structural variables explained up to 25% more variation in Net Biomass Growth (NBG). In all of the models, phenology contributed more as interaction terms than as single-effect terms. In addition, models run on only fully-forested plots performed better than models that included partially-forested plots. For forest NBG, the models produced better results when only those plots with a positive growth, from Inventory Cycle 1 to Inventory Cycle 2, were analyzed, as compared to models that included all plot
    corecore