4,296 research outputs found

    Tapping Thermodynamics of the One Dimensional Ising Model

    Full text link
    We analyse the steady state regime of a one dimensional Ising model under a tapping dynamics recently introduced by analogy with the dynamics of mechanically perturbed granular media. The idea that the steady state regime may be described by a flat measure over metastable states of fixed energy is tested by comparing various steady state time averaged quantities in extensive numerical simulations with the corresponding ensemble averages computed analytically with this flat measure. The agreement between the two averages is excellent in all the cases examined, showing that a static approach is capable of predicting certain measurable properties of the steady state regime.Comment: 11 pages, 5 figure

    Steady State Behavior of Mechanically Perturbed Spin Glasses and Ferromagnets

    Full text link
    A zero temperature dynamics of Ising spin glasses and ferromagnets on random graphs of finite connectivity is considered, like granular media these systems have an extensive entropy of metastable states. We consider the problem of what energy a randomly prepared spin system falls to before becoming stuck in a metastable state. We then introduce a tapping mechanism, analogous to that of real experiments on granular media, this tapping, corresponding to flipping simultaneously any spin with probability pp, leads to stationary regime with a steady state energy E(p)E(p). We explicitly solve this problem for the one dimensional ferromagnet and ±J\pm J spin glass and carry out extensive numerical simulations for spin systems of higher connectivity. The link with the density of metastable states at fixed energy and the idea of Edwards that one may construct a thermodynamics with a flat measure over metastable states is discussed. In addition our simulations on the ferromagnetic systems reveal a novel first order transition, whereas the usual thermodynamic transition on these graphs is second order.Comment: 11 pages, 7 figure

    Grain size limits derived from 3.6 {\mu}m and 4.5 {\mu}m coreshine

    Get PDF
    Recently discovered scattered light from molecular cloud cores in the wavelength range 3-5 {\mu}m (called "coreshine") seems to indicate the presence of grains with sizes above 0.5 {\mu}m. We aim to analyze 3.6 and 4.5 {\mu}m coreshine from molecular cloud cores to probe the largest grains in the size distribution. We analyzed dedicated deep Cycle 9 Spitzer IRAC observations in the 3.6 and 4.5 {\mu}m bands for a sample of 10 low-mass cores. We used a new modeling approach based on a combination of ratios of the two background- and foreground-subtracted surface brightnesses and observed limits of the optical depth. The dust grains were modeled as ice-coated silicate and carbonaceous spheres. We discuss the impact of local radiation fields with a spectral slope differing from what is seen in the DIRBE allsky maps. For the cores L260, ecc806, L1262, L1517A, L1512, and L1544, the model reproduces the data with maximum grain sizes around 0.9, 0.5, 0.65, 1.5, 0.6, and > 1.5 {\mu}m, respectively. The maximum coreshine intensities of L1506C, L1439, and L1498 in the individual bands require smaller maximum grain sizes than derived from the observed distribution of band ratios. Additional isotropic local radiation fields with a spectral shape differing from the DIRBE map shape do not remove this discrepancy. In the case of Rho Oph 9, we were unable to reliably disentangle the coreshine emission from background variations and the strong local PAH emission. Considering surface brightness ratios in the 3.6 and 4.5 {\mu}m bands across a molecular cloud core is an effective method of disentangling the complex interplay of structure and opacities when used in combination with observed limits of the optical depth.Comment: 23 pages, 18 figures, accepted for publication in A&

    An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau b

    Get PDF
    Indexación: Scopus.DH Tau is a young (sim;1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious Ha emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17.2 ± 1.7 MÅ, which gives a disk to star mass ratio of 0.014 (assuming the usual gas to dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42M⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model, including heating of the circumplanetary disk by DH Tau b and DH Tau A, suggests that a mass-averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09M⊕ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.http://iopscience.iop.org/article/10.3847/1538-3881/aa74cd/met

    Adjacency Matrices of Configuration Graphs

    Get PDF
    In 1960, Hoffman and Singleton \cite{HS60} solved a celebrated equation for square matrices of order nn, which can be written as (κ1)In+JnAAT=A (\kappa - 1) I_n + J_n - A A^{\rm T} = A where InI_n, JnJ_n, and AA are the identity matrix, the all one matrix, and a (0,1)(0,1)--matrix with all row and column sums equal to κ\kappa, respectively. If AA is an incidence matrix of some configuration C\cal C of type nκn_\kappa, then the left-hand side Θ(A):=(κ1)In+JnAAT\Theta(A):= (\kappa - 1)I_n + J_n - A A^{\rm T} is an adjacency matrix of the non--collinearity graph Γ\Gamma of C\cal C. In certain situations, Θ(A)\Theta(A) is also an incidence matrix of some nκn_\kappa configuration, namely the neighbourhood geometry of Γ\Gamma introduced by Lef\`evre-Percsy, Percsy, and Leemans \cite{LPPL}. The matrix operator Θ\Theta can be reiterated and we pose the problem of solving the generalised Hoffman--Singleton equation Θm(A)=A\Theta^m(A)=A. In particular, we classify all (0,1)(0,1)--matrices MM with all row and column sums equal to κ\kappa, for κ=3,4\kappa = 3,4, which are solutions of this equation. As a by--product, we obtain characterisations for incidence matrices of the configuration 103F10_3F in Kantor's list \cite{Kantor} and the 17417_4 configuration #1971 in Betten and Betten's list \cite{BB99}

    Discrete Schur-constant models

    Get PDF
    This paper introduces a class of Schur-constant survival models, of dimension n, for arithmetic non-negative random variables. Such a model is defined through a univariate survival function that is shown to be n-monotone. Two general representations are obtained, by conditioning on the sum of the n variables or through a doubly mixed multinomial distribution. Several other properties including correlation measures are derived. Three processes in insurance theory are discussed for which the claim interarrival periods form a Schur-constant model

    Scaling Law in Carbon Nanotube Electromechanical Devices

    Full text link
    We report a method for probing electromechanical properties of multiwalled carbon nanotubes(CNTs). This method is based on AFM measurements on a doubly clamped suspended CNT electrostatically deflected by a gate electrode. We measure the maximum deflection as a function of the applied gate voltage. Data from different CNTs scale into an universal curve within the experimental accuracy, in agreement with a continuum model prediction. This method and the general validity of the scaling law constitute a very useful tool for designing actuators and in general conducting nanowire-based NEMS.Comment: 12 pages, 4 figures. To be published in Phys. Rev. Let
    corecore