395 research outputs found

    A Comparison of the Ocean Microbarom Recorded on the Ground and in the Stratosphere

    Get PDF
    The, ocean microbarom is an acoustic signal generated via nonlinear interaction of ocean surface waves. It can propagate for thousands of kilometers and represent a significant infrasonic noise source for ground infrasound stations across the globe. However, wind noise often compromises detections at ground stations. Furthermore, the microbarom may travel in elevated acoustic ducts that do not transmit enough energy for detections on ground stations. Here the presence of the ocean microbarom on two high-altitude balloon flights is investigated. A spectral peak consistent with the microbarom was observed on sensors in the stratosphere but not on those deployed on the ground near the flight path of the balloon. This is probably due to an elevated acoustic duct and/or a superior signal-to-noise ratio in the stratosphere. Thus, microbarom activity quantified solely with ground-based sensors may underestimate the occurrence of the phenomenon. However, high levels of interference from flight system electronics and/other other payloads may have obscured other microbarom episodes during the balloon deployments

    Infrasound in the middle stratosphere measured with a free-flying acoustic array

    Get PDF
    Infrasound recorded in the middle stratosphere suggests that the acoustic wavefield above the Earth's surface differs dramatically from the wavefield near the ground. In contrast to nearby surface stations, the balloon-borne infrasound array detected signals from turbulence, nonlinear ocean wave interactions, building ventilation systems, and other sources that have not been identified yet. Infrasound power spectra also bore little resemblance to spectra recorded on the ground at the same time. Thus, sensors on the Earth's surface likely capture a fraction of the true diversity of acoustic waves in the atmosphere. Future studies building upon this experiment may quantify the acoustic energy flux from the surface to the upper atmosphere, extend the capability of the International Monitoring System to detect nuclear explosions, and lay the observational groundwork for a recently proposed mission to detect earthquakes on Venus using free-flying microphones. Key Points Stratospheric infrasound is very different from infrasound recorded on ground stations Numerous broadband and narrowband signals exist in the stratosphere, some of unknown origin Acoustic networks on free floating balloons have unique advantages and disadvantages

    Detecting Lightning Infrasound Using a High-Altitude Balloon

    Get PDF
    Acoustic waves with a wide range of frequencies are generated by lightning strokes during thunderstorms, including infrasonic waves (0.1 to 20 Hz). The source mechanism for these low-frequency acoustic waves is still debated, and studies have so far been limited to ground-based instruments. Here we report the first confirmed detection of lightning-generated infrasound with acoustic instruments suspended at stratospheric altitudes using a free-flying balloon. We observe high-amplitude signals generated by lightning strokes located within 100 km of the balloon as it flew over the Tasman Sea on 17 May 2016. The signals share many characteristics with waveforms recorded previously by ground-based instruments near thunderstorms. The ability to measure lightning activity with high-altitude infrasound instruments has demonstrated the potential for using these platforms to image the full acoustic wavefield in the atmosphere. Furthermore, it validates the use of these platforms for recording and characterizing infrasonic sources located beyond the detection range of ground-based instruments

    Topographically Scattered Infrasound Waves Observed on Microbarometer Arrays in the Lower Stratosphere

    Get PDF
    When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth

    Characterizing oxygen atoms in perovskite and pyrochlore oxides using ADF-STEM at a resolution of a few tens of picometers

    No full text
    We present an aberration corrected scanning transmission electron microscopy (ac-STEM) analysis of perovskite (LaFeO3) and pyrochlore (Yb2Ti2O7 and Pr2Zr2O7) oxides and demonstrate that both the shape and contrast of visible atomic columns in annular dark-field (ADF) images are sensitive to the presence of nearby atoms of low atomic number (e.g. oxygen). We show that point defects (e.g. oxygen vacancies), which are invisible – or difficult to observe due to limited sensitivity – in x-ray and neutron diffraction measurements, are the origin of the complex magnetic ground state of pyrochlore oxides. In addition, we present a method by which light atoms can be resolved in the quantitative ADF-STEM images. Using this method, we resolved oxygen atoms in perovskite and pyrochlore oxides and propose this method to be suitable for other materials containing both light and heavy elements

    Explosion-generated infrasound recorded on ground and airborne microbarometers at regional distances

    Get PDF
    Recent work in deploying infrasound (low-frequency sound) sensors on aerostats and free-flying balloons has shown them to be viable alternatives to ground stations. However, no study to date has compared the performance of surface and freefloating infrasound microbarometers with respect to acoustic events at regional (100s of kilometers) range. The prospect of enhanced detection of aerial explosions at similar ranges, such as those from bolides, has not been investigated either. We examined infrasound signals from three 1-ton trinitrotoluene (TNT) equivalent chemical explosions using microbarometers on two separate balloons at 280- to 400-km ranges and ground stations at 6.3- to 350-km ranges. Signal celerities were consistent with acoustic waves traveling in the stratospheric duct. However, significant differences were noted between the observed arrival patterns and those predicted by an acoustic propagation model. Very low-background noise levels on the balloons were consistent with previous studies that suggest wind interference is minimal on freely drifting sensors. Simulated propagation patterns and observed noise levels also confirm that balloon-borne microbarometers should be very effective at detecting explosions in the middle and upper atmosphere as well as those on the surface

    Monitoring changes in human activity during the COVID-19 shutdown in Las Vegas using infrasound microbarometers

    Get PDF
    While studies of urban acoustics are typically restricted to the audio range, anthropogenic activity also generates infrasound (<20 Hz, roughly at the lower end of the range of human hearing). Shutdowns related to the COVID-19 pandemic unintentionally created ideal conditions for the study of urban infrasound and low frequency audio (20-500 Hz), as closures reduced human-generated ambient noise, while natural signals remained relatively unaffected. An array of infrasound sensors deployed in Las Vegas, NV, provides data for a case study in monitoring human activity during the pandemic through urban acoustics. The array records a sharp decline in acoustic power following the temporary shutdown of businesses deemed nonessential by the state of Nevada. This decline varies spatially across the array, with stations close to McCarran International Airport generally recording the greatest declines in acoustic power. Further, declines in acoustic power fluctuate with the time of day. As only signals associated with anthropogenic activity are expected to decline, this gives a rough indication of periodicities in urban acoustics throughout Las Vegas. The results of this study reflect the city's response to the pandemic and suggest spatiotemporal trends in acoustics outside of shutdowns

    The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions

    Get PDF
    Infrasound and high-speed imaging during a series of field-scale buried explosions suggest new details about the generation and radiation patterns of acoustic waves from volcanic eruptions. We recorded infrasound and high-speed video from a series of subsurface explosions with differing burial depths and charge sizes. Joint observations and modeling allow the extraction of acoustic energy related to the magnitude of initial ground deformation, the contribution of gas breakout, and the timing of the fallback of displaced material. The existence and relative acoustic amplitudes of these three phases depended on the size and depth of the explosion. The results motivate a conceptual model that relates successive contributions from ground acceleration, gas breakout, and spall fallback to the acoustic amplitude and waveform characteristics of buried explosions. We place the literature on infrasound signals at Santiaguito Volcano, Guatemala, and Sakurajima and Suwonosejima Volcanoes, Japan, in the context of this model

    Evidence for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞbfΛb0B(ΞbΛb0π)=(5.7±1.80.9+0.8)×104{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞbf_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the bΞbb\to\Xi_b^- and bΛb0b\to\Lambda_b^0 fragmentation fractions, and B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+J/ψK+B^+ \to J/\psi \, K^+ and B0J/ψK0B^0 \to J/\psi \, K^{*0} using 3.0fb13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7TeV7\mathrm{\,TeV} and 8TeV8\mathrm{\,TeV}. Its tagging power on these samples of BJ/ψXB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
    corecore