1,336 research outputs found

    Radiata pine yield models

    Get PDF

    Dimensional analysis considerations in the engine rotor fragment containment/deflection problem

    Get PDF
    Dimensional analysis techniques are described and applied to the containment/deflection problem of bursting high-rpm rotating parts of turbojet engines. The use of dimensional analysis to select a feasible set of experiments and to determine the important parameters to be varied is presented. The determination of a containment coefficient based on the nondimensionalized parameters is developed for the reduction of experimental data and as an assist to designers of containment/deflection devices

    Experimental and data analysis techniques for deducing collision-induced forces from photographic histories of engine rotor fragment impact/interaction with a containment ring

    Get PDF
    An analysis method termed TEJ-JET is described whereby measured transient elastic and inelastic deformations of an engine-rotor fragment-impacted structural ring are analyzed to deduce the transient external forces experienced by that ring as a result of fragment impact and interaction with the ring. Although the theoretical feasibility of the TEJ-JET concept was established, its practical feasibility when utilizing experimental measurements of limited precision and accuracy remains to be established. The experimental equipment and the techniques (high-speed motion photography) employed to measure the transient deformations of fragment-impacted rings are described. Sources of error and data uncertainties are identified. Techniques employed to reduce data reading uncertainties and to correct the data for optical-distortion effects are discussed. These procedures, including spatial smoothing of the deformed ring shape by Fourier series and timewise smoothing by Gram polynomials, are applied illustratively to recent measurements involving the impact of a single T58 turbine rotor blade against an aluminum containment ring. Plausible predictions of the fragment-ring impact/interaction forces are obtained by one branch of this TEJ-JET method; however, a second branch of this method, which provides an independent estimate of these forces, remains to be evaluated

    On the interaction forces and responses of structural rings subjected to fragment impact Interim technical report, 1 Aug. 1969 - 31 Jul. 1970

    Get PDF
    FORTRAN 4 program for calculating dynamic Kirchhoff deformation of structural rings subjected to fragment impac

    The IRAS 1-Jy Survey of Ultraluminous Infrared Galaxies: I. The sample and Luminosity Function

    Full text link
    A complete flux-limited sample of 118 ultraluminous infrared galaxies (ULIGs) has been identified from the IRAS Faint Source Catalog (FSC). The selection criteria were a 60 micron flux density greater than 1 Jy in a region of the sky delta > -40 deg, |b| > 30 deg. All sources were subsequently reprocessed using coadded IRAS maps in order to obtain the best available flux estimates in all four IRAS wavelength bands. The maximum observed infrared luminosity is L_ir = 10^{12.90} L_{sun}, and the maximum redshift is z = 0.268. The luminosity function for ULIGs over the decade luminosity range L_ir = 10^{12} - 10^{13} L_{sun} can be approximated by a power law Phi (L) ~= L^{-2.35} Mpc^{-3} mag^{-1}. In the local Universe z < 0.1, the space density of ULIGs appears to be comparable to or slightly larger than that of optically selected QSOs at comparable bolometric luminosities. A maximum likelihood test suggests strong evolution for our sample; assuming density evolution proportional to (1+z)^{alpha} we find alpha = 7.6+/-3.2. Examination of the two-point correlation function shows a barely significant level of clustering, xi (r) = 1.6 +/- 1.2, on size scales r ~= 22 h^{-1} Mpc.Comment: 18 pages of text, 10 pages of figures 1 to 6, 6 pages of tables 1 to 3, ApJS accepte

    Am empirical comparison of the performance of classical power indices

    Get PDF
    Power indices are general measures of the relative voting power of individual members of a voting body. They are useful in helping understand and design voting bodies particularly those which employ weighted voting, in which different members having different numbers of votes. It is well known that in such bodies a member's voting power, in the sense of their capacity to affect the outcomes of votes called, rarely corresponds to the actual number of votes allocated to him. Many voting bodies for which this is an important consideration exist: examples include international organisations (notably the World Bank, the IMF, the European Union), the US presidential Electoral College and corporations in which votes are proportionate to stockholdings. Two classical power indices dominate the literature: the Shapley-Shubik index and the Banzhaf index (also known by other names). Both are based on the idea that a member's power depends on the relative number of times they can change a coalition from losing to winning by joining it and adding their vote. They may be defined in probabilistic terms as the probability of being able to swing the result of a vote, where all possible outcomes are taken as equiprobable. The indices differ however in the way they count voting coalitions. In probabilistic terms they use different coalition models and therefore differ in precisely what is meant by equiprobable outcomes. The indices have been used in a number of empirical applications but their relative performance has remained an open question for many years, a factor, which has hindered the wider acceptance of the approach. Where both the indices have been used for the same case, they have often given different results, sometimes substantially so, and theoretical studies of their properties have not been conclusive. There is therefore a need for comparative testing of their relative performance in practical contexts. Very little work of this type has been done however for a number of reasons: lack of independent indicators of power in actual voting bodies with which to compare them, difficulties in obtaining consistent data on a voting body over time with sufficient variation in the disposition of votes among members of actual legislatures and the lack of independent criteria against which the results of the indices may be judged. It has also been hampered to some extent by lack of easily available algorithms for computing the indices in large games. This paper assesses the indices against a set of reasonable criteria in terms of shareholder voting power and the control of the corporation in a large cross section of British companies. Each company is a separate voting body and there is much variation in the distribution of voting shares among them. Moreover reasonable criteria exist against which to judge the indices. New algorithms for the Shapley-Shubik and Banzhaf indices are applied to detailed data on beneficial ownership of 444 large UK companies without majority control. Because some of the data is missing, both finite and oceanic games of shareholder voting are studied to overcome this problem. The results, judged against these criteria, are unfavorable to the Shapley-Shubik index and suggest that the Banzhaf index much better reflects the variations in the power of shareholders between companies as the weights of shareholder blocks vary

    Optical Imaging of Very Luminous Infrared Galaxy Systems: Photometric Properties and Late Evolution

    Full text link
    A sample of 19 low redshift (0.03<<z<<0.07) very luminous infrared galaxy (VLIRG: 1011L⊙<10^{11}L_\odot< L[8-1000 ÎŒ\mum] <1012L⊙ < 10^{12} L_\odot) systems (30 galaxies) has been imaged in BB, VV, and II. These objects cover a luminosity range that is key to linking the most luminous infrared galaxies with the population of galaxies at large. We have obtained photometry for all of these VLIRG systems, the individual galaxies (when detached), and their nuclei, and the relative behavior of these classes has been studied in optical color-magnitude diagrams. The photometric properties of the sample are also compared with previously studied samples of ULIRGs. The mean observed photometric properties of VLIRG and ULIRG samples, considered as a whole, are indistinguishable at optical wavelengths. This suggests that not only ULIRG, but also the more numerous population of VLIRGs, have similar rest-frame optical photometric properties as the submillimeter galaxies (SMG), reinforcing the connection between low-{\it z} LIRGs -- high-{\it z} SMGs. When the nuclei of the {\it young} and {\it old} interacting systems are considered separately, some differences between the VLIRG and the ULIRG samples are found. In particular, the old VLIRGs are less luminous and redder than old ULIRG systems. If confirmed with larger samples, this behavior suggests that the late-stage evolution is different for VLIRGs and ULIRGs. Specifically, as suggested from spectroscopic data, the present photometric observations support the idea that the activity during the late phases of VLIRG evolution is dominated by starbursts, while a higher proportion of ULIRGs could evolve into a QSO type of object.Comment: 27 pages, 5 figures (degraded to reduce space). Figures 1 and 2 are multiple page figures (i.e. Fig 1a,b and Fig2a-g

    Non-pathogenic Escherichia coli biofilms: effects of growth conditions and surface properties on structure and curli gene expression

    Get PDF
    Biofilm formation is a harmful phenomenon in many areas, such as in industry and clinically, but offers advantages in the field of biocatalysis for the generation of robust biocatalytic platforms. In this work, we optimised growth conditions for the production of Escherichia coli biofilms by three strains (PHL644, a K-12 derivative with enhanced expression of the adhesin curli; the commercially-used strain BL21; and the probiotic Nissle 1917) on a variety of surfaces (plastics, stainless steel and PTFE). E. coli PHL644 and PTFE were chosen as optimal strain and substratum, respectively, and conditions (including medium, temperature, and glucose concentration) for biofilm growth were determined. Finally, the impact of these growth conditions on expression of the curli genes was determined using flow cytometry for planktonic and sedimented cells. We reveal new insights into the formation of biofilms and expression of curli in E. coli K-12 in response to environmental conditions

    Gettysburg College Sustainability Proposal

    Full text link
    In the fall of 2011, the Environmental Studies capstone class led by Professor Rutherford Platt was asked to write Gettysburg College’s first Sustainability Plan. The goal of the plan was to develop specific sustainable practices for the campus that were related to the three pillars of sustainability: economic, social, and environmental, and how integrating diligent sustainable practices into each of these respected pillars will result in a more conscious campus, community, and future. In 2010, Gettysburg College turned to the Sustainability Tracking Assessment and Rating System (STARS) to quantify the institution’s sustainability efforts, providing a self-check mechanism to encourage sustainability applications to all aspects of the College. The American College and University Presidents’ Climate Commitment was signed in 2007 by former Gettysburg College President Katherine Haley Will, declaring that Gettysburg College would become carbon neutral by 2032. Gettysburg College has made large strides in the search for sustainability, and aims to continue its dedication to furthering sustainable practice. The following plan outlines the six priority areas identified by the Capstone class: progress of the American College and University Presidents’ Climate Commitment, Dining Services, campus green space, community outreach, integration of sustainability into the Gettysburg College Curriculum, and the Sustainability Advisory Committee. The first priority area identified was monitoring and upholding the American College and University Presidents’ Climate Commitment (ACUPCC). Though creating new sustainability initiatives on campus is the driving force towards an increasingly sustainable college and community, it is imperative that these goals be carried out in full to maximize beneficial returns. In order to reach carbon neutrality, Gettysburg College hopes to increase energy efficiency in buildings, incorporate renewable energy sources on campus, and mitigate remaining emissions through the purchase of carbon offsets. To further the College’s progress, it is proposed that Gettysburg College continue its energy-efficient appliance purchasing policy, as well as create a policy to offset all greenhouse gas emissions generated by air travel for students study abroad. As stated by the ACUPCC, a Sustainability Committee should take responsibility for the updates and progress reports required to meet the goal of carbon neutrality. The second priority area identified was sustainability in Dining Services. Gettysburg College is home to 2,600 students, all of whom require three full meals a day. Dining Services accounts for a large fraction of Gettysburg College’s sustainability efforts, already implementing sustainability through composting, buying local produce, and using biodegradable products. The proposed on-campus sales cuts of non-reusable to-go items, a change in campus mentality on food waste, and improved composting practices will translate to an increasingly sustainable campus, as well as a well-fed campus body. The third priority was maintaining green space on campus. Ranked as the 23rd most beautiful campus in the United States by The Best Colleges, Gettysburg College utilizes campus green space to create an atmosphere that is conducive to activity as well as tranquility. The plan proposes that Gettysburg College and its grounds facilities continue their exceptional efforts, focusing on increasing the use of the student garden, creating a new rain garden or social area on campus, and converting unnecessary parking lots into green space. As these additions are completed, they must be introduced to the student body and faculty alike to assure these areas are known and utilized. The fourth priority was utilizing community outreach to spread awareness of sustainability initiatives on and off campus. To connect the sustainability-geared changes proposed in this plan, community outreach at Gettysburg College is assessed to estimate how well these initiatives are communicated and promoted to both potential and enrolled students, faculty, and other concerned parties. To evaluate the efficiency of communication at Gettysburg College, a quantitative assessment is presented to measure the ease of finding the sustainability webpage, the quality of sustainability-related topics available on the webpage, and quality of webpage design. The webpage is in need of improved text to image ratios, locations of sustainability topics, and data displays. Despite not having a link to the sustainability webpage on the Gettysburg College homepage, sustainability events should be covered and presented on the rotational news feed found on the homepage to maximize outreach to interested parties or simply to add to the definition of Gettysburg College. The fifth priority was integrating sustainability into the Curriculum to build a culture on campus that values academic rigor, supports students as they cultivate intellectual and civic passions, and promotes the development of healthy social relationships and behaviors. The proposed Sustainability Committee on Sustainability in the Curriculum (SCC) will hold sustainability workshops for faculty with the aim to instill sustainability into all academic disciplines, providing all Gettysburg graduates with a means to approach their professional careers in a fashion that is conscious of sustainability. The sixth and last priority was the Sustainability Advisory Committee. Established in 2007, the Sustainability Advisory Committee is currently under review, but it is recommended that the committee restructure itself in accordance with the new Sustainability Committee Bylaws. These bylaws aim to define the purposes, membership, governance, and involvement with the college. With a clearly defined set of goals and methodology, the Sustainability Advisory Committee will be able to improve the solidarity of the sustainability movement on campus as a whole. By following the propositions laid out in the Gettysburg College Sustainability Plan, the student body, faculty, and community alike will become a part of a multi-faceted progression toward a more sustainable future
    • 

    corecore