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Abstract

Data from radiata pine stands in the south-east of South Australia 

were used to investigate various aspects of stand yield models with a 

view to establishing a satisfactory predictive model for use in South 

Australia. In the first phase of the analyses data from unthinned 

stands uere used with Ordinary Least Squares (OLS) techniques to invest

igate various model structures that have been proposed in the past, to 

determine whether yield or increment was the better dependent variable, 

and to investigate conditioning through a known base point, defined as 

site potential, and taken as yield at age 10. The second phase extended 

these analyses to include investigation of the effects of thinning var

iations and soil differences, and also investigated the use of the model 

both for other forest regions in South Australia and for second rotation 

stands. Because these analyses were statistically unsatisfactory 

Generalized Least Squares (GLS) and Bayesian statistical methods were 

used in the third phase to develop a simple yield prediction model that 

is statistically sound. This technique offers considerable promise for 

future work.

The conditioned form of the Mitscherlich ormonomolecular model below 

was the most satisfactory yield prediction model developed for radiata 

pine stands in South Australia.

1 _ exp(-p(A - 10 expC-a^ )) )

1 - exp(-p(l 0 - 10 expt-a^))
where

p = 0.05271 - 0.006484 ln(Y1Q) 

a1 = -0.003467 Y1Q

and where

Y^ = yield at age A 

A = age, and,

site potential
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I INTRODUCTION

South Australia has little native forest and of necessity the 

Government became interested in plantation forestry over a hundrea years 

ago, only 40 years after the state was first settled.

By 1920 the Woods and Forests Department realized that radiata pine, 

Pinus radiata (D.Don.), had the greatest growth potential of the species 

tried, and had developed a satisfactory silvicultural system for the 

management of the species. During the subsequent economic depression 

plantation establishment increased dramatically. The Department now 

controls some 76 700 ha of plantation of which 68 900 ha have been 

planted with radiata pine. This resource is managed on an approximately 

50 year rotation and has a comparatively even distribution of age classes 

as can be seen in Figure 1.1.

Prediction of future yield in South Australia is especially critical. 

Current prediction techniques (Lewis, Keeves and Leech, 1976) indicate 

that the increment of the resource is approximately equal to the commit

ment to existing industry. The potential for expanding the area of 

plantations is very limited because of high land prices and the limited 

area of suitable soils, Moreover Keeves (1966) has shown that the 

second rotation on any site has, and will have, a lower yield than the 

first, so that future industry expansion is limited.

The objective of this study was to develop a yield prediction model 

for the radiata pine plantations in the lower south-east of South 

Australia so that the Woods and Forests Department can continue to 

efficiently manage its plantation resource.

However, the study has wider implications. In 1975 Australia had 

some 565 000 ha of coniferous plantations, amounting to 1.3̂ 6 of the forest 

area. Of this area some 394 000 ha or 70% were planted with radiata pine 

(Australia, Department of Agriculture, 1976). The proportion of
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4
Australia’s wood production obtained from coniferous plantations has in

creased from 6% in 1950/51 to 18% in 1970/71 (Wilson, 1974) and the 

F0RW00D Conferenca (Australian Forestry Council, 1974) predicted that 

the proportion will be some 57% by the year 2010, On the basis of the 

existing plantation resource alone radiata pine will become the major 

commercial forest type in Australia within a relatively few years.

The Mensuration and Management Research Working Group of the Stand

ing Committee of the Australian Forestry Council discussed growth models 

for radiata pine at a meeting at Caloundra, Queensland, in 1974. The 

Group acknowledged that differences existed between regions within 

Australia in the growth of radiata pine, but the Group pointed out that 

a detailed analysis of the differences in growth and form between regions 

would lead to a better understanding of the species, and hence lead to 

better prediction models. The Group concluded that development of a 

generalized growth model which recognised such differences was both 

possible and highly desirable.

Because South Australia has a long history of plantation forestry 

and has probably the best radiata pine growth data available, this study 

could well provide the basis for managers of radiata pine in other areas 

to review their long term planning models and provide a basis for a 

generalized model. Indeed a secondary objective of this study was to 

investigate the utility of the south-east model in relation to other 

radiata pine areas in South Australia as a precursor to an investigation 

of the further transportability of the model.
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South Australia is the driest state in Australia with only ,2% of 

the area receiving more than 6C0 mm of rainfall per year (Bednall, 1957)* 

Intensive forestry is necessarily limited to these higher rainfall areas, 

the largest area of which is in the south-east of the state. The main 

plantation resource in the lower south-east has been described by Bednall 

(1957) and Douglas (1974), and consists of some 100 000 ha of softwood 

plantations located in a compact unit as shown in Figure II.1. Some 

61 000 ha are controlled by the Woods and Forests Department (Woods and 

Forests, 1976), of which 55 400 ha have, been planted with radiata pine.

Elsewhere in the state the Woods and Forests Department has some 

13 400 ha of radiata pine plantations, predominantly in five forest 

reserves geographically separated from one another: Bundaleer and

Wirrabara Forest Reserves in the Northern region, and Mount Crawford, 

Kuitpo and Second Valley Forest Reserves in the Adelaide Hills or Central 
region (Figure II.2). Data from these areas were used to evaluate 

whether the model developed using data from the lower south-east of the 
state could be extended to other areas.

Management practice in South Australia

Current management practice in South Australia has recently been 
described in detail by Lewis, Keeves and Leech (1976). However, some 

features of current practice need to be reiterated here.

In South Australia radiata pine plantations are stratified into 

volume productivity classes which are termed site quality classes, 

volume being considered a more effective basis for stratification than 

upper stand height (Keeves, 1970). Site quality assessment is based on 

total volume production to 10 cm top diameter underbark at age 9\ years.
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Figure 11.1

—
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o
Inventory is carried out on a five yearly cycle using temporary 

0*1 ha plots. The intensity of sampling is such that the average 

logging unit of some 30 ha has five plots selected at random within site 

quality strata. In each plot diameters are measured and the trees to be 

removed during the next five year period are demarcated. Volumes 

available from thinning are estimated using a tree volume equation, with 

appropriate adjustment for increment on the thinnings between time of 

inventory and the scheduled year of thinning (Leech, 1973),

A short term (five year) cutting plan is then produced, delineating 

where thinning and clear felling should be carried out. The inventory 

data and the cutting plan are also used to predict yield from the 

resource some 60 years into the future, using a deterministic simulation 

model developed by the author. The model developed in this study is 

intended to replace the yield prediction model currently incorporated in 

that long term planning model.

Permanent Sample Plots

Following the first forest inventory in South Australia permanent 

sample plots were established in 1935 and these have been gradually 

augmented so that there are at present 313 plots in radiata pine plant

ations in the south-east of the state, These plots have been remeasured 

at various intervals and provided the data base for this study.

The plots generally cover the range of past silvicultural practice 

and, although they do not cover recent changes in establishment practice 

and early maintenance, they are typical of the major part of the forest 

estate that will contribute to the cut for the next 20 years or sc.

Models developed from these data can therefore be used in long term

planning
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Plots have generally been measured mere frequently for basal area 

and upper stand height than for volume, measurement frequency decreasing 

with increasing age, but have always been measured for volume at time of 

thinning. The thinning regime for each plot was prescribed at plot 

establishment, although some plots have been rescheduled to widen the 

range of treatments.

Mensuration practice has remained more or less constant since plots 

were first established and is described in detail elsewhere (Lewis, 

Keeves and Leech, 1976). However, two aspects of measurement have 

changed over time;

1 sampling for volume, and,

2 height estimation.

These were considered further to see whether the changes had any serious 

implications for this study.

Plot volumes have always been estimated from the volume of sample 

trees, individual trees being estimated by the 3 m  or 10 foot sectional 

method (jerram, 1939) or the Regional Volume Table (Lewis and McIntyre, 

1963; Lewis, McIntyre and Leech, 1973), Thus any variations in form 

have been taken into account in the estimated plot volumes. Sampling 

intensity and the method of selection of sample trees have changed 

gradually over the years. Initially arithmetic mean tree methods

(Oerram, 1939) were used, changing later to the use of Solly’s (1950) 

volume-basal area line and evolving to the current stratified

random sampling frame^based on the volume basal area line') developed by 

Keeves (1961). Nevertheless, analysis of some 32 plots where all trees 

were measured by the 10 foot sectional method (the data Keeves used) 

indicated that although the early volume estimates were somewhat less 

precise than recent methods, they ware unbiased (Keeves, pars,comm. ),



Initially mean dominant height was estimated. The current defin

ition of ’predominant height’ (Lewis, Keeves and Leech, 1976) has only 

been in use since 1952. This change has more serious consequences than 

those for volume because the differences betueen the two measures may be 

substantial. Estimates of predominant height were available for some 

plots prior to 1962 but their precision and bias were unknown. The 

estimates were considered satisfactory for the determination of form 

estimates but were considered unsatisfactory for the development of 

height prediction models.

11

VARIABLES

As in most studies of this kind spanning long periods of time, the 

data available dictate the variables which can be used in the model.

Yield

The objective of a yield model is to predict the utilisable volume 

of wood that can be taken from a site. The utilisable volume depends 

on the volume available and the volume lost or wasted in logging, and 

this loss or wastage varies considerably depending on the equipment 

used. However, this study is restricted to estimating the volume 

available. It is envisaged that separate studies will be carried out 

from time to time to determine or revise the volume lost or wasted in 

logging.

The volume available has teen defined as including both standing 

volume and the volume lost due to mortality and thinning, measured 

underbark in cubic metres per hectare to a 10 cm top diameter.
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Age is generally considered to be the most important independent 

variable in growth and yield studies (Buckman, 1962) and was the only 

independent variable in many of the earlier models. In South Australia 

plantations are established in winter using one year old seedlings, 

however the age of the plantation is taken as the number of years since 

planting out, ignoring the period in the nursery. All permanent sample 

plot data were measured in the period between late Nay and early 

September, with the measurement program starting in the same locality 

each year and progressing in the same sequence so that measurements in 

any plot were generally made in the same month each time. The seasonal 

fluctuation in growth within each year (Pawsey, 1964) can therefore be 

ignored.

Site potential

Site quality assessment is carried out in South Australia in the 

summer when the stand reaches age 9\ years, however, as the plots were 

all measured in winter the base age for this study was assumed to be 

10 years. In this study the total volume yield underbark at age 

10 years (Y^g) in cubic metres per hectare to a 10 cm top diameter was 

used as the definition of site potential. The relationship between 

site potential (Y^g) and site quality from the age 9^ assessment is 

shown in Table II.1.

For plots where there were no measurements at age 10, Y^g was 

estimated by linear interpolation, or if this was not possible, by 

extrapolation. The extrapolation was based on the average of the first 

two volume increments available and was confirmed by comparing estimated 

Y^g with extrapolation using Lewis's yield table (Lewis, Keeves and 

Leech, 1976), and by inspection of the basal area-age trend; many of the 

plots having been measured for basal area before volume measurement

*21
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Table II.1

Relationship between 

site quality and site potential

Site quality

Site potential (Y^g)
m'Vha to 10cm top
diameter underbark

SQ I 273

SQ II 223

SQ III 175

SQ IV 131

SQ V 80

SQ VI 37

SQ VII 7
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commenced.

Stand density

Indices of stand density inevitably raise issues concerning 

definition and measurement (Leech, 1973), however in this study the 

choice of a variable to use as an index of stand density was restricted. 

There was no point in using indices based on such variables as standing 

basal area or upper stand height because such variables change contin

uously with age and require a separate model to be developed for predic

tion of future density. Only two of the variables available seemed 

appropriate, stocking and standing volume.

Stocking, the number of trees standing per hectare, has the advantage 

of being readily measured in the field, but is not entirely adequate as a 

index of density (Leech, 1973). Although not so easy to measure, 

standing volume is measured on all permanent sample plots and can 

readily be estimated for inventory plots. Standing volume seemed likely 

to provide a better index than number of trees so both these variables 

were tried in subsequent analyses.

Thinning

The description of a thinning regime can be separated into three 

parts (Lewis, 1959; Ford—Robertson, 1971).

1 Thinning type; indicating the categories of trees to be removed 

in the thinning based on size or crown classification.

2 Thinning grade; indicating the quantity to be removed, expressed 

in terms of number of trees, basal area or volume.
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3 Thinning interval; indicating at what stages in the development of 

the stand these removals are to be made. This is generally 

expressed in years although it could be expressed in terms of 

volume or basal area growth since the last thinning.

The thinning type practised in South Australia has for many years 

been essentially a thinning from below with all suppressed and sub

dominant trees being removed as well as a proportion of the co-dominants 

and dominants to help space the trees. Indices of thinning type are 

generally ratios of either mean tree diameter (Lewis, 1559; Braathe,

1957; Soergensen, 1957) or volume (Lewis, Keeves and Leech, 1975), of 

the trees removed from the stand to those either before or after 

thinning. Within the available data the range of thinning type was 

quite narrow (if thinning type was defined as the ratio of the mean diam

eter of thinnings to the mean diameter before thinning, the mean thinning 

type was 0.92 with a standard deviation of 0.04), and thus thinning type 

was not included as a variable in the subsequent analyses.

The grade of a thinning is a measure of the change in competition 

level due to that thinning. Grade is commonly specified in terms of 

either residual basal area (Gentle et al.t 1962; Robinson, 1968) or 

residual number of trees (Lewis, 1959, 1963) and in this absolute form 

is in essence an index of stand density which has already been discussed. 

Buckman (1962) considered the more logical measure to be the proportion 

of the forest cut either as volume, basal area or number of trees per 

unit area. This relative form provides a measure of the shock that the 

stand has suffered in thinning and should obviously be based on the same 

variable as stand density.

Thinning interval is defined as the number of years between thinnings. 

Normal South Australian practice is to thin SQ I and II stands every five 

years, SQ III every six, SQ II/ and V every seven, and SQ VI and VII every 

eight to ten years depending on the health of the stand. Logging
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practice generally keeps within one or two years of this ideal. Perm

anent sample plots include a somewhat wider range of thinning interval 

than normal plantation practice.

Soil

The soils of the south-east region of South Australia have been 

described and typed by Stephens (Stephens et si., 1941) who conducted a 

detailed soil survey of much of the forest area. Three soil profiles 

have been described on all permanent sample plots and have been allocated 

to these soil types with three depth phases superimposed. For other 

regions the soil profiles were allocated to a soil type on the basis of 

a number of different surveys, but the soil types generally reflect 

morphological differences on a broader scale than the south-east survey.

Form

Uhen considering the possible effect of form on increment or yield 

the differences between form factor and taper need to be considered; 

both being related to different aspects of the concept of form. A 

number of alternative stand based indices of form were available based 

on standing basal area (m /ha) and a measure of upper stand height, 

predominant height (m). These indices are crude proxies for the more 

commonly used tree based indices, but were the best available,

1 Stand form factor, the ratio of standing volume to the product of 

basal area and predominant height.

2 Stand form factor at age 1G, possibly an indicator of differences 

between soil types or regions because it is unaffected by thinning 

and is age invariant.

3 Relative stand form factor, the ratio of current stand form factor 

to stand form factor at age 10.
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4 Average stand taper, the ratio of mean tree diameter to predominant 

height, mean tree diameter being the diameter equivalent to the mean 

basal area* This was considered more likely to vary between soil 

types than stand form factor as on some heavier soils higher than 

average basal area is accompanied by lower than average predominant 

height.

5 Average stand taper at age 10, possibly a better index than average 

taper because, as with form factor at age 10, it is age invariant 

and independent of thinning.

5 Relative stand taper, the ratio of average stand taper to average 

stand taper at age 10.

Where data at age 10 years were not available, interpolated or 

extrapolated figures were used.

Other sources of variation

In discussing tree growth in relation to the environment Gaertner 

(1964) summarised the literature on the effect of nutrition, moisture, 

temperature and various aspects of light. He and Glock (1955) cited 

considerable evidence of correlation between rainfall and growth, work 

supported by Fielding and Willett (1941) for radiata pine. There are' 

few meteorological stations in Australia with records of temperature and 

hours of sunlight, and even these seldom cover the temporal range of the 

forest growth data available for this study. Investigation of long 

term rainfall records revealed many anomalies and discontinuities which 

made it impossible to develop a useful rainfall index for this study. 

Moreover, the stations are too sparse to enable rainfall to be estimated 

for each plot. In view of this lack of suitable data, climatological 

variables were not included in this study.
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Variables reflecting man-made influences such as nutrition and tree 

breeding were not available in a form suitable for inclusion in these 

analyses. This is clearly an area which warrants urgent attention in 

the future, since future yields will be affected by these influences. 

However, their omission was not critical to this study as the bulk of 

the present plantation estate was not established from seed orchard 

stock and has not received intensive treatment with fertilizers.

THE DATA BASE

The data were extracted from manually maintained permanent sample 

plot registers and files and were coded for punching onto cards. After 

the data were punched and verified a program developed by the author 

was used to check the data as rigorously as possible, finally producing 

appropriately formatted data files and a facsimile of the register. 

Painstaking reconciliation of this register with the manually maintained 

register, resolving any remaining sources of difference or ambiguity, 

ensured that the data were as error free as possible.

The data were largely measured in imperial units, the conversion to 

metric being made in 1973. The data base thus included metric measure

ments and metric conversion of imperial measurements, but careful check

ing reduced potential errors from this source to a minimum.

The data are summarised in a number of tables in Appendix 1• 

Appendix 1.1 summarises the complete data base, Appendix 1.2 the soil 

types, and Appendices 1,3 to 1.6 the different data sets used during 

the analyses.
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III STATISTICAL METHODS

Introduction

The estimation of the relationship between one variable and a

number of others is a common problem in forestry and is generally

accomplished by the use of multiple linear regression analysis using

the Ordinary Least Squares’ (OLS) technique. Multiple regression

requires a model with a linear structure, the linearity referring to

the coefficients or parameters of the independent variables, 

j=k

yi = Z bj xi j + ei ( m -
j=1

where

b . 
J

e .l

n

k

is the i'th observation of the dependent variable,

(i=1.... n),

is the i ’th observation of the j ’th independent variable 

(i=1.... n, j=1..... k),

is the j ’th parameter to be estimated, ( j=1.,..,k ), 

is the error term for the i ’th observation, 

is the number of observations, and, 

is the number of parameters.

9

The linear model can be stated in matrix form as

Y = XB T E (III.2)
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where

en

OLS is widely used to estimate the parameters of linear models and 

has been developed and discussed in detail by many authors including 

Kendall and Stuart (1961), Johnston (1963), Goldberger (1964), Draper 

and Smith (1966) and Theil (1971). If the analysis of a model violates 

any of the assumptions that underly GLS analysis, other techniques may 

be more appropriate. These techniques include two stage least squares 

(2SLS), generalized least squares (GLS), the use of instrumental var

iables, lagged variables, weighting and dummy variables. However, OLS 

generally represents the best starting point for any analysis, providing 

initial results which can be used to test whether the model conforms with

the underlying assumptions
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Linearity is often too restrictive a requirement and models with a 

nonlinear structure may need to be examined. The general form of a 

nonlinear model can be represented thus:

V = f(B,X) + E (III.3)

where the f operator is used to denote a function nonlinear

in the parameters B, and where the notation is as for Equation III.2,

Sometimes a nonlinear model can be transformed (for example by 

taking logarithms) to obtain a form which is linear in the parameters. 

These intrinsically linear models, to use Draper and Smith's (1966) 

terminology, can be estimated in the transformed state using OLS.

In general, however, DLS cannot be used to estimate the parameters 

of nonlinear models. The normal equations which result from different

iating the objective function are not linear in the unknown parameters, 

and no exact analytical solution for these equations exists. An 

iterative approximate solution must be employed. Even so, there is no 

single algorithm which will unfailingly yield satisfactory estimates 

of the parameters of nonlinear models.

Nonlinear models which are not intrinsically linear constituted a 

major interest in this study. The statistical theory relating to 

parameter estimation for these models is not well developed. However, 

the results of the linear model theory often seem applicable to them, at 

least to an acceptable order of approximation (Goldfeld and Quandt, 1972; 

Box and Tiao, 1973), and hence it seemed appropriate to frame this review 

around the linear theory results, which are well established and coherent.
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PROPERTIES OF ESTIMATORS AND PREDICTORS

The f o l l o w i n g  p r o p e r t i e s  ( K e n d a l l  and S t u a r t ,  1951; G r a y b i l l ,  

1961 ; U c n n a c o t t  and U o n n a c o t t ,  1970 )  a re  g e n e r a l l y  s o u g h t  f o r  l i n e a r  

e s t i m a t o r s :

An e s t i m a t o r  s h o u ld  be u n b ia s e d .  An u n b ia s e d  e s t i m a t o r  i s  one

t h a t  on a v e ra g e  has th e  same v a lu e  as th e  t r u e  e s t i m a t o r .  For

exam p le  b . i s  an u n b ia s e d  e s t i m a t o r  o f  b . i f  
J J

E(V ( I I I . 4 )

w here

E i s  t h e  e x p e c te d  v a lu e  o f  t h e  p a ra m e te r .  

B ia s  i s  d e f in e d  as 

Blb.
J

E ( b . )  -  b .  
J J

w here

( I I I . 5 )

Bl i s  t h e  b ia s  o f  th e  p a ra m e te r  b . ,
bj J

An e s t i m a t o r  s h o u ld  be e f f i c i e n t .  liJhen co m p a r in g  two a l t e r n a t i v e  

/— ^
e s t im a t e s  o f  b b .  and b .  th e n  th e  most e f f i c i e n t  e s t im a t o r  i s  th e  

J J J

one w i t h  th e  lo w e r  v a r i a n c e .  The r a t i o  o f  t h e  v a r ia n c e s  p r o v id e s  

a m easure  o f  t h e  r e l a t i v e  e f f i c i e n c y  i f  th e  e s t im a t o r s  a re  u n b ia s e d .  

The r e l a t i v e  e f f i c i e n c y  o f  b .  com pared w i t h  b .  i s :

öV
R =■ -------- J-

cfS.
( I I I . 6 )

w here

R i s  th e  r e l a t i v e  e f f i c i e n c y ,  and ,

(T i s  th e  v a r ia n c e  o f  th e  e s t im a t o r  b .,  ^ c . x T  b . .
i J

The m ost e f f i c i e n t  e s t im a t o r  i s  th e  minimum v a r ia n c e  e s t im a t o r  as by 

d e f i n i t i o n  t h e r e  can be no e s t i m a t o r  u i t h  a g r e a t e r  r e l a t i v e  e f f i c 

i e n c y
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3 An estimator should be consistent. Estimators are said to be 

consistent if

- b^)2— >0 (III.7)

and as

- b )2 = b| + CT b. (III.8)J J j J

an estimator b . is consistent if J

Lim Bgv = 0  (III.9)
jn — >oo 

2
Lim 6b = 0 (III.10)
n— > oo

If only the bias approaches zero then the estimators are said to be 

asymptotically unbiased, but not strictly consistent.

4 An estimator should be sufficient. An estimator is said to be 

sufficient if it contains all the information in the set of obser

vations regarding the parameter tü be estimated (Fisher, 1921,

1925; Deutsch, 1965).

OLS estimators possess these properties provided that the data and 

model conform with the assumptions underlying Classical normal linear 

regression’, to use Goldberger’s (1964) terminology. Under these con

ditions OLS estimators are also identical to the maximum likelihood 

estimators. OLS estimators also provide predictors which are best 

(i.e. minimum variance) linear unbiased predictors (Theil, 1971).

For nonlinear models with independent, normal and identically 

distributed errors, OLS estimators are likewise identical to the maximum 

likelihood estimators and are therefore asymptotically efficient, con

sistent and sufficient estimators (Goldfeld and Quandt, 1972), However, 

unlike linear models, the small-sample properties of these estimators are 

not well established. Moreover, in contrast to the exact solutions 

available for linear models, these properties are further complicated by
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errors of estimation which may be introduced through the iterative 

approximate process of solution. Thus the properties of predictors 

based on small-sample OLS estimators of nonlinear models are not well 

defined.

MISSPECI FICATION

The assumptions underlying the use of OLS estimation for classical 

normal linear regression models are as follows (Goldberger, 1964):

1 The variance should be homogeneous over the range of the 

dependent variable.

2 The error terms should be independent of one another.

3 The error terms should be normally distributed.

4 The rank of the matrix of observations should be equal to the

number of parameters to be estimated and less than the number 

of observations.

5 The variables should be measured without error.

6 The model should have the correct structure and include all the 

relevant variables, but no others.

If OLS estimation methods are used for a model that is misspecified 

in terms of these assumptions then the estimates may be biased, in

efficient and/or inconsistent depending on the form of the misspecification, 

as the following sections indicate.

Homogeneity of variance

The variance of the error term is assumed to be independent of the 

independent variables and homogeneous (Kendall and Stuart, 1961; Johnston, 

1963; Wonnacott and Wonnacott, 197C).
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e(e &') = <52 i (iii.li)

where

I is the identity matrix of order rvyn ,

E is the error of the i observations, and,
'V 7 7

2(T is the variance.

If this assumption is violated then the estimators are unbiased but 

inefficient (Johnston, 1963).

To test the variance for homogeneity the data are generally 

partitioned and the variance of each cell calculated. There is general 

agreement (Sokal and Rohlf, 1969; Acton, 1959) that Bartlett’s test of 

homogeneity (1937) is better than either Hartley’s (1950) or Cochran’s 

(1941) test although Acton considers that none of these tests is robust, 

all being sensitive to non-normality in the underlying distribution.

Heterogeneity seemed most likely to arise between different plots, 

and within any one plot the variance might also increase with increasing 

age or with decreasing site potential. As insufficient data were 

available to test for heterogeneity by age within plots, the first test 

was by plots alone. The data were then pooled and partitioned into age 

and site potential cells and the cell variances tested for heterogeneity. 

As a third test the data were ordered on the expected value of the 

dependent variable and divided into approximately equal cells in a 

general omnibus test for all other possible sources of heterogeneity.

To overcome heterogeneity, observations are generally weighted by 

the reciprocal of the square root of the estimated variance (Cunia, 1964; 

Freese, 1964; Johnston, 1953). If heterogeneity exists and a suitable 

estimating function for variance cannot be developed then extension to 

mere advanced estimation techniques than OLS may be necessary, but the 

gain in efficiency must be balanced against the increase in the complexity



of the estimation technique.

Serial correlation

The error term in the linear model is assumed to be unbiased, 
that is

E(ei) = 0 (III.12)

and as well the error terms are assumed to be independent of one another 

(Kendall and Stuart, 1961; Graybill, 1961).

E(e e ) = 0 for a11 1 (III.13)
If the latter assumption is violated then the OLS estimators will be 

inefficient (Johnston, 1963).

Serial correlation most commonly occurs in time series due to mis- 

specification either by omitting variables (Ulonnacott and Wonnacott, 

1970) or by selecting the wrong model structure (Cochrane and Orcutt, 
1949). Errors in the data are another possible source of serial 
correlation (Cochrane and Orcutt, 1949) but these seemed unlikely to be 
of importance in this study. As noted earlier the data for this study 

were all collected at the same time of the year thus eliminating one 
source of seasonally induced serial correlation.

The most commonly used test for serial correlation is that of 

Durbin and Watson (1950, 1951).

The statistic is
i=n 2
£ (ei - ei-,>2

d =

i= I

where
n is the number of observations, r

e^ is the error of the i ’th observations, and,

27

d is the test statistic
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This test in its original form is not an exact test but provides upper 

and lower bounds to an inconclusive zone for from 15 to 100 observations. 

Because it is not an exact test a number of authors have developed nom

inally exact tests of which the one by Theil and Nagar (1961) is probably 

the most commonly usedc In their latest paper Durbin and Watson (1971) 

concluded that many of these exact tests are "too inaccurate for practical 

use", and further refined an approximation they had suggested in their 

earlier papers. However, this also seemed inappropriate for this study.

In this study the number of observations from each plot was limited 

to 16 or fewer, generally 10-13. Although serial correlation was 

tested by plots where possible, the results were seldom conclusive 

because of the low number of observations. The test was also carried

out on the pooled data, although there is no adequate test for serial 

correlation in these circumstances (Heathcote, pers.comm. ). The plots 

in the test data were ordered by site potential, and the observations 

within each plot ordered by age. The d statistic calculated on this 

pooled data is biased slightly by the inclusion of the difference 

between the last observation of one plot and the first of the next and 

this difference is unlikely to be serially correlated. There were too 

many observations in the pooled data for the tabulated upper and lower 

bounds to be used, and the extra calculation necessary for the Durbin 

Watsonop^foximation of the ’exact’ statistic seemed inappropriate in 

view of the inadequacy of the test for the pooled data. The critical 

values of the statistic were therefore calculated by the technique of 

Theil and IMagar (1961), in the absence of better alternatives. For the 

individual plot data the tabulated Durbin and Watson statistics were 

extrapolated where necessary.
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Normality

Uhen making inferences about model structure using statistical tests 

of hypotheses the error term is assumed to be normally distributed. 

Normality could be tested using the Chi-square statistic, but this test 

is not specific in that it fails to indicate whether skewness or kurtosis 

is the problem. To overcome this problem Sokal and Rohlf (1969) and 

Snedecor and Cochran (1967) describe techniques for estimating moment 

statistics of skewness and kurtosis. These two statistics are then 

compared with t (two tailed) for infinite degrees of freedom. The 

Shapiro-U/ilk statistic (Shapiro and Ulilk, 1965) is more powerful 

(Shapiro, Wilk and Chen, 1968) than these other statistics but the tests 

of relative power indicated little gain when the number of observations 

increased past 50.

Tests of normality could not be carried out by plots because there 

were too few observations even for the Shapiro-liiilk test. For the 

pooled data there were more than 100 observations and in these cases the 

Shapiro-liiilk test is difficult to apply and perhaps even dangerous 

(D’Agostino, 1971). The moment statistics were therefore selected as 

the test statistics because they indicated the type of departure from 

normality and were relatively powerful for the sample sizes used in 

this study.

Rank

The rank of the matrix of observations must be equal to the number 

of parameters to be estimated, that is, no exact linear relationship can 

exist between any of the independent variables. The rank must also be

less than the number of observations



30
In general, these assumptions are easily met by careful definition 

and selection of the set of independent variables* However, marked 

collinearity between any two independent variables gives rise to 

parameter estimates with very high sampling errors. Thus this condition 

also needs to be avoided.

Measurement error

OLS assumes that the variables are measured without error (Kendall 

and Stuart, 1961; Ulonnacott and Ulonnacott, 1970)* If the dependent 

variable is measured with error, but the error is unbiased, then the 

variance of the error term for the model is inflated accordingly.

This problem is therefore of comparatively little concern, although the 

increase in the error variance may obscure relationships between the 

dependent and independent variables.

Errors of measurement in the independent variables may give rise 

to more serious problems unless;

1 the errors are unbiased, and,

2 the data to be used in subsequent prediction are measured 

in the same way as those used to estimate the parameters.

Under these circumstances OLS estimators will give unbiased predictions 

(Ulonnacott and UJonnacott, 1970), even though the estimators are biased 

relative to those appropriate to the independent variables when measured 

without error.

The measurement practice used in the development of the data base 

has been described by Lewis, Keeves and Leech (1976) and in part by 

Leech (1973). Although measurement errors exist, every possible effort 

has been made to reduce the incidence of these to a minimum by care and 

by strict adherence to standard procedures. The effect of measurement 

error was unlikely to be important and was ignored.
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Structure

There are three main forms of structural misspecification:

1 choosing the wrong model structure, for example by using the 

logarithm of the dependent variable where that transformation 

is inappropriate to the model,

2 omission of an explanatory independent variable, and,

3 inclusion of independent variables that are irrelevant.

The first type of structural misspecification can obviously lead 

to an inefficient prediction model even though the estimators themselves 

are efficient.

If relevant independent variables are omitted, either by mistake or 

because data are not available, then the estimates of the remaining 

parameters are likely to be biased and inefficient (liJonnacott and 

liionnacott, 1970).

If irrelevant independent variables are included then the estimators 

should be unbiased, but they will be inefficient because there are fewer 

degrees of freedom in the residuals used to estimate the variance.

Because of the ’noisy’ parameters the model is likely to be an erratic 

predictor, especially when used outside the range of the original data.

Although more complex tests of specification have been developed 

(Ramsey, 1969, 1974), a simple specification test was used in this study. 

The deviates obtained when the model was fitted to independent test data 

were regressed against a second order polynomial in each of the indepen

dent variables. An analysis of variance was then used to determine 

whether or not the regressions were significant and the model mis- 

specified.
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ESTIMATION

Estimation of the parameters of linear models is relatively simple 

because an analytical solution exists (Kendall and Stuart, 1961; Theil, 

1971; Draper and Smith, 1966), Algorithms which incorporate this 

technique have been implemented in a number of computer programs for 

multiple regression analysis and two well-known programs REX (Grosen- 

baugh, 1967) and SPSS (Nie et al,t 1975) were used in this study.

For nonlinear models the objective function cannot be minimized 

analytically and a number of alternative algorithms (Goldfeld and 

Quandt, 1972; Sadler, 1975) have been developed to approximate the 

minimization iteratively.

The algorithms commence from feasible starting values for the 

parameters and aim to reduce the objective function by successively 

changing the parameter values until a minimum is reached.

There is no certainty that a particular algorithm will be satisfac

tory for all models and all data sets, Goldfeld and Quandt (1972) 

investigated a number of alternative algorithms, testing them against 

different models and data sets in an effort to compare their effective

ness, No one algorithm was the most efficient for all the examples, 

but two particular algorithms performed consistently well. Refined 

versions of these algorithms are implemented in a nonlinear parameter 

estimation program developed by Bard (1967); the Gauss-Newton method 

(Eisenpress and Greenstadt, 1966; Carroll, 1961), and the Davidon- 

Fletcher-Powell method (Fletcher and Powell, 1963; Sadler, 1975).

As the algorithms are iterative it is necessary to use terminating 

criteria to stop computation at an appropriate end point. Three 

criteria are appropriate.
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The change in the parameter estimates between successive iterations 

should be within a preset tolerance.

i < di ( + d^) for the i parameters (III.15)

In this criterion (Marquardt, 1963) d̂  is the desired tolerance 

for the parameter and d^ ensures that if the estimated parameter 

is close to zero then computation will stop. Setting 

d̂  = 0.00001 and d^ = 0.001 has been found to work well in

practice (Marquardt, 1963).

2 The relative change in the objective function between iterations

should also be within an arbitrary tolerance, commonly Marquardt’s 

criterion. This is especially useful when the response surface 

of the objective function is relatively flat for changes in the 

parameters,

3 The number of iterations should be less than an arbitrary

maximum so that if the other criteria fail because the algorithm 

cannot converge that particular model then computation will cease.

To ensure that the algorithm has converged, that is, a true 

minimum has been reached (a stationary minimum, but not necessarily 

a global one), the Hessian matrix (matrix of second order derivatives 

of the function) should be positive definite (Morrison, 1976). There 

is no guarantee that the minimum is a global one, but careful specifica

tion and testing of the model can reduce any doubt in this regard.

The nonlinear parameter estimation program of Bard (1967) uses 

Marquardt's (1963) criterion for convergence and orovides information 

sufficient to show whether or not the Hessian matrix is positive 

definite. The program is flexible and relatively easy to use and was 

therefore used in this study.
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A user supplied subroutine is required to evaluate the function 

and its partial derivatives. For most growth models the partial 

derivatives are complex so an additional subroutine was developed to 

evaluate the partial derivatives numerically. This reduced the com

plexity of the programming changes necessary between models. The 

technique adopted is detailed in Appendix 2-

TESTING

Three different types of tests were used in this study:

1 Hypothesis tests to determine whether one model is better 

than another or to determine whether a model is internally 

consistent.

2 Tests of the assumptions underlying the model.

3 Tests of the model as a predictor.

Hypothesis testing

In developing a satisfactory model it was necessary to discriminate 

between models and between alternative forms of each model by testing a 

null hypothesis against its alternative (Johnston, 1963; Draper and 

Smith, 1966; Wonnacott and Uonnacott, 1970). Two important considera

tions in deciding how the alternative hypotheses should be tested were

1 the choice of the test statistic, and,

2 the choice of the significance level.

Analysis of variance based on the F statistic or tests using the 

t statistic were used to test hypotheses concerning alternative forms 

of a particular linear model, such as the inclusion or otherwise of an 

additional parameter. These tests are well known and extensively 

documented (e.g. Lehmann, 1959),
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For nonlinear models the situation is not so clear cut. As noted 

earlier the small-sample properties of OLS estimators of nonlinear models 

are not well established, Moreover, estimates of the precision of the 

parameter estimates are generally based on a linear approximation, which 

may or may not be sufficiently accurate (Guttman and Fleeter, 1965), 

depending on the particular form of the model and the characteristics 

of the surface of the likelihood function.

Nevertheless Gallant (1975), who studied models similar in form to 

those of interest in this study, recommended the use of a test statistic 

C, analogous to the use of the F statistic in analyses of variance for 

linear models.

c = CT^ / a  2 (III.15)
2 2where (T ̂ and (7 ̂  denote the maximum likelihood estimates of the

variance of the respective error terms in the two alternative 
2 2models, CT > (T , .

The statistic is tested against the critical values of the 

statistic C*.

C* = 1 - i Fp / (n - j)

where

F = 
P
i =
j =

n =

A av * ets jP f 0 *r

upper 100p^ points of an F distribution, 

number of parameters of interest, 

the total number of parameters, and, 

the total number of observations.

( III.16 )

Again, following Gallant’s (1975) work, the (approximate) t stat

istic was used to test hypotheses regarding the inclusion or otherwise 

of individual parameters in a particular model.

Tests of hypotheses involving disparate families of both linear and 

nonlinear models we-re achieved by comparing the predictive properties of 

the models using independent test data. This seemed more appropriate
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than the complex tests of Cox (1961, 1962).

The level of significance to be used in hypothesis testing must also 

be carefully considered, bearing in mind the possibility of both Type I 

errors (rejecting a correct null hypothesis)and Type II errors (accepting 

a false null hypothesis) (Lehmann, 1959).

Because.there was little difference in the effect of each type of 

error it was desirable to balance the probability of each type of error.

As the probability of a Type II error depends on the significance level 

selected (the probability of a Type I error), the model and the data, it 

was clearly impossible to set a priori the probability of a Type II error 

with any confidence.

When the dependent variable was yield and the data were pooled then 

p=.01 was selected as the appropriate level. When increment was the 

dependent variable, or when the model was fitted to individual plot data, 

then the lower level of p=.05 seemed more appropriate. These levels 

were used to test hypotheses both within and between models. When 

assumptions in the analysis were tested and when the model was evaluated 

as a predictor then p=.01 was used to ensure consistency between different 

developmental lines.

Testing the assumptions underlying the analysis

The models were tested using independent test data to ensure that 

the assumptions underlying the analysis were not violated, Bartlett’s 

(1937) test was used to test that the variance of the error term was 

homogeneous. Three different tests were carried out on partitioned 

data:

1 data partitioned by plots,

2 data partitioned by age/site potential cells, and,

3 data ordered on the estimated value of the dependent variable
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and divided into approximately equal sized partitions.

The Durbin-Watson d statistic (Durbin and Watson, 1950, 1951, 1971) 

was used to test for serial correlation. The test was only applied to 

the final model selected within each family of models. The data rarely 

allowed the test to be by plots, so in general the data were pooled, 

ignoring the slight bias that this may have introduced,

The moment statistics of skewness and kurtosis (Sokal and Rohlf,

1959; Snedecor and Cochran, 1967) were used to test that the errors 

were normally distributed, an assumption necessary for hypothesis testing.

Testing predictions

One common criterion for a suitable predictor is that it be un

biased over the whole of the regression surface. To test this the 

independent test data were partitioned and within each partition a 

t test was used to see whether the mean deviate was significantly 

different from zero.

Two different ways of partitioning the data were used for these 

t tests. Data were partitioned by plots in an attempt to discern 

whether there had been misspecification in relation to plot variables 

or error characteristics. Further subdivision of the observations 

within plots into age classes was not possible because of the small 

number of observations available in each plot. Hence the data were 

pooled and partitioned into site potential and age classes, in the hope 

that this would enable problems of misspecification relating to age to 

be discerned. Site potential was subdivided into three classes, based 

on boundary values of 200 and 100 m /ha. These values corresponded 

closely to the boundary values of SQ II and III, and SQ IV and \J respect

ively. These data were further subdivided into age classes of 11-16, 

17-23, 24-30, 31-39 and 40-50 years, the boundary values being chosen so
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that the classes spanned roughly equal ranges of yield.

Comparisons between models developed with different dependent 

variables (yield, periodic increment, transformed yield) were achieved 

by evaluating each model as a yield predictor on the independent test 

data. Other things being equal, the best model was selected from those 

which were unbiased, according to the standard deviation of the deviates.

Summary of testing procedure

The statistical methods adopted can be summarised as.follows.

1 For parameter estimation of nonlinear models convergence was 

confirmed by checking that the Hessian matrix was positive 

definite.

2 Discrimination between alternative hypotheses was by:

i Gallant’s (1975) test on the variance ratio to test 

between nonlinear models, or an analysis of variance 

for linear models, and,

ii t test on each parameter in turn to test the model for 

internal consistency.

3 The assumption underlying the analysis VQ$ tested on 

independent test data.

i Bartlett’s test (1937) was used to test for homogeneity 

of variance:

a data partitioned by plots,

b data partitioned by age and site potential, and,

c data ordered by the estimated value of the dependent

variable and partitioned into approximately equal

cells
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ii Durbin and Watson's (1950, 1951, 1971) statistic was used to 

test for serial correlation on data ordered:

a by plots if there were sufficient observations, 

or

b pooled, ignoring the slight bias this introduces if 

there were insufficient data to test by plots.

iii Moment statistics of skeuness and kurtosis (Sokal and 

Rohlf, 1969; Snedecor and Cochran, 1967) were used to 

test for normality.

iv As a further test of misspecification, the deviates were 

regressed against a second order polynomial in each of 

the independent variables.

4 The suitability of the model as a predictor was evaluated with 

independent test data by the following tests:

i the mean deviate for each plot was tested against t to 

determine whether misspecification had occurred.

ii The mean deviate für each age and site potential cell was 

tested against t to determine whether the model was 

biased, especially with respect to age.

5 Alternative prediction models which were otherwise satisfactory 

were compared by using them to predict yield for the observations 

in the independent test data. The model with the lowest standard

deviation of the deviates was selected
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IV GROWTH AND YIELD MODELS

COMPARISON OF GROWTH AND YIELD MODELS

Graphical models

Polynomial

Grosenbaugh

Bertalanffy

Gompertz-Thomasius

Johnson-Schumacher 
Bockvv^ann
Hugershoff-Bednarz 

Summary
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l \ J GROWTH AND YIELD MODELS

In the biological literature the relative importance of statistical 

analysis and biological inference in developing models is the subject of 

much debate. If a model is developed on a purely statistical basis 

without any deductive reasoning as to the form of the model, then it is 

likely to be satisfactory only when used in very restricted situations 

where the data are similar to those used in the estimation of the model. 

Under these circumstances extrapolation is dangerous and so are infer

ences at the extremes of the data range. Gn the other hand if no 

statistical analysis is used then the model will be of lesser practical 

value because there will be no indication of accuracy or precision. 

Kowalski and Guire cautioned (1974):

”...it must be emphasized that finding a function which 
makes biological sense has much more to recommend it than 
searching for a function that will provide only a close 
mathematical fit, Mere goodness of fit is no justification 
for adopting a given function since several functions may 
fit the data equally well.”

In principle both biological and statistical inference should be 

used to develop a model so that it will be useful in a wide range of 

practical situations. In practice this may be difficult to carry out 

successfully. Forest growth is the result of the complex interaction 

between many different and sometimes inter-related processes. Many 

of these processes have been modelled successfully, but it can be 

difficult to link them together into one coherent model. It is 

generally possible to use only relatively simple biological inference 

and this may tend to limit the formulation of biological hypotheses to 

very simple approaches.

The pattern of growth can be divided into three phases. In the 

initial juvenile phase both yield and growth rate are initially low, 

but both increase until growth rate reaches a maximum. After this 

phase growth rate declines, but at first mean annual increment still
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increases, a phase of relatively vigorous growth that changes into a 

senescent phase after mean annual increment culminates. These phases 

are shown diagramatically in Figure IV. 1.

Figure IV.1 also shows that there are two alternative ways of

looking at such a model, the first as a yield model and the second as

a growth model. If both growth and yield models are being developed

simultaneously for use in practice then they should be compatible,

compatibility being formally defined by Clutter (1963) as:

’’when the yield model can be obtained by summation of the 
predicted growth through the appropriate growth periods or, 
more precisely, when the algebraic form of the yield model 
can be derived by mathematical integration of the growth 
model.”

If the growth and yield models are not compatible according to this 

definition then two different model forms are being used.

COMPARISON OF GROWTH AND YIELD MODELS

Over the years a number of models have been developed for predicting 

either growth or yield, some simple some complex, and an initial review 

of these models was necessary to determine which warranted estimation.

Of all the variables affecting growth the most important variable is 

undoubtedly age; indeed, in many of the models it is the only indepen

dent variable. This comparison of the various models only considers 

the effect of age, the other variables are considered later.

A growth or yield model should in general possess a few simple 

characteristics.

1 Yield should be zero at age zero, or if yield is to an arbitrary 

top diameter then yield should be zero at some finite, positive 

and small age (Ag).
2 Increment after Ag should always be positive.
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Yield
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Figure IV/. 1

Relationship between growth and yield
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3 Increment should have a single maximum (at age A^) and after this

age It- should decrease q >̂ iî c-rc.asc-s> ■

4 Yield should approach a maximum yield (Y x ) asymptotically.

Of course if the data are inadequate or if the model is to be used over 

a relatively restricted age range then even these requirements may be 

relaxed.

Table IV.1 summarises many of the models that have been developed 

in equation form, including both the growth (derivative) and yield 

(integral) equations to facilitate comparisons. For convenience and 

consistency some of the models have been reformulated slightly.

Graphical yield models

Graphical yield models have been used in the past in many countries, 

and in South Australia they have been used for many years to produce 

radiata pine yield tables. The techniques are flexible and easy to 

use, but do not allow an estimate to be made of precision, and they are 

clearly liable to bias..

The first radiata pine yield table in South Australia was produced 

by Gray in 1931 (Lewis, Keeves and Leech, 1975) using the limiting curve 

method attributed by Spurr (1952) to Baur in 1877. This method uses 

single or spot estimates of yield to define upper and lower bounds to 

yield, these being then divided anamorphicaily into site potential classes. 

As more data became available the yield table was revised by Solly in 

1941 and later by Lewis in a series of revisions in 1953, 1957, 1960,

1963, 1968, 1970 and 1973 (Lewis, Keeves and Leech, 1976). As trend 

data became available the method changed to the directing curve trend 

method attributed by Spurr (1952) to Heyer in 184-5.

These carefully derived graphs have been successfully used by the 

author in simulation studies (Lewis, Keeves and Leech, 1976). More
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Table II/.1

Growth and yield models

Name dY/dA

i=n—1
polynomial b-i +2JciAi

i=1

Mitscherlich n-pY

logistic nY-pY2

Neider (1) nY-pY(l+l/m)

Neider (2) nY-pY(l-m )

Pearl Reed bn-l(fl)[aY-bY2]

von Bertalanffy (1) nY2/3-pY

von Bertalanffy (2) 
(Chapman-Richards)

nYm-PY

von Bertalanffy (3) nYm-pYr

Gompertz cY ln(Y/b)

Thomasius complex

Johnson -bY / (c+A)2

Schumacher +bY/ A2

Backmanfv exp(a+b(lnA)+c(ln2A))

Hugershoff a A2 exp(-cA)

Bednarz ~  ^exp(-cY)

Grossnbaugh complex

Yield

'-1

1
1—m

8
(n/p )|l-exp(-p( A-Aq ) 

(p/n)|l+exp(n(A-Ai))|

j(p/n)[l4i  exp(-S<A-Ai)>]|/

|(p /n )^1-H n  exp (-nm (A -A i ) ) j |

k|l-Hn exp(qn(A))|

Jl-exp(wlp( A—AQ ) )j|

ji+c1exp(-p(l-m)(A-c2 )^

if m<1 and c =An then c =-1 
if m>1 and c ^ = t h e n  c^=(m-1)

complex

a exp(-exp(-b(A-A.)))

a |1-exp^-bA(l-exp(cA))j 

a exp(-b/(c+A)) 

exp(a-b/A)

complex

2a
c3 ll-exp(-cA) r cV i1+c A-p-~—

(

—  ln(aAb+l)

. nm+1
a4b|exp[(n2-1 )l!]-nll|
U=exp(-b(A-c)) 
but U can be any function

References

Marsh (Grut,1970) 

(1910)

Grosenbaugh (1965) 
Pearl 4 Reed (1923)

(1961 )

(1952), Austin, Neider 
4 Berry (1964)

(1923)

(1941, 1942)

(1941 ), Richards (1959), 
Chapman (1961 )

(1941 )

(ie25), Winsor (1932)

(1964)

(1935)

(1939), Clutter (1963), 
Sullivan 4 Clutter 
(1972), Ferguson 4 
Leech (1976a)

(1943), Prodan (1969), 
Assmenn (1970)

Prodan (1968)

(1975)

(1965)

Where
qn(A) is a nth degree polynomial in age A, uhera n is an odd integer commonly 3 

is yield at a base age r
complex indicates that the model is readily fitted in the form specified but 

less easily in the other form
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importantly they hav/e been used quite successfully for many years to 

regulate the total cut in the profitable state afforestation enterprise 

in South Australia to as near maximum as possible.

However, the possibility of bias and the inability to calculate 

precision suggests that mathematically formulated models capable of 

objectively based statistical analysis may be more appropriate. Given 

adequate statistical precision, mathematical models are easier to use 

and revise for long term yield regulation calculations, especially with 

the computer oriented methodology now in use.

Polynomial

The polynomial is the simplest mathematical form for a growth or 

yield model. Providing that the order of the polynomial is high enough 

any functional form can be approximated.

Y = b + b A + b A2 + b A3 + ... + b AR (IV.1)0 1 2  4 n

where

Y = yield,

A = age, and,

b_, b , b , b , ... b are the parameters to be estimated.

Although precise unbiased estimates can be obtained for the para

meters of a polynomial it is unlikely to be a satisfactory predictor.

The model is likely to behave erratically at the extremities of the 

data and any extrapolation is extremely dangerous. The polynomial 

has been used by Harsh (Grut, 1970) and although computationally con

venient the absence of any explicit biological structure was sufficient 

to cast doubt on its utility for this study. It cannot, for example, 

approach a maximum asymptotically.
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Grosenbaugh

In 1965 Grosenbaugh formulated a complex growth model which included 

many other model forms as special cases. The function is

is often a suitable form for 1), but it could be replaced by either a 

linear or a logarithmic function, and where,

Y = yield,

A = ago, and,

a, b, c, d, n and m are parameters to be estimated, or are 

preset before analysis.

Grosenbaugh tabulated many of the more frequently used models 

specifying the form of the function U and the particular values of the 

parameters which each model implies. His objective was to develop a 

framework within which the various special cases could be compared for 

a particular data set. His challenge has not yet been taken up, 

probably because it makes almost impossible demands on the data and on 

analytical techniques, but the concept of defining a general model that 

is the starting point of the analysis of a set of data is very appealing.

A computer program to carry out the analyses in the way that 

Grosenbaugh envisaged was not available and it was considered impractical 

to develop one in the available time. This study therefore evaluated 

only a selected set of models.

Y = a + b

where

U = exp(-d(A-c)) (IV.3)
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Bertalanffy

In 1941 Bertaianffy proposed a growth model which seems to haue a 

simple but well founded biological basis. The model was deueloped over 

many years (see also Bertalanffy, 1942, 1957, 1969) and encompasses many 

of the models previously developed. The model was developed from a 

study of the so-called allometric relationships in organisms (Huxley, 

1932), attributed to Snell in 1891. An allometric relationship is said 

to occur when the relationship between two current attributes (for 

example volume ( X ^  and height oS- an oncjqn'\£>rri can be expressed in

the following form;

X1 = a X2b (IV.4)

This arises from the assumption that in normal individuals of a popu

lation the specific growth rate of one variable has a constant proportion

al relationship to the specific growth rate of the other.

dX dX
—  oc—  < I V - 5 >

Some objections to this model have however been raised. In 

particular Haldane pointed out (Laird, 1965; Huxley, 1932) that if each 

part of an organism is allometrically related to each other part, then 

the growth of part of the organism is the sum of a number of exponential 

expressions.

v = si x;bl (IV'6)1

This sum cannot equal a single allometric expression unless the exponents 

(the allometric constants) are the same. Thip is analogous to the per

vasive problem of aggregation in econometrics (Theil, 1971). In practice 

the problem is generally ignored and the growth model is assumed to apply 

to the aggregate population under study.
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Bertalanffy (1941) based his model on the hypothesis that the 

growth of an organism is the difference between anabolic growth rate 

(constructive metabolism) and catabolic rate (destructive metabolism), 

leading to the general form:

where

Y = yield,

A = age, and,

n, m, p and r are the parameters in the model.

Bertalanffy further noted that if Y was expressed as weight then 
the catabolic destruction rate could be taken as being proportional to 

the biomass of the organism itself, thus r=1, for many zoological genera. 

His zoological research suggested three groupings of which the first was 

the most common:

1 anabolic rate proportional to surface area, m=2/3,

2 anabolic rate proportional to weight, m=1, and,

3 anabolic rate intermediate between the two, 2/3<m<1.

In spite of the fact that Bertalanffy recognised three groupings for 

zoological genera many workers have accepted m=2/3 for other biological 

applications without critically examining the inherent assumptions.

Because the simple model with m=2/3 did not perform well in other

biological analyses the simple model was 'generalized' to the Chapman-

Richards model (Richards, 1959; Chapman, 1351; Pienaar and Turnbull,

1973) although this is still a contraction of the general form that
(1 )Bertalanffy proposed in 1941. 7

= nYm - pY (IV.8)

(1) Equation IV.8 is very similar to an equation Verhulst (1844) records 
but did not pursue, presumably for practical reasons.
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1 + ĉ  exp(-p(l-m)(A-c2))

where

(1U.9)

Y = yield,

A = age,

n, p and m are the parameters to be estimated, and, ĉ  and are 

the constants of integration such that if C2=^q the a9e at which 

volume growth commences then c^=-1, or, if c2=Ai the a9e at which 

increment culminates then c/j = (m-1 ) provided m^1.

Three variants of Bertalanffy's general model were recognised for 

this study:

1 m and r allowed to float, the general model,

2 m allowed to float, r=1, the Chapman-Richards model, and,

3 m=2/3, r=1, the simple Bertalanffy model.

It is not possible to integrate the derivative equation for the 

general form except by numerical methods which were inappropriate for this 

study (A.Brown, pers.comm. ). It could, however, be integrated for certain 

values of m and r, but the integral often involves exponential and tri

gonometric terms and generally has age as the dependent variable, which 

is unsatisfactory. The second level model is the most commonly used 

form in forestry and can be integrated using Bernoulli's equation 

(Appendix 3.1).

There are a number of other models that are submodels of the general 

Bertalanffy model although frequently developed independently, often 

prior to Bertalanffy's work.

The simplest form is the monomolecular equation (m=0, r=1 ) also 

called the "law of physiological dependence" (Assmann, 1970) which was 

first postulated in a forestry context by Mitscherlich (1910) who suggest

ed that by augmenting a growth factor which is limiting, yield does not
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increase linearly with the increased factor, but in proportion to the 

difference between present and maximum yield. Parallel derivation to 

that used by Bertalanffy suggests that for this restricted case the 

catabolic rate is proportional to the yield of the organism itself and 

that the anabolic rate is constant regardless of biomass or time, con

clusions that seem appropriate for an established forest crop with a 

relatively constant source of nutrients in the soil. The equation is:

^  = n - pY (IV.10)

Y = ~ (1 - exp(-p(A-fl0 ))) (IU.11)

where the variables and parameters are as for Equations IV.8 and IV.9,

The most commonly used growth model is the logistic or auto- 

catalytic which probably originated (Pearl and Reed, 1923; Grosenbaugh, 

1965), from the work of Verhulst (1844, 1846), and is a form with m=1, 

r=2 (or m=2, r=1, n and p negative). This equation is generally form

ulated in terms of A^, the age of culmination of increment, and can be 

stated as:

ri V 2= PY - ru (IU.12)

Y = £ (1 + exp(n(A-fl.))) (IU.13)

where the parameters and variables are as for Equations IV.8 and IV.9.

This equation is symmetric about the point of inflection in the yield 

equation. For this equation anabolic rate is proportional to yield 

itself and catabolic rate is proportional to the product of anabolic

rate and yield. To overcome some of the restrictions fielder (1961, 1962) 

and Austin, fielder and Berry (1964 ) proposed more general forms that 

parallel the second level Bertalanffy equation (see Table IV.1 ).
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Pearl and Reed (1523) used an odd powered polynomial term to define 

a model of cyclical growth.
-1

Y = Yq + k C 1 + m e*p(q(A))] (II/.14)

where

Y = yield,

Yq = yield at the commencement of the growth cycle and 

for this analysis is zero, 

k = the asymptotic maximum yield for that cycle, 

m = a parameter to be estimated, and, 

q(A) = an odd powered polynomial function of age A.

They found that a third order polynomial was generally satisfactory, 

using analytical means to fit the function to feu data points. The 

equation offered no advantage over the second level Bertalanffy and was 

not considered further.

The allometric constant m in the second level Bertalanffy equation 

provides an estimate of the fraction of the asymptotic maximum yield 

that occurs at the culmination of increment (A.). The fraction is as 

follows:
1

( m ) 1 “ m  ( IV. 1 5  )
Figure IV.2 shows the way that this fraction changes with m and although

for m=1 the fraction is undefined, the limit as m-*-1 is 1/e. This is

the same as for the Gompertz function to be discussed later. Richards

(1959) and Pienaar (1965) used a very similar equation to the second

level Bertalanffy and claimed that the limiting form as m-o-1 is the

Gompertz equation. Pienaar’s logic can however be shown to be false

if the original Bertalanffy model is used instead of the Chapman-

Richards formulation (Appendix 3), but this conclusion is supported by

the evaluation of the fraction.
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Figure II1.2

Proportion of asymptotic maximum yield that 
occurs at age of maximum growth rate 

Second level Bertalanffy model
d Y  x/m  V
dÄ = nY " pY

m
1

f v1-m(m) Model

0 0.0 Mitscherlich
2/3 0.296 von Bertalanffy (simple)
1 (0.368) (by interpolation)
2

l
0.5 logistic
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Gompertz-Thomasius

One of the earliest of all growth models is that of Gompertz (1825) 

who in a treatise on life expectancy and the calculation of annuities 

developed a model of growth rate calculation later formulated by Uinsor 

(1932), (see Table IV.1 ).

dY—  = cY ln(Y/a) (IV.16)

Y = a|exp(-exp(-b(A-Ai)))| (IV.17)

where

Y = yield,

A = age,

A^ = the age of culmination of increment, and,

a, b and c are the parameters to be estimated.

The equation has been widely used, apparently with success, to predict 

a wide variety of growth responses (Laird, 1965), For this equation 

increment culminates when yield is 1/e of the asymptotic maximum yield. 

This seemed unduly restrictive when compared with the more flexible 

second level Bertalanffy but the model was evaluated because it has been 

widely used in biological modelling,

Thomasius (1964) combined some of the logic of Mitscherlich (1910) 

and Gompertz to develop a model for forest growth which is more complicat

ed than either and less well defined (Rawat and Franz, 1974),

Y = a 1 1 - exp(-b A(1 - exp(cA)))|d (IV.18)

where

Y = yield,

A = age, and,

a, b, c and d are the parameters to be estimated.

This model offered little unless the Gompertz proved to be as satisfactory

or better than the other alternative models tried



55

Johnson-Schumacher

In 1935 Johnson proposed a simple model for growth to be used after 

the culmination of periodic annual increment. This was used in simpli

fied form by Schumacher (1939) because it facilitated the formulation of 

a simple combined model including site potential and stand density as 

well as age that could be estimated by multiple linear regression analysis.

^  = bY / (c+flf (IV.19)

Y = a exp(-b/(c+A^) (IV.20a)

or

ln( Y) = ln( a) - b / ( c + l \ ) L (lV.20b)

where

Y = yield,

A = age, and,

a, b and c are the parameters to be estimated, and 

where for the Schumacher model c=0.

Clutter (1963) used the Schumacher form but Bailey and Clutter (1S74) 

raised age to a power in an effort to define a more flexible model. An 

inherent assumption of the model is that the age of culmination of mean 

annual increment is twice the age of culmination of current annual increm

ent. Because of this restriction and because the model has only a 

limited biological basis it was considered likely that the Johnson- 

Schumacher model would be inferior to the second level Bertalanffy model. 

However the model was evaluated because it has been used to predict 

forest growth satisfactorily.

Backmann

Backmann's formula for forest growth (Prodan, 1968) was based on the 

premise that the logarithm of growth is proportional to the square of the
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logarithm of time.

h V 2
■j- = exp( a + b ln( A) + c (ln(A)) ) (IV.21)

where

Y = yield,

A = age, and,

a, b and c are the parameters to be estimated.

Although this derivative equation leads to a complex yield equation it 

can be readily used in practice using arithmetic probability paper. 

Increment culminates at 15.9^ of the asymptotic maximum yield which 

seemed an unnecessary restriction with little or no biological basis.

The equation was considered unlikely to be as satisfactory as the second 

level Bertalanffy and was not evaluated.

Hugershoff-Bednarz

The Hugershoff equation (Prodan, 1968) assumes that the juvenile 

phase of growth can be approximated by a quadratic function in age and 

the senescent phase by an exponential decay model, one phasing into the 

other in an intermediate stage between the culmination of current and 

mean annual increment.

d Y .2 , .—  = a A exp(-cA)

( 2 n21
Y = ~  j 1 - exp(-cA) 1 + cA + 2

where

(IV.22) 

(IV.23)

Y = yield,

A = age, and,

a, b and c are the parameters to be estimated
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Scdi»^arz-([3 li;>36Lj99ested a modification to the two components of the 

derivative that makes the model more flexible as well as being a

mathematically simpler yield form. The model is

(IV.24)

(IV.25)

where

Y = yield,

A = age, and,

a, b and c are the parameters to be estimated, but Dednarz fitted

the equation conditioned such that at a base age r, yield was Y

ln(aAb + 1 ) 
r ln(ar*D + 1 )

(IV. 26)

to reduce the number of parameters to be estimated. The model is one 

of the feu models that does not reach an asymptotic maximum yield, yield 

continuing to increase with increasing age. The Bednarz model was 

evaluated because it has been previously used to predict radiata pine 

height growth, in spite of its lack of a coherent biological base.

Graphical models were considered an inappropriate form for this 

study and only equation forms were considered. Of these the Bertalanffy 

model appeared to offer the greatest flexibility, satisfying all the 

simple biological criteria. Unlike many of the other forms the culmina

tion of increment is not rigidly defined in terms of either a fixed prop

ortion of asymptotic maximum yield or of the age of culmination of mean 

annual increment. The general form was considered less appropriate than 

the simpler second level form because it could only be integrated for 

particular values of the parameters m and r, and not over the complete 

range.

Summary
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Graphs of yield against age suggested that increment probably cul

minates at a relatively young age for most plots, possibly at or even 

before the first volume measurement at age 8 to 12 (Appendix 1.5b and 

1.3c). Models such as the Dohnson-Schumacher or Bednarz were thus 

possibly satisfactory predictors within the range of the data and for 

that reason were evaluated. The double exponential Gompertz form and 

the polynomial were evaluated for completeness rather than from any 

sense of probable utility.

The other models in Table IV,1 were either not evaluated (Backmann, 

Pearl-Reed and Hugershoff), were evaluated as part of the evaluation of 

the second level Bertalanffy (Mitscherlich, logistic, simple Bertalanffy 

and Neider), or were reconsidered after a simpler form had been evaluated 

(Thomasius). Grosenbaugh’s form was not evaluated because it was 

impractical.
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V EXPLORATORY ANALYSES OF DATA F~R0P6 UNTHINNED STANDS 
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Linear models
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Lewis’s yield table
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V EXPLORATORY ANALYSES OP DATA FRON UNTHINNED STANDS

The exploratory analyses were carried out on data from unthinned 

stands partly to reduce the number of variables to be considered and 

partly because it seemed more appropriate to first investigate stands 

that had not been artificially modified by thinning.

DATA

There are a number of plots in the south-east of South Australia 

which have never been thinned in order to provide a control series 

against which the more numerous thinned plots can be compared. These 

plots cover a representative range of age and site potential and there

fore provide good data sets on which to evaluate the models of growth 

and yield for unthinned stands.

The data from unthinned stands were extracted from the data base 

and divided into two sets.

1 Developmental data; comprising a minimum of nine measurements

of volume for each plot over a minimum twenty year growth period.

2 Test data; between five and eight measurements for volume over at 

least a fifteen year growth period.

The data were divided according to the number of measurements and 

growth period because it was intended to evaluate the use of individual 

plot trends. Long trends with at least nine measurements were highly 

desirable for this type of analysis. There were insufficient of these 

plots to allow random allocation into development and test sets, so the 

plots with the shorter trends provided the independent test data.

The two data sets are summarised in Appendix 1.3. The twenty plots

in the developmental data included 228 volume measurements with an average
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growth period of 33 years. The twenty three plots in the independent 

test data had 157 volume measurements with an average growth period of 

20.8 years.

S e v e r a l  r t s p e c t s
The developmental data cover a narrower range.than the test data.

Of the test data plot EP24C was planted at 6x6 feet, EP24E at 9x9 feet, 

whereas all the other plots in both data sets were planted at 7x7, 8x8 

or 9x7 feet. Four plots in the test data, EP24C, EP24E, 433 and 155, 

are of higher site potential than the developmental data, and three 

plots, 149, 368 and 369, are poorer. The test data also cover a wider 

range of forest district, but because of the way the data were allocated 

there are few measurements at later ages. Because the two data sets 

were not allocated at random the models developed may be open to question 

if used to predict the wider range covered by the test data. This 

problem was not considered critical at this stage because the objective 

was to use these exploratory analyses to narrow the number of models to 

be fitted and evaluated, not to arrive at a final prediction model 

per se.

SITE POTENTIAL

Conditioning based on site potential and the effect of site potential 

on yield are two aspects which warranted careful study.

Conditioning

For a number of growth and yield models it was possible to condition 

the yield model so that at age 10 yield is the value of site potential 

(Yi0), thus eliminating one or more parameters. For example the second 

level Bertalanffy model can be conditioned thus:
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Y

where

1

1

exp(-p(/l-m)(A-AQ 

exp(-p(l-m)(10-A

))
))

Y - yield,

A = age,

Y^q - site potential, yield at age 10, and, 

p, m and A^ are the parameters.

(V.1 )

Bailey and Clutter (1974) haue argued that conditioning places too 

much weight on measurement and other errors associated with site potential 

(or in their case, site index). This seemed unduly pessimistic in this 

instance. Conditioning is identical to the imposition of an exact con

straint on the parameters of the stochastic model. Linear theory 

(Goldberger, 1964; Theil, 1971) shows that the imposition of exact 

linear constraints and solving by OLS yields minimum variance, unbiased 

estimators and thus predictors. It is not clear whether these results 

hold for nonlinear models. However to the extent that most similar 

results hold asymptotically for estimators of nonlinear models, it could 

be expected that these results would also hold asymptotically.

A more powerful technique might be to treat the observations of 

site potential as unbiased estimators of constraints on the parameters. 

However this would necessitate precise estimates of the variance assoc

iated with the estimate of site potential, and far more complex techniques 

of parameter estimation. Given that the values of site potential are 

precise, neglect of these errors seemed unlikely to be of much con

sequence, A gross check is feasible however. Comparison of the con

ditioned and unconditioned versions of any one model using the usual 

tests can eliminate the unlikely possibility that the errors attached to 

site potential are so large that conditioning results in markedly 

poorer estimators.
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Hodel formulation

Conditioning relates to the data and parameters for individual plots. 

It rnay not serve to take the effects of site potential fully into account, 

across the entire data set. The remaining parameters of the model may 

themselves be functions of site potential.

One well known technique for taking these effects into account is 

to develop an average yield curve and then assume that the other curves 

are anamorphic, a fixed amount or fraction above or below the average 

yield curve. Although used by Bednarz (1975) to predict upper stand 

height growth, the assumption of similar shape is not valid for volume 

to a top diameter limit, because it takes a varying number of years ( )  

for growth to commence, with growth commencing earlier on the better 

sites.

In the Bertalanffy model the relationship between culmination of 

increment and the asymptotic maximum yield is dependent on the allometric 

constant m (Figure IV.2). As increment culminates for radiata pine at 

an early age, possibly at or before the first measurement included in the 

data, (see Appendix 1,3), it seemed unlikely that the effect of site 

potential on the parameter m could be estimated. Studies by Brickell 

(1968) and Beck (1971) were also unable to relate m to site potential.

Replacing m by a linear function in site potential would allow the 

relationship between the age of culmination of current annual increment 

and the age of culmination of mean annual increment to vary, but it was 

thought unlikely that satisfactory estimates could be obtained from the 

available data.

The parameters n and p in the second level Bertalanffy model 

combine to provide an estimate of the asymptotic maximum yield that a 

site can achieve. For anamorphic yield curves this asymptotic maximum
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yield is assumed to be a linear function of site potential.

Ymax

where

1

(n/p)1-" b + b 0 + 1 (V.2)

^max = asymptotic maximum yield,

n and p are the parameters of interest that together

with the allometric constant m combine to provide 

the asymptotic maximum yield,

= site potential, and,

b^ and b,, are the parameters to be estimated.

Beck (1971) used this linear form to estimate height growth of white 

pine, although Brickell (1968) added a quadratic term making the yield 

curves polymorphic. Thus Equation V.2 could be replaced by:

n = 

P =

n0 + n1 Y10 + n2 Y10 (V.3)

where n^ would be equal to zero for anamorphic yield curves, but not 

equal to zero for polymorphic curves. In terms of Bertalanffy’s 

deductions this implies that the anabolic rate is proportional to site 

potential but that the catabolic rate is not.

The contradictory hypothesis that anabolic rate is independent of 

site potential and that catabolic rate decreases with increasing site 

potential also seemed to be biologically plausible.

P = P0 - P., Y1q (V.4)

n = n0
For a yield model based on Equation 1/.4 the rate of increase of asymptotic 

maximum yield increases with increasing site potential, supporting 

Brickell’s model form. This form was also supported by the work of

Cilliers and van Uyk (1938). Since both models seemed plausible, both
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were evaluated,

The age at which volume growth commences (A^) was incorporated into 

the models by replacing age A with (A-Ag). Site potential influences 

Aq so that as site potential increases, A^ decreases from the base age 

for the yield curves but never reaches zero. This could be approximated 

by a simple linear function within the range of the data, or could be 

fitted by a quadratic. Exponential or reciprocal forms seemed more 

logical as they allow A^ to decrease as site potential increases without 

introducing a turning point.

where

Ao = a 0 (V. 5a)

Ao = a o - a i Y1 0 (V. 5b)

Ao a D +  a i Y/l 0  +  a 2 Y10
(V. 5c)

Ao = a g e x p ( ' " 3 / l Y1 0 ^ ( V.5d)

Ao = a o +  a i / ( a 2 + Y10) ( V. 5e )

Ao
= the age at which volume growth commences,

Y1 0 = site potential, and,

V a 1
and a^ are the parameters to be estimated.

When site potential is zero then A^ should be ten. However this was 

outside the range of the data, and although conditioning to this effect 

seemed desirable it was not considered essential. After the models 

were fitted A^ was tested to determine whether this conditioning was 

acceptable. If the null hypothesis was accepted then the simpler 

submodel for An was selected.

Similar derivations were used for parameters in models other than 

those based on the Bertalanffy form. For most parameters in the 

equations in Table IV.1 simple polynomials were used to test the effect 

of site potential.
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( V .  6 a )

cr II cr □ + cr -< □ ( V . 6 b )

b =  b +  b Y +  b Y ^
0 1  1 0  2 1 0

( V . 6 c  )

uhere

b represents the parameters of the equations in Table IV.1,

0 = site potential, and,

bg, b̂  and b^ are the parameters to be estimated.

For the Johnson-Schumacher model these formulations encompassed the 

uork of Schumacher (1939), Clutter (1963) and Ferguson and Leech 

(1976a), but as the dependent variable uas not yield but the logarithm 

of yield, tuo other submodels were also evaluated.

b = b0 + b1 / Y10 (V.6d)

b = b0 + b1 ln(Y1cl (V.6e)

ANALYSIS

Before the models could be evaluated tuo further facets of the 

analytical procedure had to be considered.

1 The form that the dependent variable should take; yield or 

increment, and if increment, uhether instantaneous (the deriva

tive) or periodic.

2 Whether the data should be pooled and the model developed in a 

single stage process or uhether a tuo stage procedure should be 

used, the first estimating the parameters for each plot and the 

second evaluating the effect of site potential.
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Form of bha dependent variable

There are a number of ways of specifying the dependent variable in 

a growth or yield model. Three of these were considered: yield,

instantaneous increment at a given time, and increment over a given 

period. The choice of the form of the dependent variable depended in 

part on the available data and in part on statistical considerations.

If yield is to be used as the dependent variable then serial 

correlation is likely to be a problem. Yield at any age is largely 

dependent on yield at earlier ages, especially late in the rotation 

when increment represents only a small proportion of current volume.

This could have been avoided by including an autoregressive disturbance 

proportional to the earlier measurement as described in Chapter III, 

but this would have made the analysis more complicated than seemed 

warranted,

A simpler approach was to assume that first order serial correlation 

existed between successive measurements of yield and to estimate increm

ent rather than yield. If periodic increment (Pi) is the dependent 

variable then an autoregressive process is implicitly built into the 

model. If yield at age A is Y and yield i years later is Y . thenH Ht”!

fitting

(V.7)

assumes that yield is not serially correlated, whereas,

YA+i (V.8)

assumes serial correlation. If the coefficient of serial correlation

s equals one then periodic increment (Pi) can be estimated:

with the inclusion of the increment period i allowing for the data 

having variable intervals between measurement. The right hand side of



69
the equation is better formulated in terms of periodic annual increment 

(Pai) rather than periodic increment (Pi) to make the variance of the 

dependent variable more homogeneous.

Pai = Pi / i = (Yfl+. - Yfl) / i (U.10)

If instantaneous increment is used as the dependent variable then 

the derivative form of the yield model can be evaluated. Because the 

general form of the Bertalanffy model cannot be integrated to provide 

a yield equation, the derivative is the only uay that the general form

can be evaluated. However because the data are estimates of 

periodic annual increment generally after the age of culmination of 

increment the derivative models will necessarily have biased estimates 

of the parameters. Unbiased estimators can be achieved if periodic 

annual increment is the dependent variable by formulating the function 

as the difference between two yield equations.

Of the three forms, the difference equation was preferred because 

it was thought to have fewer problems with respect to serial correlation 

than yield. The derivative was however evaluated to see whether the 

contraction of the general Bertalanffy model to the second level form 

was acceptable, that is. whether r could be taken as 1.0.

Appendix 4.1 shows that for the data sets used the variance of both 

periodic annual increment and yield could be considered homogeneous and 

that weighting was unnecessary.

Single or two stage analysis

In a single stage analysis the data are pooled and the final model 

including age and site potential is estimated from the data. In a two 

stage analysis a model expressing yield (or periodic annual increment) 

as a function of age is fitted to each of the plots in turn and then, in
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a second stage, these estimated parameters are related to site potential 

and possibly other stand variables.

Single stage analysis had the advantage that the data set was much 

larger, but the information advantage inherent in the long term trend 

series was ignored. On the other hand, the two stage analysis takes 

advantage of the long term trend nature of the data but there are 

relatively few observations for each of the first stage analyses. Both 

approaches were evaluated.

STRATEGY

In defining a strategy to be adopted for model evaluation five 

factors had to be considered.

1 Which functional relationship in terms of age should be used,

2 Which form of the dependent variable should be used: 

yield, instantaneous increment or periodic annual increment.

3 Whether single or two stage analysis should be used,

4 Whether the model should be conditioned or not,

5 Which functional relationships with respect to site potential 

should be used.

As it was clearly impractical to carry out an exhaustive analysis 

of all these facets, the approach adopted was to define a priori a 

relatively simple model and to use this as a base for comparison.

Models allowing each factor to vary separately were then evaluated and 

the results compared with those for the base model. In the event of the 

base model being inferior a new base model was defined and the analytical 

procedure repeated. This strategy does not guarantee that the optimal 

model was selected, but careful analysis, including the fitting of many 

models that have not been reported in this thesis ensured that most



possibilities were tested end compared

In defining the base model simplicity was important to provide a 

starting point for comparisons. The base model was as fcllous.

1 The second level Bertalanffy model was preferred to the other 

forms in Chapter IV because it appeared to offer the greatest 

flexibility and satisfied the simple biological criteria.

2 Periodic annual increment uas selected as the dependent 

variable rather than yield to reduce the effects of serial 

correlation.

3 A single stage analysis uas preferred to the tuo stage analysis 

because the advantages inherent in the larger number of observa

tions seemed to outueigh the lack of recognition of the trend 

nature of the data.

4 The conditioned model uas preferred to the unconditioned model 

for the base model because it had feuer parameters to be 

estimated,

5 The relationship betueen the parameters and site potential 

selected uere; for p a linear function in Y^, and for

an exponential decay model.

The base model uas therefore as follous:

Pai = (Yfl+i - Yfl) / i (V.1G)
1

1 -  e x p ( -p (1 -m  ) ( A-Aq ) ) f " m

Yfl = Y/I0
r' r v " 0 " (u. 1 )

1 - exp(-p(l-m)(lO-A0))j

p = p o - P1 Y10 (V. 4)

Ao = aG eXp("a1 Y10) ( V« 5d )
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where

Pai = the dependent variable, periodic annual increment

y a yield at age A,

A =: age,

i = the increment period,

Y10 = site potential, yield at age 10, and,

P0’ p1’ a^, â  and m are the parameters to be estimated.

BERTALANFFY HÖDEL RESULTS

The base model selected was a variant of the second level 

Bertalanffy model that assumes that the parameter r in the general 

form (Equation II/.7) can be taken as 1.0. Therefore before the base 

model was fitted it was necessary to investigate whether the contraction 

to the second level Bertalanffy form was satisfactory.

The evaluation of the general model

The general model could not be integrated and the only way that the 

allometric constant r could be evaluated was using the derivative form. 

Because the data were measurements of periodic increment and not instan

taneous increment any parameter estimates were necessarily biased, the 

extent of the bias depending on the length of the increment period.

This bias could be avoided for the simple Mitscherlich form 

(m—0.0, r=1.0) by using a Taylor’s series expansion to be described later, 

but this was inappropriate for the general form. Because the analysis 

aimed only to evaluate whether r could be taken as 1.0, and did net 

aim to develop efficient estimators and predictors, it was desirable only 

that the bias be consistent. The bias did not need to be eliminated.

To achieve this the data for this analysis were culled to 103 increment 

periods of either one or two years.
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The general form of the Bertalanffy model was then fitted to the 

data, together with reduced forms with specific values of m and rt 

Three secondary models including site potential were evaluated.

n =  n 0 P =  P 0 +  P1 Y1 0
( V . 11 a )

n =  n o +  n l  Y 10

aCLIIa. ( V.1 1 b )

n =  n 0 +  n 1 Y10 P =  P 0 +  P 1 Y 10
(  V , 11 c )

where

n and p are the parameters in the general Bertalanffy model,

= site potential, and,

n^, n^, Pq and p̂  are the parameters to be estimated.

Of these three submodels Equation V.11b explained slightly more of 

the variation than Equation V.11a. Although Equation V,11c had an even 

lower residual sum squares, the estimated parameters had inflated standard 

errors and were not significantly different from zero. The following 

results are based on Equation \1,11b, but the trend was consistent for all 

three equations and similar conclusions would have been drawn if they had 

been used.

The simple Mitscherlich form (m=0, r=1 ) proved to be a satisfactory 

form with residual sum squares of 5830.7 compared with 5819.8 if both m 

and r were allowed to float. The reduction in residual sum squares 

by allowing either m or r to float was not significant. Models with 

m=0.0 and r=0.5 and 0.567 respectively were slightly more efficient than 

the Mitscherlich form but the reduction in residual sum squares was small 

and was considered insufficient to offset the more complicated form of the 

yield model. For the second level Bertalanffy (residual sum squares 

5823.3) the parameter m was not significantly different from zero.

This probably reflects the lack of early age data rather than any inherent 

structural weakness in the model. However, although the results indicat

ed that the parameter m could be taken as zero the parameter was includ-
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ed in the base model as this inference was of necessity based on a 

reduced data set. Appendix 4.2 details the residual sum squares for 

all the models fitted using Equation IV, 11b, in both graphical and 

tabular form.

Periodic annual increment, conditioned

The base model was then fitted to the 208 increment periods of the 

developmental data (Model 1, Table V.1), together with a number of other 

models with various structures for the parameters m, p and

Of the various submodels for AQ evaluated (Models 2-7, Table V.I ) 

the base model with two parameters (Model 1 ) was not significantly better 

than the base model with aQ set to 10.0 (Model 2). This was sensible 

as at Y1Q = 0 then f \Q should equal ten. The addition of a constant to 

the base model (Model 7) was not significant, Neither the polynomial 

form (Models 3 and 4) nor the reciprocal (Models 5 and 6) were as good 

as the base model.

For the parameter p, Models 8 and 9 show that the addition of the 

linear term in was not significant if the two parameter model for 

Aq was used, but was significant if the single parameter conditioned 

model for Â  was used. Model 2 had a lower residual sum squares than 

Model 8 for the same number of parameters and was preferred. Models 

10 and 11 replacing the linear function by a quadratic were not signif

icantly better than Models 1 and 2.

The allometric constant m was not significantly different from 

zero for either Model 1 or 2 using a t test, and Gallant’s test also 

showed that Models 12-15 were not significantly better than Models 8, 9,

1 and 2 respectively. Replacing m by a linear function in Y^,

Models 15 and 17 also showed no significant improvement.
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The base modal was therefore rejected in favour of the simpler 

form with two fewer parameters, Equation l/.12. For the equation the 

standard error of each parameter estimate is shown immediately below the 

estimated parameter.

m = 0.0 (V. 12)

p = 0 ,0 2537  -  0 .4 6 2 7  10“ 4 y1q

( 0 . 0 0 1 0 8 )  ( 0 . 0 5 0 3  1 0 " 4 )

A = 1 0 .0  e x p ( - 0 . 003716 Y )
( 0 . 0 0 0 0 5 2 )  U

This model confirmed the conclusion of the exploratory analysis using the 

derivative that the simple Mitscherlich form with rn=0.0 was satisfactory. 

Also, the simpler submodel for Â  was biologically sensible, in part 

validating the statistical analysis.

The underlying assumptions of the analysis were then tested using 

the 23 plots in the independent test data. Bartlett's test for homo

geneity shewed no significant heterogeneity when partitioned either by 

plots, the expected value of the dependent variable, or into age/site 

potential cells. The deviates were normally distributed, neither the 

moment statistics of skewness nor kurtosis being significant. However 

the Durbin-Watson d statistic was 0.998, indicating significant serial 

correlation. This was surprising as it had been hoped that by using 

periodic annual increment serial correlation would be avoided.

The Durbin-Uatson d statistic for the developmental data was 

however not significant, indicating that perhaps some difference between 

the two dat3 sets may be responsible. The developmental data are 

generally from pre-1940 plantations whereas the test data from post-1940 

plantations; the two sets may therefore reflect changes in the pattern 

of soil type or other geographical variation. The results of the tests 

are summarised in Table V.2. Regressing the deviates against linear 

and quadratic models in age and site potential showed the deviates to be
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independent of both. Replacing the parameters in the linear model by 

dummy variables for each plot showed that the deviates were related to 

age for each plot =5C78), suggesting misspecification.

The model was then evaluated as a yield predictor using the 

independent test data. Of the 23 plots 6 had mean deviates significant

ly different from zero, not unexpected in view of the earlier tests; as 

did 1 of the 13 age/site potential cells. Excluding from the test 

data the one plot planted at 6x6 feet overcame the latter problem.

This stocking was outside the range of the developmental data and it 

was concluded that the problem was one of misspecification that could 

possibly be avoided in later analyses using the wider ranging thinned 

stand data. The deviates for the test data had a standard deviation 

of 51.51.

The simplified base model was a satisfactory predictor. Although 

the estimators were inefficient because the serial correlation assumption 

had been violated, they were unbiased.

Periodic annual increment, unconditioned

For the evaluation of the unconditioned periodic annual increment 

models the allometric constant m was set initially to zero and the 

simple single parameter submodel for was used. Various linear and 

quadratic submodels for n and p were evaluated, but the best was 

Equation V.13 shown below with the standard errors of each parameter 

estimate immediately below the estimate. Appendix 4.3 summarises some 

of the models fitted including other submodels for the parameters p 

and AQ.
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m = 0 . 0  (V .  13 )

p = 0 .01895  
( 0 . 0 0 0 5 2 )

n =  2 0 .5 9  + 0 .1 0 0 3  Y
( 0 . 6 2 )  ( 0 . 0 2 0 0 )  '

A = 1 0 . 0  exp ( - 0 . 0 0 2 0 8 4  Y )
( 0 . 0 0 0 3 7 0 )  U

Testing the model against independent test data gave slightly 

poorer results as can be seen in Table V .2 .  The deviates were again 

serially correlated and, unlike the conditioned model, the deviates 

were heterogeneous by plots. The model was a poorer predictor as the 

standard deviation of the deviates was 5 7 . 5 3  compared with 5 1 . 5 1 ,  and 

more cells were significantly different from zero.

There were two possible explanations for the relative inefficiency 

of the unconditioned model. Firstly, it was possible that the increase 

in efficiency through the addition of the extra parameter was offset by 

the decrease in asymptotic efficiency of Bard's program because there 

were more parameters to be estimated. Secondly, although for linear 

models the residual sums of squares for an unconditioned model is louer 

than for a parallel conditioned model (Theil, 1971; Goldberger, 1964). 

this does not necessarily hold for nonlinear models but depends on the 

model structure. If the secondary structures for p and AQ from 

Equation l/.12 are substituted in Equation IV/.11 and this equation is 

reformulated in terms of n rather than Y, then a complex structure 

relating n to Y^0 results. The simple linear structure in Equation 

\1,13 is only a crude proxy for this complex structure. If all models 

had been linear then the structure implied by the unconditioned model 

uould have been a superset of the conditioned model and not a crude 

proxy.

As the conditioned model was simpler, uias a better predictor, and 

satisfied the assumptions of the analysis as uell or better, it was
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preferred to the unconditioned model.

Derivative

The earlier analysis of the allometric constant r in the general 

model had shown that r could be taken as 1.0, That analysis and others 

had shown that the simple Mitscherlich form with m=0.0 was also accept

able, However in the earlier analysis of the derivative the estimates

for n and p were biased because the way the data were used assumed 

that the periodic annual increment and instantaneous increment were the 

same. Also, the data used were restricted.

Unbiased estimates of the parameters of the simple Mitscherlich 

form (m=0,0, r=1.0), but not the general form, could be obtained from 

the full data set by using a Taylor's series expansion of the function 

(Ferguson and Miles pers.comm, ). If yield at age A is Y and yield i
r\

years later at age (A+i) is Y^+^, and if 

d Y = n - pY (I/.14)

the simple Mitscherlich form, then using a Taylor's series expansion

A+i
2 2idY i _d_Y 

YA + dA + 2 dA2
.3 a3v/ l d Y+ 6 « +

4 4i__ £_Y
24 dA4 + , •, ( V, 15 )

which can be reformulated in terms of periodic annual increment (Pai) 

Pai =
Y - Y A+i A dY

dA
2i d Y

+ 2 dA
i2 d3Y i3 d4Y , v

+ 6 d F + 24 d F + ‘”  (V,16)

Pai - ^Pal “ dfl
and therefore

Pai i p 
(1-exp(~i p))

2 3„ i i 2 i 3 
1 " 2 P + 6 p - 24 P +

n - p Y

(U.17)

( V • 18 )

Ordinary least squares linear regression theory cannot be used to 

estimate Equation l/.18 even though the right hand side of the equation is 

linear, because the dependent variable is itself a function of the
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parameter p» Bard's (1967) program mas modified to fit the model 

iteratively, successive iterations using for the dependent variable the 

estimate of p from the preceding iteration, each iteration itself 

iteratively fitting the linear right hand side of the equation. The 

initial starting values mere from the base model. The convergence 

criteria mere those of Marquardt (196b) also used to determine the 

convergence of each iteration. The technique mas in essence an iter

ative, iterative fit of an apparently linear model.

Equation V.18 mas then fitted to the 2DS observations using the 

various secondary model forms suggested earlier, Equations V„2 and V.3. 

Gallant's test could not be used to compare models as the dependent

variable varied mith the estimate of p. If Equation V,2 mas used then

the quadratic term in in the submodel for n mas not significantly

different from zero using a t test, and the reduced model belom mith

all parameters significantly different from zero mas accepted,

n = 21.55 + 0.09545 Y (V.19)
(1.19) (0.00803) U

p = 0.01794
(0.00153)

If equation V.3 mas used then the addition of the quadratic term in the 

submodel for p mas not significant, in that the estimated parameter 

mas not significantly different from zero using a t test.

n = 34.73 (V.20)
(0.92)

p = 0.03762 - 0.0001354 Y
(0,00312) (0.0000142) 'U

The only may that Equations V.19 and V.20 could be compared mas as 

predictors of the test data because the dependent variables mere differ

ent. For Equation V.19 the deviates had a standard deviation of 50.06, 

considerably lomer than the 83.76 for Equation V.20 which mas then 

rejected. Table V.2 shoms that Equation V.19 mas poorer than the
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conditioned periodic annuel increment model even though it satisfied the 

assumptions of the analysis nearly as well«,

The derivative model was therefore rejected and the conditioned 

periodic annual increment model was preferred.

Yield, conditioned

Various submodels for the parameters m, p and AQ were then 
evaluated for the conditioned yield model using the 228 observations.

The submodels were variants of the original base model and again 
reduced in complexity. The allometric constant m was again not sig

nificantly different from zero, but in this case the parameter p red

uced to a constant rather than a linear function of Y . The submodel 
for Aq remained the two parameter exponential form. Appendix 4,4 

summarises the analyses, for Equation V.21 the standard error of each 
parameter estimate is shown below the estimate,

m = 0.0 (V.21)
p = 0,01865

(0.00154)

A = 9.384 exp(-0.003334 Y )
(0.095) (0.000146) U

When the estimates of the parameters for this model were compared 
with the comparable conditioned periodic annual increment model (Model 8, 

Table V.1 ), the standard errors of the parameter estimates were con
sistently larger for the yield model (0.00154 cf. 0.00052,

0.095 cf. 0,081, 0.000146 cf. 0.000085). Periodic annual increment

therefore provided more efficient estimators than the equivalent yield 

model.

As can be seen from fable V.2 the conditioned yield model was as 
good a predictor, paralleling the conditioned periodic annual increment 

model. However the assumptions of the analysis were consistently
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violated, the deviates being heterogeneous, leptokurtic and serially 

correlated. The heterogeneity was probably associated with the 

leptokurtosis as Acton (1959) has pointed out that Bartlett’s test 

(like the other tests of homogeneity) is sensitive to nonnormality.

This cast doubt on the use of Gallant’s test to differentiate between 

models and Equation V.21 may not in fact be the best conditioned yield 

model. The Durbin—Watson d statistic was significant and considerably 

lower than for the conditioned periodic annual increment model, and 

unlike Equation U.12 the d statistic for the developmental data was 

both lower and significant.

The conditioned yield model was not preferred to the conditioned 

periodic annual increment model because the assumptions of the analysis 

had been violated consistently and because the estimates of the parameters 

were less efficient, even though the model was as satisfactory as a 

predictor.

Yield, two stage

For the two stage analysis the model was fitted to each of the plots 

in turn and then, in a second stage, the parameters from the first stage 

were estimated as functions of site potential. The technique has the 

advantage of making full use of the long term trend data available but 

there were practical limitations because there were relatively few 

observations for the first stage analysis. Both conditioned and un

conditioned models were evaluated for completeness, but because of the 

paucity of observations for the first stage analysis the conditioned 

model with one fewer parameter was thought likely to be superior.

When the conditioned model, Equaticn U.1, was fitted to the data 

the standard errors of the parameter estimates were all high and for 

each plot none of the estimates of p, or m were significantly



84

different from zero when a t test was used. This indicated a large 

degree of overfitting that could only be avoided by increasing the data, 

which was impossible, or by reducing the number of parameters to be 

estimated. Setting either p or to zero was biologically unsound

and there was no a priori reason for setting them to particular values. 

The only way that the model could be simplified was to set m to zero, 

the Mitscherlich form used earlier. When this reduced model was fitted 

to the data all parameter estimates were significantly different from 

zero showing that the simpler model was more satisfactory.

When the unconditioned model was fitted to the data (Equation IV.9 

with ĉ  = -1 and c^ = A^), reduction to the simple Mitscherlich form 

was again necessary to reduce the standard errors of the parameter 

estimates so that the parameter estimates were significantly different 

from zero.

The second stage models were then developed using both linear and 

nonlinear model structures, the regressions being weighted by the 

estimated variance of each parameter estimate. For the conditioned 

exponential decay model proved to be the superior estimator, consistently 

better than any of the other forms in Equation V,5. For p the simple

linear form was the best for both conditioned and unconditioned models 

and for n the constant could not be improved upon. Equations 1/.22 

and V.23 were the best models for the conditioned and unconditioned 

models respectively. For the conditioned model the model and data are 

graphed in Figure V.1.

P = 0.03334 - 0.9070 10~4 Y (V.22)
(0.00410) - (0.2677 1 0~4)

An = 10.0 exp(-0.003823 Y )
(0.000327)

and
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n =; 37,36 (l/.23)
(5,34)

p = 0.03710 - 0.1042 lO'i Y
(0.00431 ) (0.0281 10~'5) 1

A = 10.0 exp(-0.003508 Y )
(0.000313) 'U

The two models were then fitted to the independent test data as yield 

predictors (Table \J, 2). The conditioned model was inferior to the 

conditioned periodic annual increment model fitted to the pooled data 

(standard deviation of the deviates 66.10 cf. 51.51, and more age/site 

potential cells significantly different from zero). The' unconditioned 

model, Equation V.23, was a very poor model (standard deviation of the 

deviates of 113.72) parallelling the earlier analysis of the pooled data. 

The marked reduction in efficiency of even Equation V.22 was attributed 

to attempting to estimate too many parameters from too feu data in the 

first stage analysis. The tuo stage 0LS analysis uas rejected as it 

uas inferior to the conditioned periodic annual increment model developed 

on the pooled data.

Summary

1 The allometric constant r could be set to 1.0.

2 The allometric constant m could be taken as 0.0.

3 The conditioned model uas a superior predictor to the unconditioned

model, in part because the gain in asymptotic efficiency of 

parameter estimation by the simplification in the model structure 

offset the decrease in efficiency implied by the conditioning,

but also because the conditioned structure uas not a simple linear
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contraction of the unconditioned structure.
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4 Periodic annual increment was more satisfactory than yield as

the dependent variable because it better satisfied the assumptions 

of the analysis and was as satisfactory as a predictor.

5 Single stage analysis on the pooled data was superior to the 

two stage analysis using the individual plot trends.

JOHNSON—SCHUMACHER 

Linear models

The Oohnson-Schumacher model is one of the few models considered 

that can readily be fitted, albeit in modified form, by multiple 

linear regression analysis. This form was used by a number of workers 

including Schumacher (1939) and Clutter (1963). The equation can be 

formulated as

ln(Y) = bQ + f (ft) + f(Y10) (V. 24)

where

f(A) = b1 / A (V.25)

f(Y10> = b2 Y10 (V.26)
and where

Y = yield,

q= site potential, yield at age 10,

A = age, and,

b^, b̂  and b^ are the parameters to be estimated.

Equation l/.24 was formulated in this way because the submodels, 

Equations U.25 and V.26 as used by Schumacher and Clutter, are not 

wholly satisfactory. For practical reasons the estimated yield at 

age ten should be within the confidence limits of the estimate of site 

potential and this is clearly unlikely if Equation V.26 is used. Of the 

alternatives suggested earlier, Equations \y.6a-V.6e, the logarithmic form 

was logically superior to the polynomial or reciprocal forms with the
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coefficient of (ln(Y^)) theoretically equal to 1.0; however all were 

evaluated. Bailey and Clutter (1974) suggested replacing age by a 

power function which was unsuitable for multiple linear regression 

analysis. As a simple linear approximation, Equation 1/.25 was also 

formulated as a polynomial and as a logarithmic function of age.

Analysis of these linear models showed that the reciprocal of age 

was considerably superior to the polynomial or logarithmic forms, and 

that the logarithm of site potential was superior to the other forms, 

a not unexpected result. The results are summarised in Appendix 4,5a.

ln(Y) = 4.740 ~ 25.64/A + 0.5400 ln(Y ) (V.27)
(0.095) (0.30) (0.0189) 1U

The addition of an interaction term was significant:

ln(Y) = 6.509 - 61.26/A + 0.1793 ln(Y ) + 7.270 ln(Y )/A
(0.127) (3.12) (0.0349) IU (0.270) U

(V. 28)

but this simple addition to the linear model changed a relatively simple 

yield model into a considerably more complex one:

b2Y = bQ exp(-b1/A) (Y^Q) exp(b3 ln(Y10)/A) (V.29)

compared with
b2

Y = bQ exp(-b1/A) (Y1q) (V7.30)

Table V.2 summarises the results when Equation V.27 and V.28 were 

fitted to the test data. The models were poor predictors and consistent- 

ly violated the assumptions of the analysis. This was surprising as 

Clutter (1963) had claimed that the use of the logarithmic transformation 

would "generally be more compatible with the statistical assumptions 

customarily made in regression analysis", although he did not show this 

to be so in practice.

The linear logarithmic model was therefore rejected and the remaining 

analyses of the Dohnson-Schumacher model were on nonlinear forms where the 

error terms were considered additive rather than multiplicative.
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Nonlinear models, unconditioned

When Equations l/.27 and V.28 were fitted as a nonlinear yield model 

(Equations l/.29 and V.30) the sum of the squared residuals was lowered 

by some '\ Q %, reflecting the avoidance of the logarithmic bias. The 

estimated parameters in Equation l/.31 were all significantly different 

from those in Equation V.27 using a t test, confirming the belief that 

the assumption of additivity in the error term had a markedly different 

effect to the assumption of multiplicativity in the linear logarithmic 

form •
0.4595

Y exp (5.200) exp (-27.23/A) Y (V/.31)
(0.078) (0.43) (0.0150)

For all models evaluated yield approaches zero as age approaches 

zero, that is approaches zero. This seemed unduly restrictive as . 

the analysis of the Bertalanffy model had indicated that was site 

dependent. The addition of the interaction term in Equation V. 20 uas 

thought to be a proxy for A^ so a number of alternative models were 

evaluated with different nonlinear structures.

Table V.3 shows the results for some of the models fitted, the 

complete set being summarised in Appendix 4.5b. Model 20 in Table V.3, 

the nonlinear equivalent to Equation l/.28, was surprisingly not sig

nificantly better than Model 5, the nonlinear equivalent of Equation V.27, 

and this could only be attributed to the change in error structure. 

Model2.4, Equation V.32, where age was replaced by a linear function in 

Ŷ  g plus age, was the best model, being considerably better than the 

form (Model 25) where the addition of parameters resulted in the residual 

sum squares inflating as misspecification affected the asymptotic 

efficiency of the program. The quadratic term used by Ferguson and 

Leech (1976b), Model 35 Table V.3, was also not significantly better. 

Replacing Â  by a power function (Model 33, Equation V.33) provided an 

efficient model, but the model could not be compared with Model 23 because
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the extra parameter.in Model 23 was not a simple additive increase in 

structural complexity.

Y = exp(5.706) exp(-35.16/(A + 0.7253 + 0.01556 Y )) Y
(0.106) (1.21) (0.2478) (0.00231) 1U (0.0139)

( V. 32)

0.6392 0.4580
Y = exp(5.795) exp(-13.33/A ) Y (V..33)

(0.152) (1.12)(0.0499) U(0.0141)

Equation U.32 was not favoured because the estimated parameters 

are such that estimated value of A^ was negative, which is biologically 

unsound. The age scaling implicit in Equation V.33 provided approx

imately equally efficient estimators with the more satisfactory biological 

inference that A^ is zero, and as well the age of culmination of current 

annual increment is not fixed at half the age of culmination of mean 

annual increment. However as the model will generally be used only from 

age 10 both equations could have been satisfactory in practice, sc both 

were tested using the independent test data.

Both equations were less satisfactory than the Bertalanffy yield 

model as predictors and both violated the assumptions of the analysis, 

although the nonlinear form was better than the transformed linear form 

in this regard as can be seen in Table V.2.

Nonlinear models, conditioned

These unconditioned models could hardly be expected to be satisfactory 

predictors as the estimated yield at age 10 was proportional to a power 

function in Y^. Within the range of the data the error in estimated 

yield at age 10 for Equation l/.31 varied from 72% to -23/£, in a consistent 

manner, with the error being zero near the mean of the data. This was 

hardly satisfactory for practical use.
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Conditioning the model reduced by two the number of parameters to be 

estimated; thus equations V.32 and V.33 became

Yiojexp b([lAfl-zp
where for Equation V.32

b 1 + b 2 Y10

1.0
and for Equation 1/.33

0.0

b 1

1 / ( 1 Ü - Z 1 ) ( V. 34)

(V/.35)

(V/.36 )

Other alternative structures for 2 evaluated included the quadratic and 

cubic terms. When these models were evaluated the best model was

b_ = -37.73 (V.37)
° (1-6 4)
Z = 0.6826 - 0.04339 Y - 0.6479 1O"^ Y 2

(0.3568) (0.00313) 'U (0.0922 10 ) 10

Z2 = 1.0

Allowing Z^ to float was not significantly better than fixing the 

parameter at 1.0, regardless of whether a linear or quadratic structure 

for Ẑ  was used. This model was still unsatisfactory, as Z^, which in 

reality is an estimate of AQ, was still negative for the range of the 

data.

When evaluated as a predictor, Table V.2, Equation V.37 proved to be 

the best of the Johnson-Schumacher forms, marginally poorer than the 

Bertalanffy model. The equation violated the assumptions of the analysis 

and was less satisfactory than the Bertalanffy conditioned yield model.
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Summary

The analysis of the Johnson-Schumacher model form mas in general 

unsatisfactorya The advantage that Clutter (1963) claimed for the 

logarithm of yield over yield as the dependent variable, that it mould 

better satisfy the assumptions of the analysis, mas not borne out in 

practice. Indeed neither dependent variable mas satisfactory. The 

linear model mas an unsatisfactory predictor being consistently poorer 

than the conditioned Bertalanffy yield model. When the model mas 

fitted nonlinearly both the Johnson (1935) form and the power form used 

by Bailey and Clutter (1974) mere equally efficient estimators, but the 

power form was preferred for biological reasons. This nonlinear model 

was no better a predictor than the linear model, and was unsatisfactory 

as the estimated yield at age 10 was in error by more than the likely 

confidence limits of the estimate of site potential at botn high and 

low site potential levels. When the model mas conditioned through 

at age 10 the exponential power reverted to 1,0 and the best model was 

the Johnson form. This was the best predictor of the models tested but 

was still poorer than the conditioned Bertalanffy model.

The Johnson-Schumacher form was rejected for further analysis 

because it mas an inferior predictor, violated the assumptions of the 

analysis, and, as developed, was biologically untenable at early ages.
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BEDNARZ

for the evaluation of the Bednarz model, Equation II/.26 was re

formulated to include and to pass through age 10 values.

ln(a(A-Aq)b+1 )
(l/.38)

where

Y = yield,

Y._= site potential, yield at age 10,

A = age,

Aq = the age at which volume growth commences, and, 

a and b are the two parameters to be estimated.

Various submodels for t a and b were evaluated and the most 

satisfactory model was Equation V.39 below. The other models are 

summarised in Appendix 4.6a.

(0.00514)

b = 1.219
(0.202)

A = 8.938 exp(-0.004152 Y )
U (0.433) (0.001028)

The equation was as satisfactory a predictor as the conditioned 

Bertalanffy yield model (Table V.2) as were the estimates.

Because the yield model was an efficient predictor the Bednarz model 

was also evaluated as a periodic annual increment model using the difference 

equation (Equation l/.10). The results are summarised in Appendix 4.6b 

where it can be seen that Equation V.40 was the best model.

a = 0.02714 (V.39)



a = 0,03007 (1/.40)
(0.00144)

b = 1.1436
(0.0536)

A = 8.914 exp(-0.003473 Y )
(0.162) (0.000246) 10

This structure was the same as the structure of the yield model. The 

parameters a and b were independent of site potential confirming 

Bednarzsresults for height. The exponential decay model for provid

ed the best estimators but the submodel was not conditioned so that at 

age ten Â  was 10.0. When the periodic annual increment model was 

evaluated (Table V.2) the results paralleled the Bertalanffy results 

very closely.

The analysis showed that the Bednarz model provided a satisfactory 

prediction model, as good as the Bertalanffy but not better. The model 

could have been used for subsequent analyses but was not preferred for 

five relatively minor reasons.

1 To achieve a satisfactory prediction model four parameters 

were needed compared with three for the Bertalanffy model.

2 The submodel for A^ was inadequate at extremely low values of

site potential as approaches zero.

3 The Bertalanffy model has a more coherent biological basis to

its structure and it was felt that extrapolation of the Bertalanffy 

model might be marginally less hazardous.

4 Although for the Bertalanffy model the allometric constant m was 

zero, inferring that increment culminates at age Â , the addition 

of this parameter in future analyses with better data could approx

imate the more biologically acceptable sigmoidal form. The 

Bednarz model cannot readily be extended to allow this sigmoidal
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form.



5 The öednarz model does not reach an asymptotic maximum yield.

OTHER MODEL FORMS 

Gompertz

The evaluation of the Bertalanffy models indicated that the 

allometric constant could be taken as zero. This cast doubt on the 

usefulness of the Gompertz model, uhich is claimed as the limiting 

form of the Chapman-Richards equation (similar to the second level 

Bertalanffy) as m approaches 1.0 (Richards, 1959; Pienaar, 1956).

The Gompertz model was fitted as a conditioned yield model with 

various polynomial forms for the parameters (the age at uhich 

increment culminates) and b, the parameter a in Equation II/. 17 being 

conditioned out of the model. The models fitted are summarised in 

Appendix 4.7, the best of them being.

|Gxp(exp(-b(fi-fli ))) (y.4'0

where

A. = 19.47
(0.30)

b = 0.1161 - 0.00C3779 Y + 0.6817 10
(0.0035) (0.0000257) lU (0.0705 10 )

and uhere

Y = yield,

Ŷ  = site potential, yield at age 10

A = age,

A^ = age at culmination of volume growth, and with

b were the two parameters estimated.
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When this equation was fitted to the independent test data 

(Table V.2) it was inferior to the Bertalanffy model as a predictor, 

and the assumptions of the analysis were still violated. Because it 

was so inferior the Thomasius (1964) model derived from the Gompertz 

was not evaluated and the line of development was rejected.

Polynomial

The polynomial model form was rejected in Chapter 11/ (Equation IV.1) 

because it lacks any biological basis to its structure and because, if 

used, it was likely to behave erratically as a predictor at the extrem

ities of the data.

The polynomial was evaluated for completeness and to try to provide 

further quantitative justification for its rejection. Stepwise regres

sion (Draper and Smith, 1966; Efroymson, 1962) was used initially rather 

than combinatorial screening (Grosenbaugh, 1967), cr regression by leaps 

and bounds (Eurnival and Wilson, 1974), because it was simpler and less 

wasteful of computing resources.

An unconditioned yield model was fitted to a sixth order polynomial 

in age interacting with a fourth order polynomial in site potential, A 

second simpler model used a fourth order in age interacting with a second 

order in site potential. Both reduced to seven parameters but the reduc

ed model with the lower range of powers explained slightly more (0.013^) 

of the variation than the more complex model, emphasizing the warnings of 

Draper and Smith (1966) and Grosenbaugh (1967) concerning the disadvantages 

of stepwise regression. The model with the lower powers was accepted.
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Y = -212,26 + 22.44 A - 0,003895 A3 + 0.01083 A Y10i n(1.74) (0.001062) (0,00139)

-0.001914 A2 Y + 0.00003694 A3 Y
(0.000772) ' (0.00001533) 3

-0.4346 10~2 A3 Y 2 (V042)
(0.1876 10 )

When fitted to the independent test data (Table V.2) the equation 

proved to be one of the poorest models evaluated in spite of its having 

more terms (seven, compared with three for the second level Bertalanffy 

periodic annual increment model). Equation V.42 has a maximum yield 

for SQ VII at age 45, outside the range of the data but within the region 

of interest, other site qualities having maxima soon after age 50. These 

maxima are biologically unsatisfactory as yield is expected to increase 

with age, approaching a maximum asymptotically, but never reaching it. 

Evaluation using either combinatorial screening or leaps and bounds was 

not carried out because it was unlikely to provide the marked improvement 

necessary for the polynomial to be useful as a predictor. The polynomial 

was rejected.

Lewis's yield table

The growth prediction technique currently used in South Australia, 

embodied in the Woods and Forests Department Yield Regulation system, is 

the latest version of the graphical yield table developed by Lewis 

(Lewis, Keeves and Leech, 1976). At the time it was developed it was 

believed to fit thinned stands of all ages up to age 50, but was believed 

to overestimate for unthinned stands past age 35. In practice this 

restriction in its applicability is of little significance as very few 

stands are left unthinned after age 30. It was of interest to compare 

the fit of this subjectively defined model with the other models developed 

in this chapter.
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The test data used in this chapter are not truly independent for 

this analysis as they were included in the data Lewis used, but their 

effect would have been swamped by the other plots as Lewis used all 313 

plots available. Table V. 2 shows that the graphical yield table was 

nearly as good a predictor as the conditioned Bertalanffy periodic annual 

increment model (standard deviation of the deviates 52.25 compared with 

51.51) and better than the Bohnson-Schumacher model or the polynomial.

Careful development of a graphical yield table by the directing 

curve technique as used by Lewis, and as used before computers made the 

current statistical analyses possible, provides an efficient predictor 

nearly as good as the best model developed and better than most of the 

other models. Although open to bias and although confidence limits 

cannot be calculated, the technique obviously can provide efficient 

prediction models. Analyses of growth using modern statistical and 

computational techniques must be very carefully carried out if they are 

to improve on the techniques used by earlier generations of forest 

managers.

SUMMARY

The exploratory analyses of the unthinned data confirmed the con

clusion of Chapter IV that the second level Bertalanffy model was the 

best model form. The structure is simple, although nonlinear, and the 

parameters were more readily interpreted biologically than the other 

models. The allometric constant m was not significantly different 

from O.C, the Mitscherlich form, probably because there were insufficient 

data at early ages rather than from biological correctness. Despite this 

limitation the model is satisfactory past age 10, the age that will in 

practice be used as a minimum. As further data become available perhaps 

the Mitscherlich form may be replaced by the second level form.
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The model was-best fitted as a conditioned periodic annual increment 

model in spite of the theoretical disadvantages induced by the condition- 

ing„ This was attributed to the trade off between the statistical dis

advantages of the conditioning and the analytical advantages in asymp

totic efficiency for the simpler model, and to the nonlinear structure.

As foreshadowed, periodic annual increment was better than yield in 

satisfying the assumptions of the analysis, but even so was unsatis

factory. It was hoped that better model specification including 

thinning parameters would reduce the serial correlation to an acceptable 

level.

The Bohnson-Schumacher model in linear form was unsatisfactory and, 

although a nonlinear form was developed that was a relatively satis

factory predictor, it was unsatisfactory as a predictor of early age 

growth. The Bednarz model was developed easily and was a relatively 

good predictor, but was rejected because it lacked a coherent biological 

basis and could not be used at early ages. The Gompertz model was con

siderably poorer than the Bertalanffy. The polynomial was an inefficient 

predictor and as it lacked any biological structure it was rejected.

Lewis’s yield table was interesting in that it was a marginally 

poorer predictor than the best models developed, but was better than 

many of the other models that have been used in previous yield predic

tion work. Although it is impossible to compute confidence limits for 

a subjectively defined graphical yield table it clearly demonstrated that 

careful subjective analysis can provide a good prediction model.

The conditioned Bertalanffy periodic annual increment model was 

accepted as a suitable mooel for further analysis on the combined data

from thinned and unthinned stands.
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1/1 MODELS BASED ON DATA FROH ALL STANDS

In Chapter 1/ the conditioned Bertalanffy periodic annual increment 

model, developed on the pooled data as a difference equation using the 

yield model, was shown to be the most satisfactory estimator for un

thinned stands and one of the best predictors. The objective of this 

chapter was to extend the model to investigate the effect of thinning 

and other stand variables such as form and soil type. This model was 

developed using data from the lower south-east of the state. Its 

extension to other areas in South Australia and its applicability to 

second rotation stands were then investigated.

THINNING

In Chapter III three factors which describe a thinning were 

defined: thinning type, thinning grade and thinning interval. However

these variables are not conveniently incorporated in the yield model.

Thinning changes the level of competition in the stand and it was 

believed that a thinning affects increment some years after that thinn

ing. The use of competition level as a variable does not take into 

account how the stand reached that level. Buckman (1962) preferred 

to use a relative measure, the proportion of the forest cut, rather than 

the absolute level of competition. The proportion is a measure of the 

effect on the proportion of the site that is occupied immediately follow

ing a thinning and therefore represents thinning shock.

Thinning type was ignored in this study as it varied little in the 

data base, all thinnings being predominantly from below. Thinning inter

val as such was irrelevant to this study as it is embodied in the change 

in competition level with age.



103

Thinning was therefore investigated in terms of two variables:

1 competition level, and,

2 thinning shock.

Competition level

The effect on increment of changing the level of competition was 

considered by Langsaeter (1941) and Holler (1954a, 1954b) in a qualit

ative manner. Langsaeter's model, Figure 1/1.1, can be interpreted in 

the following way.

Stage I The free growth stage where the individual trees have no 

influence on their neighbours, volume increment is there

fore proportional to the volume of trees standing.

Stage II In this transitional stage the trees are beginning to 

crowd one another increasingly, but the site is still 

not fully occupied.

Stage III This broad band denotes the level of full site occupancy 

in which growth is almost independent of stand density, 

provided all the trees are healthy.

Stage II1 As stand density increases the trees stagnate and growth 

rate decreases.

Stage 1/ Competition between trees is so intense that trees become

moribund and eventually die.

The most important part of this model for forest management is the 

shape of stage II and the width of stage III, for South Australian 

experience suggests that the most economic regime will keep the stand 

at or about the stage II- stage III boundary. Stage IV is only reached 

by severely overstocked stands such as those still unthinned at age 30. 

Holler (1954a, 1954b) used basal area as the competition index and his
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Figure 1/1.1
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Relation between standing basal area and volume increment
(Roller, 1954)
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work suggests that Langsaeter’s stage III may be quite broad. Holler’s 

work (Figure 'J 1.1) is equivalent to Langsaeter’s stages I— 111 and has 

been widely cited in the literature. The implication of Holler’s model 

is that increment does not decline as the competition level approaches 

the maximum the site can sustain but remains near constant. Limited 

evidence from permanent sample plot trends, notably evidence from 

adjacent plots X, Y, 304 and 305 reported by Lewis (1962), indicated 

that Langsaeter’s model was more likely to be correct under South 

Australian conditions.

Two different approaches taking the effect of competition level 

into account were evaluated. In the first the parameters in the model 

were reformulated in terms of competition level, and in the second 

periodic annual increment was corrected by a multiplicative competition 

level function.

The parameter p in Equation V.1 was the only parameter that could 

logically be related to the level of competition, for the allometric 

constant m had already been shown to be close to zero (Chapter \ l ) .  

Moreover should be independent of changes in the level of competition, 

because commerical thinning takes place after age A^. \Jarious models 

were formulated about the effect of the level of competition on the 

catabolic destruction rate p.

p = po (VI.1a)

p = po + p1 D (VI.1b)

p = p0 + P1 D + P2 D2 (VI.1c)

p — p0 oP’ ( VI.1d )

p po + p1 oP2 (VI.1e)
p1

p po + 1 - P2 0 (VI.1f )

p n
p = 1 " pi D (VI.1g)

where
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D = competition level or stand density,

p = the catabolic destruction rate in Equation V.1, and, 

Pg, p̂  and p^ are the parameters to be estimated.

Of the forms the power function (Equation V /1.1 d) was thought to be 

biologically the best, but as the others may have been statistically 

better estimators and predictors they were also evaluated.

Reformulating Equation V.10 as

Pai = zi (VI.2)

where

Pai = periodic annual increment,

ya = yield at age A, and,

= increment period,

enables to be a function of competition level such that it approx-

imates the three middle stages of the Langsaeter model, the likely range

of the data. A large number of formulations were possible but considers-

tion of the work of Buckman (1962), Kira et al. (1953), Clutter (1963),

Sullivan and1 Clutter (1972) and Bevege (1972) suggested the following

forms would be worthy of evaluation.

zi = 1.0 (VI.3a)

2i = b0 + b1 D (VI.3b)

zi = br| + b/] D + b2 D2 (VI.3c)

zi b0 + b1 / 0 (VI.3d)

zi = bQ + b/] ln(D) (VI.3e)

6 = bg + ^  exp(1 / D) (VI.3f)

6 =
b 9

bo + b1 0 (VI.3g)

where

zi zz the function in Equation VI.2,

D = the level of competition or stand density, and,

cr o , b̂ ana b^ are the parameters to be estimated.
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Tine following forms were also evaluated as they exhibit under certain 

conditions the form of stages II, III and IV in Langsaeter!s model.

(D - b ) ......•
Z1 = bQ b1 (VI.3h)

Z1 = bQ + b/] / D + b2 D (VI.3i)

Z = bn + b. D + b0 D* 1 2 + b„ D3 + ... + b Dn (VI.3j)I u I z o n

If p is replaced by a function in stand density then the maximum

asymptotic yield varies with stand density whereas if the function is

used then the asymptotic maximum yield is independent of stand density.

The latter seemed biologically more plausible.

Both number of trees per unit area and standing volume were consid

ered in Chapter II to be satisfactory indices of stand density. Both 

were evaluated, the models initially using volume because this seemed 

the better index for this application.

Thinning shock

Immediately after a thinning the site will be less than fully 

occupied and in this regard less increment will be put onto the standing 

trees than a stand of the same competition level that was thinned some 

years earlier.

The effect of thinning shock must be to reduce increment so it was 

logical to formulate thinning shock models as in Equation VI.2 with 

being a function of thinning shock. The eight measures of thinning 

shock considered were various combinations of three alternatives:

1 whether the measure should be based on volume or number of trees 

per unit area,

2 whether the absolute or relative measure should be used, and,
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3 whether the effect should be considered to last one year only or 

whether the effect should last throughout the increment period.

The eight measures of thinning shock were:

where

s Nt (VI.4a)

s = Nt / i (VI.4b)

s = Nt / Nb (VI.4c)

s = Nt / (Nb i) (VI.4d)

s = Vt (VI.4e)

s = Vt / i (VI.4f)

s = Vt / Vb (VI.4g)

s = Vt / (Vb i) (VI.4h)

s = thinning shock,

i = increment period »

Nt = number of trees per hectare removed in thinning,

Nb = number of trees per hectare standing before thinning,

Vt = volume removed in thinning, and,

Vb standing volume before thinning.

As thinning shock was likely to be masked by the effect of varying 

competition level it was decided to analyse competition level first.

The exact structure to be analysed could then be additive or multi

plicative, for example, if competition level was not included in the 

model then for Equation VI.2.

Z1 = 1 - S-l S (VI.5)

where
= the function in Equation VI.2,

S — thinning shock, and,

ŝ = the parameter to be estimated.
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This formulation could also apply if p was a function of competition 

level. On the other hand if the competition level model was one of the 

forms in Equation VI.3 such as Equation VI.3c then

Z1 = bo + h  D + b2 D2 + b3 S (VI.6a)

Z1 = bo + bi D + b2 D2 + b3 S + b. D S. 4 (VI.6b)

Z1 = bo + bi D + b2 D2 + b3 S + b, D S + bc D2 S 4 5 (VI.6c)

were all possible forms, 01' even

Z1 = (b0 + b1 D + b2 D2) (1 + b3 S) (VI.6d)

where

= the function in Equation VI.2,

D = the level of competition,

S = thinning shock, and,

b̂ , , b ,... b,_ are the parameters to be estimated.

All these were possible models, although the multiplicative model,

Equation VI.6d, was thought likely to be poorer than the other structures,

Data

The data used in Chapter V were inappropriate for the development of 

periodic annual increment models incorporating the effect of thinning.

All the available thinned and unthinned data from the lower south-east 

of South Australia were pooled and randomly allocated by plots such that 

approximately 60^ were used as developmental data, 40% as independent 

test data. Appendix 1.4 summarises the two data sets and the selection 

technique.

There uere 969 observations in the developmental data and 669 in the

independent test data
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Analysis of competition level

The various models incorporating the level of competition were 

fitted to the data using standing volume as the stand density index.

Models 1-14, Appendix 5.1a, summarises the results for Equation VI.1 

where the competition level was included in the formulation of p.

Models 20-30, Appendix 5.1b, summarises the models for tne other develop

mental line where competition level was included in a correction factor 

to periodic annual increment.

Of the models where p was reformulated in terms of competition 

level, Model 4, Table VI.1 and Appendix 5.1a, proved to be the best model. 

This structure implies that there is no interaction between the level of 

competition and site potential, for Model 5 with two extra interaction 

parameters was not significantly better. On the other hand Model 21, 

Table VI.1 and Appendix 5.1b, proved to be the best of the models where 

the competition level was included in a correction factor to periodic 

increment. The implication of this structure is that the qualitative 

structure of Langsaeter is best fitted by a simple quadratic model, better 

than Equation VI.3h, Model 27, which was thought to be more logical as it 

allows curves to closely approximate Langsaeter's stages II, III and IV; 

very flat at the peak and tapering rapidly at the extremes.

The correction factor approach consistently explained more of the 

variation than the models where p was reformulated in terms of compet

ition level. The relatively flat response curve was in part a reflec

tion of the paucity of data from extremely heavily thinned stands.

The flat nature of the curve was confirmed by calculating the mean 

deviate of a subjectively selected subset of the most heavily thinned 

plots. The mean deviate for these 39 observations was not significantly 

different from zero. It was inferred that the model was satisfactory

within the range of the data.
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The superiority of the correction factor supported the contention 

that the asymptotic maximum yield is independent of the level of 

competition.

For completeness the allometric constant m was evaluated again, 

but Models 15-17, Appendix 5.1a, and Models 31-33, Appendix 5.1b, 

showed that the Mitscherlich form with m=0.0 was still satisfactory.

Both p and A^ were reformulated to include stocking at age 

10 (l\l̂ Q ) so that initial plantation espacement could be evaluated.

A number of models were fitted (including Models 18 and 19, Appendix 

5.1a, and Models 34 and 35, Appendix 5.1b) but in no case was the 

addition of f\Ĵ significant. Although the inspection of the independent 

test data in Chapter V had suggested that this variable might be sig

nificant, the range of the data was probably still too narrow to enable 

the variable to be included in the model.

If stand density was not standing volume but number of trees per 

unit area, the other index suggested in Chapter II, then slightly 

inferior estimators resulted (Table VI.1). Volume was accepted as the 

best index of the level of competition.

Equations VI.2, V1.7 and VI.8 provided the best model including 

competition level.

Pai = + V  / 4 2i (VI. 2)

1 - exp(-p(fl-fiQ ))

1 - exp(-p( 1 0-fiQ ))
(VI.7)
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p « 0.00989Ü + 0.4837 1 o“? Y,—4 I n(0.002694) (0.1232 10 )
(VI.3)

A0 = 10.0 exp(-0.007668 V, )
(0.000769)

Z,1 = 1.405 + 0.001168 D - 0.1174 10~2 D2
(0.109) (0.000273) (0.0272 10~b )

and where

= yield at age A,

A = age,

Ŷ = site potential, 

i = increment period,

Pai = periodic annual increment,

D = the level of competition or stand density (volume), 

p and Aq are the same parameters as in Equation V.10, and,

—  the correction factor to periodic annual increment.

When Equation VI.8 was fitted to the independent test data the mean 

deviate was 0.10 and the standard deviation of the deviates was 5.58.

The deviates were homogeneous regardless of how they were partitioned 

and were normally distributed. The Durbin-Watson d statistic was 

1.33 and significant, indicating that misspecification was still a problem. 

Of the 23 plots with more than 1C observations 3 plots had mean deviates 

significantly different from zero. Two of these plots are on volcanic 

soils that have always been thought to have different growth trends 

compared with the other predominantly sandy soils. It was thought that 

the inclusion of soil variables would possibly overcome this misspecifica

tion. Of the 13 age/site potential cells two had mean deviates signif

icantly different from zero, but these two cells were adjacent and had 

opposite signs for the mean deviate. As the estimated t values were 

only just greater than the significance level, the results were considered

reasonably satisfactory.



Ana.1 ysis of thinning shock

Thinning shock was then investigated. Because volume proved to be 

marginally superior to number of trees as the index of competition level 

only the four volume based forms of thinning shock, Equations VI.4e~ 

l/I.4h, are reported. Some 17 different models were fitted, Appendix 

5.2, using both forms of the competition models. If competition level 

uas included in the function for p then, although the addition of 

thinning shock uas significant for any of the forms tried, the reduction 

in the residual sums of squares uas at most 1.5%; considerably louer 

than the reduction of 3.5%, if the competition level uas the multiplica

tive correction factor. The best of the four measures of thinning 

shock uas Equation VI.4h, a relative measure that assumes thinning 

shock only lasts one year. Surprisingly Equation VI.6d uas superior 

to the additive structures of Equation VI.6a, VI.6b and VI.6c resulting 

in the multiplicative model, Equation VI.9 belou. It could only be 

inferred that competition level and thinning shock are best considered 

as acting separately and independently in correcting the periodic annual 

increment. The structure of Equation VI.9 uas clumsy and inelegant but 

uas logical, as uell as being statistically the most efficient estimator

p = 0.005075 + 0.5855 1 0”^ Y1 (VI.9)
(0.002623) (0.1164 10 )

A = 10.0 exp(-0.009172 Y )
(0.000841 ) 1U

Z = (1.700 + 0.4426 10”  ̂ D - 0.7380 1 o“° D2 ) (1.0 - 0.4287 S) 
(0.114) (0.2335 10 ) (0.3050 10”J ) (0.0731 )

uhere

p, Aq and are as for Equation VI.7,

Ŷ  = site potential,

0 = competition level (volume), and,

S = thinning shock, (Vt/(Vb i)), relative volume, the effect

lasting one year only.



Equation 1/1.9 was then fitted to the independent test data and the 

results closely resembled those for Equation 1/1.8. The deviates had a 

standa-rd deviation of 5.54 about the mean of 0.10, were homogeneous and 

were normally distributed. The Durbin-Uatson d statistic was again 

significant at 1.33, indicating misspecification. Of the 23 plots 3

had mean deviates significantly different from zero, but only one 

age/site potential cell was significantly different from zero. When 

the equation was evaluated as a yield predictor 5 of the 23 plots and 

one of the 13 age/site potential cells had mean deviates significantly 

different from zero, again indicating that there was a correlation with 

soil type. The mean deviate for all observations was not significantly 

different from zero. The analysis was still unsatisfactory but was the 

best to date and there was some hope that the incorporation of soil and 

form variables would provide an even more satisfactory model.

SOIL AND FORM

There was limited evidence from the data that different soil types 

had different volume-age trends. The shallower terra rossa soils 

appeared to have a consistently lower increment at later ages than sandy 

soils of the same site potential, which in turn appeared to have a lower 

increment than volcanic soils.

As soil type was defined qualitatively rather than quantitatively 

it was difficult to formulate testable hypotheses concerning the effect 

on yield. The soil types could only be grouped arbitrarily into a small 

number cf groups and dummy variables (Johnston, 1963; Cunia, 1973) used 

to determine whether the arbitrary groupings were significantly different 

or not. This required only that soil variant parameters be recognised, 

not that any relationship between soil groups be formulated. Hypothesis 

tests were then used to test different aggregations of soil types.
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Of the parameters in the model the parameter p was the one con

sidered most likely to vary between soil types. Equation 1/1.10 shows 

the various alternative formulations ‘possible, where Equation \/I.10a is 

the base model and soil invariant.

p = po + P1 Y10 (VI.10a)

p = do + p1 Y10 (VI.10b)

p = po + d1 Y10 (VI. 10c)

p = do + d1 Y10 (VI.1Od)

p = do (po + P1 Y10^ (VI.1Oe)

where

p = the parameter in Equation \11.7, 

g= site potential,

Pq and p̂  are the parameters independent of soil types, 

and

d^ and d̂  are parameters, dummy variables, one for each 

soil type.

In Chapter II six form measures were defined based on alternative 

concepts of form viz. stand form factor and average stand taper. As a 

form measure could conceivably affect each of the parameters in the 

model, it was decided to evaluate form by replacing each of the 

parameters in turn with a linear function of each of the stand form 

indices in turn.

b = bQ + b/] F (VI.11)

where

b = the parameter in the model,

F = one of the six alternative stand form indices, and, 

b^ and b̂  are the parameters to be estimated.
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Form is a continuous variable, that was thought might vary between 

soil types. As it was possible that a form index could be a continuous 

variable proxy for soil type, the two variables were analysed separately 

and together.

Data

There are a wide range of soils in the south-east of South Australia 

ranging from deep aeolian sands to shallow heavy soils over limestone.

The soil types for each plot are tabulated in Appendix 1.1 and summarised 

in Appendix 1.2. Because there were 34 different soil profiles recognis

ed, the developmental and test data were combined to give 1638 observa

tions (Appendix 1.4e). Even then each soil type could not be analysed 

separately as some had too few observations to allow all parameters to 

be estimated, so the data were subjectively aggregated into twelve 

morphological groups together with a miscellaneous group with widely 

divergent, but poorly represented, soil types. These groups are defined 

in Table V1.2.

The stand form indices used required an estimate of upper stand 

height at age 10. This was not available for all the 969 observations 

in the developmental data used in the competition analyses, as many of 

the older plots were first measured for basal area, volume and mean 

dominant height, but not predominant height. The 969 observations were 

culled to 723 that had estimates of predominant height within three years 

of age 10, thus enabling estimates of stand form factor and average stand 

taper at age 10 to be used.

For the analyses evaluating form and soil types together, the 1538 

observations were culled in the same way to 1271 observations.



Results

When each parameter in Equation 1/1.8 was allowed to vary between 

the different groups of soil types, that is the 7x13 parameter model was 

fitted to the 1630 observations, Bard’s (1967) program failed to converge 

After considerable effort it was concluded that it was the program and 

not the use of the program that was at fault and that it could not be 

used for dummy variables. No suitable alternative program was available

The procedure finally adopted was a variant of stagewise regression 

(Draper and Smith, 1966) and although the best technique available it was 

recognised that the estimators were not true minimum variance estimators 

and that the parameter estimates may be biased. Standard statistical 

tests were not necessarily valid and the model evaluation was somewhat 

arbitrary.

The 1638 observations were divided by soil group and to each of the 

13 data subsets three levels of models were fitted based on Equations 

1/1.2, VI.7 and VI.9s

1 liJhere 6 of the 7 parameters were fixed at the Equation 1/1.9 

estimates, the other being allowed to float.

2 Similar to 1 above, but where p^ and one other parameter were 

allowed to float.

3 Where all 7 parameters were allowed to float.

Level 3 was therefore a true minimum variance estimate. The 

residual sum squares were then aggregated across all 13 subsets.

For level 1 the residual sum squares when p^ was allowed to float 

was 44112.7, lower than when p̂  was allowed to float (44227.6) and lower 

than the other five models (lowest of these 44541.6), compared with 

allowing no parameters to float (47628.6). For each individual data
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subset the model alloying p to float was compared with the fit of the 

combined model and for 6 of the 13 groups the improvement in fit was 

considerable and would have been significant if Gallant's test was 

appropriate. The inference was that Equation V/1.1 Db was better than 

Equation VI.10d and also better than Equation VI.10a; soil seemed to be 

a significant variable in the model. The best of the level 2 models 

was when both p^ and p̂  were allowed to float (residual sum squares 

43646.3) but the gain was minimal compared with allowing just p^ to 

float. Level 3, allowing ail seven parameters to float, had a combined 

residual sum squares of 42307.3, a marginal reduction over allowing pQ 

alone to float, considering it had 91 parameters rather than 19.

Eitting Equation V/1.10e provided a residual sum squares of 44207.3, 

poorer than Equation VI.10b. The analysis was unsatisfactory as 

Gallant's test was possibly inappropriate, but it was concluded that 

only the parameter pQ varied between the 13 soil groups.

The 12 estimates of p^ (excluding the miscellaneous group) were 

then compared and ordered, as shown in Table VI.2. for a constant site 

potential, as p^ decreases the asymptotic maximum yield increases; thus 

Table VI.2 infers that for a constant site potential (Ŷ  ) a volcanic

soil will grow at a faster rate towards a higher asymptotic maximum 

yield than either a terra rossa soil or a brown soil from Comaum.

These twelve groups were then combined into five groups based on 

the estimates of p^ and the standard error of these estimates, and also 

based on morphological and geographical considerations. Because only 

one parameter was estimated for each soil group it was possible to 

estimate p̂  for each of the six soil types in the miscellaneous group 

and to allocate four of these to the other groups so that a total of 

seven groups were recognised. further analyses of individual soil 

types and of other groupings (for example by depth phase and by forest 

Reserve) indicated that these seven groups ought not be divided further.
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The groups and the estimated p^ values are shown in Table 1/1.3. 

Because all the data were included in the analysis it was not possible 

to test the resultant models against independent test data. The 

residuals were regressed in turn against second order polynomials in 

age, site potential, competition level and thinning shock, and the re

gressions were not significant. The residuals were normally distrib

uted and homogeneous but were still serially correlated at d=1.59.

For the plots with more than 10 observations for volume the Durbin- 

Uatson d statistic was tested against the extrapolated approximation 

of the upper and lower bounds. Of the plots 4 1% were not significant, 

26% were inconclusive (5% for positive and 21% for negative serial 

correlation) and 33%0 were significant (2% positive, 31% negative).

This supported the inference from the pooled estimate that serial 

correlation was still a problem, but investigation of these plots with 

significant negative serial correlation gave no insight into the possible 

cause.

At this stage, form was evaluated using the conditioned periodic 

annual increment model with competition and thinning shock included but 

not soil type. This base model was then fitted to the reduced data 

set of 723 observations. Seven models were fitted for each of the 

six stand based form indices, replacing each parameter in Equation 1/1.9 

with a linear function in form index. The results are summarised in 

Appendix 5.3.

Host of the models were not significantly better than the base 

model and generally the only significant ones were those including 

sub-parameters of p. The best estimator was the model including p̂  

as a function of average stand taper at age 10, although this was only 

marginally superior to the relative stand taper or the average stand 

taper at the start of the increment period. Average stand taper at 

age 10 was preferred because it is age invariant and was thought to
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better reflect soil differences than, the other indices which vary with 

age. Even though significantly better, the residual sum squares was 

only marginally below the critical le’vel for Gallant's test, and the 

reduction in residual sum squares due to the addition of the parameter 

Ufas only ']%, The estimated parameters were all significantly different 

from zero using a t test, although three, including the coefficient 

of form, were only slightly greater than the critical t value.

The reduction in residual sum squares due to the addition of the 

stand form parameter seemed low (1/S) compared with the reduction by the 

inclusion of dummy variables for soil type (7%) so the combined effect 

of soil type and form was then investigated.

To the 1271 observations four models were then fitted:

1 A seven parameter model without form or soil variables, 

paralleling the thinning shock model Equation 'll.9 - 

residual sum squares 36753.3.

2 An eight parameter model including average stand taper at 

age 10 in the submodel for p^ - residual sum squares 36404.4.

3 A thirteen parameter model excluding average stand taper at 

age 10, but allowing p^ to float for the seven different soil 

groups developed previously - residual sum squares 33951.2.

4 A fourteen parameter model developed along parallel lines to 

the thirteen parameter model but including average stand taper 

at age 10 in the function of p^ - residual sum squares 33778.3.

Analysis showed that whether average stand taper at age 10 was 

included or not the addition of soil varying parameters was significant 

(assuming linear model theory holds for this stagewise analysis). The 

addition of average stand taper at age 10 was significant if there were 

no soil parameters but was just below the critical F value if soil
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p a r a m e t e r s  were i n c l u d e d .  The s t a n d  based p r o x i e s  f o r  t h e  t r e e  

v a r i a b l e s ,  fo rm  f a c t o r  and t a p e r ,  were  n o t  i n c l u d e d  i n  t h e  m ode l .

The t h i r t e e n  p a r a m e te r  model  w i t h  p^ v a r y i n g  f o r  t h e  seven s o i l  

g ro u p s  was t h e  b e s t  m ode l ,  t a p e r  a t  age 10 b e in g  b u t  a weak and un

s a t i s f a c t o r y  p r o x y  f o r  s o i l  t y p e .  The e s t i m a t e d  v a l u e  o f  p^ f o r  t h e  

v o l c a n i c  s o i l s  was n o t  s i g n i f i c a n t l y  d i f f e r e n t  f rom z e ro  b u t  was n e v e r 

t h e l e s s  i n c l u d e d  t o  a v o i d  r e e s t i m a t i n g  t h e  o t h e r  p a r a m e t e r s  f o r  t h e  one 

s o i l  t y p e ,  and f o r  c o n s i s t e n c y .

The model  based on t h e  1638 o b s e r v a t i o n s  was a c c e p t e d  as t h e  b e s t  

0L5 mode l .

P a i  = ( u  1 . 2 )

1 -  e x p ( - p ( A - A  ) )
Y = YA 10 -------------------------------------

1 -  e x p ( - p ( 1 0- A q ) )

where

( V I . 7)

p = pn + 0 .5 8 5 5  10~* Yl n  ( V I . 12 )
U (0 . 1 1 6 4  10 ) U

Pn = 0 .0 003 0 f o r v o l c a n i c  s o i l s
u ( 0 . 0 0 0 9 3 )

Pn
— 0 .0 0302 f o r C a r o l i n e ,  U a n d i l o  and Myora sands

u ( 0 . 0 0 0 5 2 )

Pn
= 0 .0 0539 f o r o t h e r  y e l l o w  and w h i t e  sands

u ( 0 . 0 0 0 3 6 )

Pn
= 0 .0 1119 f o r T a n t a n o o l a  f l i n t y  sands

u ( 0 . 0 0 1 3 1 )

Pn
— 0 .0 175 9 f o r t e r r a  r o s s a  s o i l s  and brown s o i l s

u
(0 .0 0201  ) f rom Comaum

Pn
_ 0 .0 1172 f o r y e l l o w  sands f rom Comaum

u ( 0 . 0 0 2 2 5 )

Pn
= 0 .0 0534 f o r r e n d z i n a s

u
( 0 . 0 0 1 7 5 )

Pn = 0 .005075 f o r a l l  s o i l  t y p e s  combined
( 0 . 0 0 2 6 2 3 )
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AG = 10.0 exp(-0.009172 Y ) 
(0.000841) l0^

Z/] = (1.700 + 0.4426 1o”  ̂ D -  0.7380 1 0~6
(0.114) (0.2335 10 ) (0.3050 1o“b )

D ) (1.0- 0.4287 S) 
(0.0731)

2

and where

Pai = periodic annual increment,

= yield at age A,

A = age,

i = increment period,

p, Aq and are as for Equation 1/1.7,

Y^ß = site potential,

D = competition level (volume), and,

S = thinning shock, (Vt/( \/b i)), relative volume, the 

effect lasting one year only.

EXTENSION TO OTHER REGIONS

Equation VI.12 was developed using data from the lower south-east 

region of South Australia and is a satisfactory predictor for that 

region. Of the 68 900 ha of radiata pine plantations administered 

by the Woods and Forests Department of South Australia, some 16 500 ha 

are outside that region and data from these areas were used to determine 

whether the model could be extended to other regions in South Australia 

and to provide an indication as to whether or not an Australia-wide model 

is feasible. The available data are relatively sparse (Appendices 1.1 

and 1.5) but represent the total available data from these other areas.

The seven parameter model Equation 1/1.9 was then fitted to each 

data set in turn. The mean error in periodic annual increment was 

calculated and a t test used to determine whether this mean deviate 

was significantly different from zero. The results are summarised in

Table 1/1.4.
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Upper s o u t h - e a s t

F o r b o th  N oo look and Cave Range F o r e s t  Reserves i n  th e  up p e r  p a r t  

o f  t h e  s o u t h - e a s t  r e g io n  o f  South A u s t r a l i a  ( F ig u r e  1 . 1 ) ,  th e  mean 

d e v ia t e  was s i g n i f i c a n t l y  d i f f e r e n t  f ro m  z e ro ,  th e  lo w e r  s o u th - e a s t  model 

o v e r e s t i m a t i n g  c o n s id e r a b l y ,

CJf t h e  p a ra m e te rs  i n  t h e  m odel p^ was c o n s id e re d  th e  most l i k e l y  t o  

v a ry  be tw een  r e g io n s ,  p a r a l l e l i n g  t h e  s o i l  t y p e  a n a l y s i s .  A number o f  

m ode ls  were f i t t e d  to  th e  d a ta  based on th e  lo w e r  s o u t h - e a s t  m ode l,  

E q u a t io n  V1 . 9 :

1 A l lo w in g  one p a ra m e te r  t o  f l o a t .

2 A l lo w in g  p and one o t h e r  p a ra m e te r  t o  f l o a t .

3 A l lo w in g  p e r i o d i c  a n n u a l  in c r e m e n t  t o  be c o r r e c t e d  by a s im p le  

c o r r e c t i o n  f a c t o r  (C )  a p p l i e d  t o  th e  lo w e r  s o u th - e a s t  m o d e l.

T h is  a n a l y s i s  p r o v id e d  b ia s e d  e s t im a t o r s  b u t  was th e  b e s t  t e c h n iq u e  

a v a i l a b l e  as th e  d a ta  were to o  s p a rs e  t o  a l l o w  a l l  seven p a ra m e te rs  to  

be e s t im a t e d .  The r e s u l t s  a re  sum m arised i n  T ab le  V I . 5 .

The r e s u l t s  were c o n f u s in g .  A l l o w in g  to  f l o a t  was i n f e r i o r  to  

th e  s im p le  c o r r e c t i o n  f a c t o r ,  w h ich  f o r  N oo look p r o v id e d  th e  lo w e s t  

v a r ia n c e  e s t i m a t o r .  For Cave Range th e  lo w e s t  v a r ia n c e  e s t im a t o r  was 

th e  m ode l a l l o w i n g  d^ t o  f l o a t .  A l l o w in g  d^ to  f l o a t  was p a r t l y  a p ro x y  

f o r  t h e  c o r r e c t i o n  f a c t o r  as t h e  te rm s  d^ and d^ have r e l a t i v e l y  l i t t l e  

e f f e c t  on in c r e m e n t .  The two m ode ls  ( a l l o w i n g  p^ t o  f l o a t  and th e  

c o r r e c t i o n  f a c t o r  C) were th e n  f i t t e d  t o  th e  d a ta  and th e  d e v ia te s  

r e g r e s s e d  a g a in s t  age and s i t e  p o t e n t i a l  t o  d e te rm in e  w h e th e r  e i t h e r  

o r  b o th  m ode ls  were  s a t i s f a c t o r y .  A second o r d e r  p o ly n o m ia l  was used 

f o r  N oo look  where t h e r e  were more d a ta  a v a i l a b l e ,  a s im p le  l i n e a r  model

f o r  Cave Range
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The deviates were not significantly related to site potential but 

were related to age for both alternative models for Noolook, and for the 

Pq model for Cave Range. Although the correction factor provided 

deviates that were not significantly related to age for Cave Range the 

estimated F value was only just below the critical level. These results 

were disturbing as it had been hoped that these models would not be sig

nificant. Inspection of the data showed that the overestimates were 

generally associated with the 1967/68 growing season which throughout 

the state had the lowest rainfall recorded, and these observations had 

a relatively greater effect on the regressions because of the narrow 

range of plantation years in the data.

For both forests the data were inadequate and it was concluded that 

further analysis was not warranted until more data are available. For 

both forests the correction factor was slightly better than the p^ model 

in that the significance levels were slightly lower. Until more data 

are available the correction factor approach is preferred because it is, 

and can readily be seen to be, a simple approximation that should be 

revised as soon as practicable. The correction factor for Noolook 

Forest Reserve is 0.743 and for Cave Range Forest Reserve 0.771.

Adelaide Hills region

For the three forests in the Adelaide Hills region, Mount Crawford, 

Kuitpo and Second l/alley Forest Reserves, the mean deviates that were 

obtained when Equation VI.9 was fitted to the data were not significantly 

different from zero, (Table VI.4). The deviates were regressed against 

age and site potential (a second order polynomial) and none of the 

regressions were significant. The lower south-east model is therefore 

a satisfactory predictor for each of the Forest Reserves in the Adelaide

Hills region.



Northern region

For the Forest Reserves of the Northern region, Uirrabara and 

Bundaleer, there were relatively feu data available and for both these 

forests the mean deviate uas significantly different from zero, Table VI.4.

Carrying out analysis similar to that for the other significantly 

different forests again produced confusing results, Table VI.5. For 

Uirrabara the louest total deviates squared uas when â  uas allowed to 

float, and allowing to float uas superior to the use of the correction

factor to increment. For Bundaleer allowing â  to float again had the

louest total deviates squared but the correction factor uas superior to 

allowing p^ to float. Allowing â  to float provided an unsatisfactory 

model for if Y^^IOO then A^=2.0 and 1.7 for the two forests respectively 

compared with 4.0 for the south-east model. This uas biologically un

sound as at age A^ some trees must be 10.5 cm in diameter. It uas better 

to use either the correction factor or p_.

Fitting these two models to each of the data sets and regressing 

the deviates against age and site potential showed that the deviates 

were significantly related to age for Bundaleer but not Uirrabara, and 

that the deviates were not related to site potential for either forest. 

Bundaleer provides an even uorse example of badly distributed data 

affected by the 1967/68 drought than Noolook and Cave Range Forest 

Reserves. The Bundaleer data were from only four plantations, and the 

youngest of these uas the most severely affected by draught with many 

trees having dead tops and as well there were a number of deaths. As 

these data were also for a one year increment period the drought effect 

uas accentuated greatly.

The analysis uas unsatisfactory because the data were inadequate, 

but until further data are available it is probably better to use the 

correction factors of D.690 for Uirrabara Forest Reserve and 0.644 for
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Bundaleer Forast Reserve for two reasons. Firstly the use of the 

correction factor continually reminds users that it is nominal adjust

ment, and secondly the improvement in efficiency of the correction factor 

over Pq for Bundaleer was greater than the improvement in efficiency of 

Pq over the correction factor for Ulirrabara.

Summary

The analysis indicated that the lower south-east model can be 

extended to other areas, although the success of the extension depends 

on having suitable, sufficient, accurate data available. There was an 

indication that even when the available data were poor a relatively 

simple correction factor to the increment may provide a model that can 

be used until further data become available. Mo changes were necessary 

to enable the model to be used for the three Adelaide Hills forests some 

400 km from the south-east.

The conclusion was that the same model structure may prove to be 

satisfactory for other radiata pine areas of Australia. If good data 

are not available then a relatively simple analysis, estimating p^ for 

that area or even estimating the simple correction factor, may provide 

a satisfactory model until more data are available and all parameters 

can be re-estimated.

SECOND ROTATION STANDS

There is a considerable area of second rotation plantations of 

radiata pine in South Australia and these plantations are generally of 

lower productivity than the first rotation on the same site (Keeves, 

1966). It is of considerable practical management importance to know 

whether, apart from being of different site potential, the yield function 

is different for second rotation stands compared with first rotation



stands. Appendix 1.4f lists the available plots and their plantation 

year, and although they do not appear to be very well balanced by age, 

site potential or forest they uere the best available and probably 

represent the current distribution of second rotation stands over age 

10 fairly uell. There were 33 plots with 157 increment periods.

When Equation VI.9 was fitted to the second rotation data the mean 

deviate of 0.003, not significantly different from zero, for the mean 

deviate had a standard error of 0.42. When the deviates were regressed 

against a second order polynomial in age and site potential the result

ant regressions uere not significant. Although 73 of the 157 observa

tions were included in the data used to develop Equation VI.11 (7.5$ of 

that data set) these results indicated that second rotation stands have 

the same yield function as first rotation stands. The pooling implied 

in the data used to develop the south-east model was justified.

The investigation by Keeves (1966) into the second rotation decline 

in productivity cites some evidence that yield trends uere similar 

betueen rotations but that the absolute level uas louer. This analysis 

confirmed that the yield trend is independent of rotation.

sunnARY

The conditioned Bertalanffy periodic annual increment model uas 

successfully extended for use in thinned stands. Thinning uas included 

in tuo uays. Firstly, the level of competition uas incorporated in a 

simple quadratic correction to periodic annual increment that approximated 

Langsaeter’s (1941) qualitative model. The very flat response surface 

uas influenced by lack of sufficient heavily thinned plots in the data 

base and care should be taken not to extrapolate outside the range of the 

data. Standing volume uas better chan number of trees as the index of 

the competition. The second uay thinning uas incorporated into the model



was as thinning shock, the best measure of which was the relative change 

in volume, with the effect assumed to last only one year.

Investigation of soil type was hampered by the lack of a suitable 

nonlinear parameter estimation program that could handle dummy variables. 

The analyses carried out provide biased estimators and although the 

extent of the bias is unknown it was thought to be relatively small, 

form indices were not an adequate continuous variable proxy for soil 

type. Seven soil groups were recognised, five of practical significance. 

The resultant model could be used in practice in the south-east if inven

tory is modified to include the recording of soil type.

Both Equations 1/1.9 and VI.12 were satisfactory predictors.

Evaluating the model on areas other than the lower south-east of 

South Australia showed that for the Adelaide Hills region where more 

data were available, the south-east model (Equation VI.9) was an unbiased 

predictor. For lilirrabara and Bundaleer Forest Reserves in the Northern 

region, and Noolook and Cave Range Forest Reserves in the upper part of 

the south-east, the lower south-east model was biased but the data were 

inadequate for a detailed analysis. It was concluded that extension of 

the study to these areas of radiata pine plantation is probably feasible, 

the level of success depending on the quality and quantity of the data 

available.

Second rotation stands were shown to be satisfactorily predicted by 

the lower south-east model. This supported Keeves* (1966) contention 

that, although the absolute level of site potential changes between 

rotations, the same yield model can be used for both first and second

rotations
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V11 MODELS PGR Li NT HIM NED STANDS 

GENERALIZED LEAST SQUARES ANALYSIS

In the preceding chapters Ordinary Least Squares (OLS) was used to 

estimate a yield prediction model. The analysis used to produce the 

final model did not take explicit advantage of the trend series available 

within each plot, the data within each plot being treated as if they 

were random and independent observations. Intuitively it would seem 

more sensible to utilise the time series nature of the available data by 

using a two stage approach, analysing each plot in turn and then analys

ing the coefficients of these plots.

A two stage approach was tried in Chapter V but failed to produce 

a satisfactory prediction model. In estimating the second stage para

meters using OLS it was necessary to treat each of the first stage para

meters as if they were independent when in fact they are likely to be 

highly correlated.

Consideration of this problem led Dr I.S. Ferguson to suggest the 

possibility of using Generalized Least Squares (GLS) rather than OLS in 

developing the second stage models, so that the correlation between the 

parameters in the first stage model would explicitly be taken into 

account in the development of the second stage models. Dr Ferguson 

then developed the technique which was programmed in ALGOL by Mr. 3.A. 

Miles of the Department of Forestry, Australian National University.

This was then used empirically to determine whether the technique offered 

significant advantages over OLS in the development of a growth model.

Details of that study (Ferguson and Leech, 1976b) are described in 

Appendix 6. The study showed that there was a slight improvement in 

relative efficiency if the structure of the error term was considered to 

be heterogeneous across plots and a marked increase in relative efficiency



(Appendix 6, Table 5) if the error terms relating to the individual 

coefficients were assumed to be correlated.

The results of Chapter V, where the difference equation estimating 

periodic annual increment from the pooled data was found to be superior 

to the two stage yield model, were reinterpreted in the light of this 

GLS study. The pooled data approach takes the correlation between the 

first stage parameters into account but does not utilise the time series 

to the full. On the other hand, the two stage OLS approach does not 

take account of the correlation between the parameters but does utilise 

the trend information inherent in the time series for each plot. GLS 

enables both to be included in the analysis.

Furthermore, in the GLS analysis, the pooled observations were 

derived from time series for each plot and were not truly independent. 

The standard errors of the parameter estimates were therefore under

estimated by an unknown amount that could not be estimated, and it is 

possible that some parameters were included when they should not have 

been. GLS analysis avoids this problem.

The GLS study (Appendix 6) dealt only with the Oohnson—Schumacher 

or Clutter model. In the light of the OLS results which showed the 

second level Bertalanffy model to be superior to that model, further 

trials of the GLS approach were made using the Bertalanffy model.

137

MODEL FORMULATION

When the second level Bertalanffy model was developed in a two 

stage process, the first stage models were clearly nonlinear in the

parameters for both the conditioned and the unconditioned model forms.
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Y = - { (n /p )  1 -  e x p ( - p ( 1 - m ) ( A - A Q) )
1-m

and

Y = Y,
1 -  e x p ( - p ( 1 - m ) ( A - A Q) )

1 -  e x p ( - p ( 1 - m ) ( 1 0 - A Q) )

1 -m

(Y/II.1 )

(VII.2)

The second stage structure used in Chapters 1/ and VI was linear for the 

parameter p, but nonlinear for the parameter A .

P = p0 “ p1 Y10 (VII.3)

AQ = 10 exp(-a/] Y1q)

uhere

Y = yield,

A = age,

Y ^ =  site potential, yield at age 10,

Ag = the age at which volume growth commences, 

n and p are the parameters in the second level Bertalanffy 

model, and,

Pq , p̂  and a^ are the parameters to be estimated.

This formulation was unsuitable for GLS analysis because the algorithm 

was designed for linear second stage models only. However by substit

uting (10 exp(-a^)) for A^ in the first stage the model has a more complex 

first stage, but a simple linear second stage. This enables the GLS 

program to be used without the development of a nonlinear version.

Apart from Equation VII.3, other formulations including site poten

tial were possible such as those in Equation V,6. Stocking at age ten 

( )  is the best measure of initial spacing and was also evaluated. 

Differences between forests or groups of soil types were investigated 

by the use of dummy variables (dohnston, 1363; Cunia, 1973).
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ESTIMATION CF VARIANCE-COVARIANCE MATRIX

Extending the GLS treatment to embrace a nonlinear first stage 

using Bard’s (1967 )program (see Chapter III) assumes that the estimate 

of the variance-covariance matrix is unbiased and relatively precise.

Although the estimates derived from Bard’s program appeared to be 

sensible estimates it was impossible to confirm analytically that they 

were unbiased and efficient. Monte Carlo simulation was therefore used 

to investigate the problem further.

For each of the twenty plots in the developmental data used in 

Chapter V, Bard’s program was used to estimate the parameters n, p and 

â  , and the variance-covariance matrix for the following model;

Y = (n/p) jj - exp(-p(A-10 exp (— J (VII.4)

where the parameters and variables are as for Equations VII.1 to VII.3.

The unconditioned model was preferred to the conditioned for this analysis 

because it was more complex and thus more likely to indicate any problems.

For each plot the variance of the residuals for this model was then 

used, together with a generator of normally distributed random numbers, 

to define new data sets based on a random disturbance to the original 

data. For each new data set the parameters were re-estimated and this 

was repeated until the variance-covariance matrix of these parameter 

estimates appeared to have stabilised. Commonly this was between 

10 000 and 50 000 iterations.

For each plot the variance-covariance matrix estimated by Bard's 

program was compared with the Monte Carlo estimate using the following 

test (Morrison, 1976).

L = (N-p) (ln ! S 0| - ln [ s j  + t r ( s £ Q ) - p )  (VI 1.5)
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where

L

N =

P =

the likelihood, distributed chi-squared with 

(p(p+l))/2 degrees of freedom, 

the number of observations, 

the number of parameters,

the Monte Carlo estimate of the variance-covariance

matrix,

its inverse,

its determinant,

S = the estimate of the variance-covariance matrix from 

Bard's program,

|s| = its determinant, and,

tr = the trace of the product matrix (the sum of the 

diagonal elements).

For small N, Bartlett (1954) suggested that the statistic should be 

scaled to yield a new statistic L before testing against chi-square.

*
L = 6(l\l-1 ) (‘2p + 1 L (VII.6)

This test was particularly rigorous because the Monte Carlo estimate is 

really a stochastic estimate rather than the true variance-covariance 

matrix, and a less powerful test would have been more appropriate.

Using a probability level of p=0.C5, none of the twenty plots 

yielded estimated variance-covariance matrices which differed significant

ly from the Monte Carlo estimate. The estimated variance-covariance 

matrix from Bard's program was therefore considered acceptable for use

in the GLS models
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MODEL DEVELOPMENT

F i r s t  s t a g e  models

The c o n d i t i o n e d  m ode l ,  E q u a t i o n  V I I . 7,  was then  f i t t e d  t o  t h e  

d e v e l o p m e n t a l  d a ta  used i n  C h a p te r  V.

1 -  e x p ( - p (  1~m ) ( A-1 0 e x p f - a ^ ) )  J 1_ 

1 -  e x p ( - p ( 1 - m ) ( 1 0 - 1 0  e x p ( - a ^ ) ) )  |
( V I I . 7 )

where t h e  p a r a m e te r s  and v a r i a b l e s  a r e  as f o r  E q u a t io n s  V I I . 1 t o  V I I . 3.

The p a r a m e te r  e s t i m a t e s  a l l  had l a r g e  sam p l ing  e r r o r s  and none W O S  

s i g n i f i c a n t l y  d i f f e r e n t  f r om  ze ro  u s i n g  a t  t e s t ,  p a r a l l e l i n g  t h e  OLS 

r e s u l t s .  For  i n c r e a s e d  a c c u r a c y  t h e  a n a l y t i c a l  p a r t i a l  d e r i v a t i v e s  

were used r a t h e r  th a n  t h e  a p p r o x i m a t i o n  d e s c r i b e d  i n  Append ix  2 .  The 

mode ls  were r e f i t t e d  w i t h  m=0 r e d u c i n g  t h e  number o f  p a r a m e t e r s  t o  be 

f i t t e d  t o  two f o r  each p l o t .  The p a r a m e t e r  e s t i m a t e s  f o r  b o th  p and a^ 

appea re d  s e n s i b l e  f o r  a l l  p l o t s ,  and,  a l t h o u g h  some e s t i m a t e s  had l a r g e  

s t a n d a r d  e r r o r s ,  t h e  p a r a m e t e r s  were a l l  s i g n i f i c a n t l y  d i f f e r e n t  f r om  

z e r o :  t h e  r e s u l t s  were a c c e p t e d .  The p a r a m e te r  e s t i m a t e s  and t h e i r

95% c o n f i d e n c e  l i m i t s  a r e  summar ised  i n  F i g u r e  V I I . 1 .

S c a t t e r p l o t s  o f  r e s i d u a l s  f o r  each p l o t  gave no i n d i c a t i o n  o f  n e t e r -  

o g e n e i t y  o r  s e r i a l  c o r r e l a t i o n  w i t h i n  any o f  t h e  p l o t s .  The D u r b i n -  

Watson d s t a t i s t i c  ( D u r b i n  and b ia ts on ,  1950,  1951)  was c a l c u l a t e d  even 

though  i t s  v a l u e  i s  q u e s t i o n a b l e  w i t h  so few o b s e r v a t i o n s .  P u b l i s h e d  

c r i t i c a l  bounds o n l y  go down t o  15 o b s e r v a t i o n s  and e x t r a p o l a t i n g  t h e s e  

uppe r  and l o w e r  bounds t o  t h e  number o f  o b s e r v a t i o n s  f o r  each p l o t  i s  

d i f f i c u l t  and u n s a t i s f a c t o r y .  R e c o g n i s i n g  t h e  dange rs  i n h e r e n t ,  t h e  

s t a t i s t i c  was t e s t e d  a g a i n s t  t h e s e  e s t i m a t e d  c r i t i c a l  bounds and i t  was 

found  t h a t  none o f  t h e  p l o t s  had v a l u e s  o f  t h e  d s t a t i s t i c  be low t h e  

low e r  bound.  Of t h e  t w e n t y  p l o t s ,  f o u r t e e n  f e l l  i n t o  t he  i n c o n c l u s i v e  

zone ,  s i x  f o r  p o s i t i v e  s e r i a l  c o r r e l a t i o n  and e i g h t  f o r  n e g a t i v e .  In
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Figure VII.1

Conditioned Bertalanffy model 
First stage estimates and 95% confidence limits

- f l

0.
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spite of the large proportion in the inconclusive zone, serial correla

tion was not considered a problem because it was expected that if serial 

correlation was a problem then the sign would be consistent for all or 

most of the plots, and this was patently not so.

Second stage models

Various forms of the second stage models utilisinq and |\L were
10 10

then evaluated, including one form which permits a direct comparison 

with the OLS results shown earlier in Equation V.12:

p = 0.03194 - 0.7802 1o“  ̂ Y1 a (VII.8)
(0.00353) (0.2449 10 4)

a = -0.003803 Y
(0.000317) J

Comparing the standard errors of the parameter estimates of Equations 

VII.8 and V.12 shows that the GLS estimates are consistently and con

siderably higher than the OLS estimates (0.00353 cf. 0.00108, 0,2449 10 

cf. 0.0503 10  ̂and 0.000317 cf. 0.000052). As described earlier, and 

also on page 261, Appendix 6, this is not an artefact of the GLS method 

but is caused by the OLS estimates being underestimated because the data 

from each plot are related and not truly independent.

This suggests that the best models estimated by OLS (Equations VI.9 

and VI.12) may contain some unnecessary parameters, with underestimation 

of the standard errors leading to the possibility of erroneous rejection 

of the null hypotheses concerning some parameters. However it was

impossible to gauge how serious the problem was other than relying on 

the tests based on independent data. These suggested that Equation VI.9 

was satisfactory.

The results for the various second stage models are summarised in 

Table VII.1. The significance test used to test each parameter is

defined in Equation 22, Appendix 6. Equation VII.8, model 5, was the



Co
mp
ar
is
on
 o

f 
al
te
rn
at
iv
e 

un
th
in
ne
d 

mo
de
ls
, 

co
nd
it
io
ne
d 

Be
rt
al
an
ff
y

144

Table VI1.1

w
CD
P
CDoO'w

nncocricocsj-r-mcD
C T i O j c n c n w w L D C D c o

C T > v - c r > L n r - c o v o r ^ r - C N t n a Dc n c n o o c N C D c o c n O ' s t C N j c o
o c a r o c D o o c n m c i i O c o c o D i

s— r - v - C M C M t - ^ - < r - ( N r - v - r -
CO CD cn O'! CTI o
c  r -  r -  CN n

cn0
i—i
n

O
K—

2

NS (N
S) NS NS NS NS NS

CD
•H CN "—n, /  *
P O CD CD CD CD
CD 2  Z  2  2
> >- X-X '—/5C—

CD >sp
CD a
ID TT- Z  2  <2
C >-
Oo
Ü /---\ / --\  / --V X""N

CD CD CD CD CD CD CD C D C D C D
2  Z  2  2  2  2  2  2  2

----  ----- ----

o CD CD CD CD CD CD
K— 2  2  2  2  2  2

s c

o

> -
i

CL CDX 2
CD

O
-̂-

> -
\ *

<C—
CD
0 0

1--1 CD ^ »
-D 1--1 '— '
CD -Q o

•H CD
f-i •H > -
CD P V_/
> CD c CD

> _J 2
CD CL >—Xcn > . c
cD P _)-p CDcn TDC-p o a
CD o —̂P CD >- •%. CD if; >fc sfc >fc•H CD 2L_ c

_ J

CN /̂N /--a CD CDC— 2  2>- W  ' *

CDV— CD>- 2  2

I—t
CD■aoe:

c - C N C O N j - c n c o r - c c i c n o CM tn LD VO l>  CD CTi O  v -  CM 
v— r - r — r  f  r -  t -  iN  CM CN

(M
ot
e 

* 
pa
ra
me
te
r 

si
gn
if
ic
an
t

(MS
 

pa
ra
me
te
r 

no
t 

si
gn
if
ic
an
t

(N
S)
 

pa
ra
me
te
r 

no
t 

si
gn
if
ic
an
t 

an
d 

ze
ta
 v

al
ue
 t

he
 l

ow
es
t 

of
 a

ll
 t

he
 e

st
im
at
es
.



145

best of the models including a linear function in (Models 1-12), in

that no other parameter was significant when added to this model.

Replacing by (ln(Y^ )) produced a superior estimator (Model 13,

Equation VII.9) that has a lower residual sum squares (19.09 compared 

with 20.23) and has the same number of parameters. This model could 

not be improved upon by the addition of other parameters (Models 14-19) 

or by alternative structures for p (Models 20-22).

p = 0.07290 - 0.01065 ln(Y ) (VII.9)
(0.01524) (0.00317) U

a = -0.003813 Y 
(0.000316)

Further analyses were made using Equation VII.9. Each parameter 

was replaced by dummy variables representing the soil and forest groups 

defined in Appendix 1.6a. Although the residual sum squares was smaller
A

(Table VII.2), these more elaborate models were not significantly better 

than Model 13, Equation VII.9.

Alternative error structures

For Equation VII.9 the correlation between the parameters p and â  

was 0.76 suggesting that there should be a considerable gain in efficiency 

through the use of GLS. Bartlett's (1937) test across the twenty plots 

also showed that the variances were heterogeneous (chi-square 106.3).

Table VII.3 shows that the gain in efficiency through the recognition of 

the correlation between parameters was quite marked, for the relative 

efficiency assuming heterogeneous independent errors was only 0.182 compar

ed with 1.0 for the assumption of heterogeneous correlated errors. This 

was a measure of the advantage of the two stage GLS compared with the two 

stage 0LS model. On the other hand the gain in efficiency due to the 

implicit recognition of heterogeneity was relatively slight, (relative 

efficiencies of 0.991 compared with 1.0, 0.180 compared with 0.182).
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Testing the model

The independent test data used in Chapter V were also used to test 

Equation 1/II.9. The standard deviation of the deviates was 46.44, 

lower than for the OLS models (51.51 for the conditioned periodic annual 

increment model developed on the pooled data, 66.1 for the two stage 

OLS). For Equation VII.8, with the same structure as the OLS models, 

the standard deviation of the deviates was 47.98, indicating that the 

differences were not solely due to the change in the second stage 

structure of the parameter p from linear to log-linear. Thus the 

advantages of GLS over OLS seem to extend to predictors as well as 

estimators.

Figure VII.2 shows the developmental data and the estimated yield 

curves for these data. Host of the yield curves seemed to provide a 

good fit visually, although 73, 89 and 346 are underestimated and 58 

and 322 overestimated.

The test data cover a wider range of and than the develop

mental data. The four highest and the four lowest plots with respect 

to for the independent test data were plotted in Figure VII.3 together

with their estimated yield curves. Seven of these eight plots had values 

of outside the range of the developmental data. For the very low

site quality plots Equation VII.9 consistently overestimated yield, 

especially for plot 369, suggesting structural misspecification. For 

the very high site quality plots the equation was satisfactory for plots 

155 and 433, but EP24C and EP24E appeared to exhibit a different form of 

yield curve, EP24C being overestimated as well. These latcer two plots 

were originally planted at 6x6 feet and 9x9 feet respectively instead cf 

the more common 7x7, 8x8 or 9x7 feet (2.1x2.1-2.4x2.4 m). These two 

plots were established on a Tantanoola flinty sand where early rapid 

growth would normally be expected to be followed by a faster than average
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Figure VII.2

Estimated yield functions for 
developmental data
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Figure VII.3

Estimated yield f-unctions for 
selected independent test data
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decline in growth (see Chapter l/l). These differences in stocking and 

soil type probably account for the anomalies with respect to these plots, 

as there were no plots in the developmental data on this soil type or 

with the initial plantation espacements.

Unconditioned model

For completeness similar analyses were carried out using the un

conditioned model, Equation VII.1. The best model was

p = 0.07575 - 0.01109 ln(Y ) (VII.10)
(0.01297) (0.00272)

a = -0.003535 Y 
(0.000376)

n = 7.557 ln(Y„ )
(0.242) lU

m = 0.0

but as with the 0L5 analysis the unconditioned model was less efficient 

than the conditioned as a predictor of the test data (standard deviation 

of the deviates 52.34). Also, the error in using Equation VII.10 to 

estimate yield at age ten was considerable, ranging from to 15^ over

the range of the data. The unconditioned model was not considered 

further.

SUMMARY

The GLS analysis of the unthinned stand data was superior to the 

0LS analysis in that it satisfied the assumptions of the analysis, was 

more efficient, yielded accurate estimates of the standard errors of the 

parameters, and provided a superior predictor.
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VIII MODELS FOR THINNED STANDS 

FIRST STAGE MODELS

Formulation

The structure of the models developed for thinned stands in Chapter 

VI using OLS was inappropriate for the GLS analysis because the range of 

competition levels does not, and cannot, occur in each and every plot 

but, unlike site potential, competition level does vary with age in a 

plot. The structure with respect to competition must be simple, for 

the first stage GLS structure already has two parameters to be estimated 

from a time series with between 9 and 15 observations.

If Ti^ represents the thinning grade. (ratio of volume of trees 

removed to the volume before thinning) then this is likely to affect the 

parameter p after the age of the j th thinning, but should not affect 

the parameter a^.

A general formulation should therefore include an adjustment tc the 

parameter p for each thinning prior to the current age, but because the 

number of thinnings varies between plots, and also varies for each obser

vation within a plot, a summation form such as Equation VIII.1 was nec

essary •

P = P0 + S
j=k
E  (
j=i

where

for all A >  A . (VII1.1)

the parameter in the second level Bertalanffy model, 

thinning fjrade. of the j th thinning, 

the number of thinnings, 

age,

the age of the j th thinning, and, 

and t„ are the parameters to be estimated.
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The model parallels the plateau competition effect (Langsaeter, 1941; 

Möller, 1954a, 1954b) described in Chapter VI, in that for t , t̂  and 

t^ positive, then p is at minimum if Ti = t̂  for all j, increasing 

as Ti . diverges from t^, the rate ever increasing. The asymptotic 

maximum yield, the ratio n/p, would be lower for both unthinned and 

heavily thinned stands than for "well thinned" stands.

This formulation is also supported by evidence from the series of 

four plots X, Y, 304 and 305 described by Lewis (1962). Although the 

plots were c-cmparable at age 17, the total volume production by the 

control at age 50 was approximately 200 m /ha lower than for the two 

lightly thinned plots, while the more heavily thinned plot was approx- 

imately 100 m /ha below these two plots.

As it was unlikely that three thinning parameters could be estimated

as well as P and a , restricted models were formulated at various

levels.

P a i : tQ = ° No thinning parameters (VIII.2a)

P ai to : 5  =  0 *2 “ 1 Models with one thinning 
parameter (VIII.2b)

P a i t o : 5  = 0 fc2 = 2 (VIII.2c)

P a i ‘ o 5  ! *2 - 1 Models with two thinning 
parameters (VIII.2d)

P a i fc0 h  ! *2 “ 2 (VIII.2e)

P a„I b 0 *2 ! 5  = 0 (VIII.2f)

P a i fcD 5  *2 Model with three thinning 
parameters (VIII.2g)

Selection

The selection of the best of the seven models is complicated by the 

variation in results across the various first stags data sets. The 

technique adopted was to summarise for each plot, and for each of the 

different numbers of parameters, the model with the lowest residual sum 

of squares; as well as using F tests to compare different numbers of



155

parameters. The 'best' model then was the model that for the majority 

of plots had the lowest residual sums of squares and which for the 

majority of plots had the largest number of significant parameters.

If too many noisy parameters were included then this would become 

apparent in the second stage analysis when no secondary structure would 

be significant. The level of the best model was, in essence, the most 

complicated for which second stage models could be determined.

BAYESIAN ESTIMATION

As the data were relatively sparse it was considered unlikely that 

more than four parameters could be estimated for each plot in the first 

stage models, and even then, the estimation technique would have to make 

maximum use of the information. A sequential estimation technique 

seemed desirable working from the model based on the unthinned data, 

and then refining these estimates and estimating the thinning parameters 

using data from thinned stands.

<T;>

Sequential estimation is possible using Bayesian statistics (1753,
A

(1958); Raiffa and Schlaif er, 1961; Lindley, 1972; Box and Tiao,

1973). In 3ayesian statistical theory data are used together with a 

prior distribution from previous experiments to produce a posterior 

distribution. Equation 1/II.9 which was developed from unthinned stand 

data can be used to provide prior estimates of the parameters p and 

â  in an analysis of the thinned stand data. Utilising Bayesian statis

tics gave a better chance of obtaining satisfactory estimates of the 

first stage thinning parameters, and made full use of the available data.

Bayesian theory is not without its opponents. However this applica

tion can also be treated within the framework of classical statistical 

theory, by simply regarding the estimates from the unthinned data as 

prior estimates from a previous experiment. While the Bayesian approach
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often has considerable appeal for other applications, the debate between 

Bayesian and Classical schools is largely irrelevant in this case.

Bard’s (1967) program can perform such an analysis, offering the 

option of utilising as the prior estimate the parameter estimate and 

either:

1 the standard errors of the parameter estimates, or,

2 the variance-covariance matrix of the parameter estimates.

The latter is clearly more appropriate in a mixed Bayesian-GLS analysis 

of this kind.

DATA

The prior estimate for the parameters p and â  was therefore 

Equation VII.9.

p = 0.07290 - 0.01065 ln(Y ) (VII.9)

a1 = -0.003813 Y

which has the variance—covariance matrix 

= 9.9784 10“8 Y1q2

= 2.3233 10“4 - 9.6121 10“5 ln(Y1 ) +

1.0059 10“5 (ln(Y1Q))2

= -1.3038 10“6 Y1q + 3.4630 1o“7 YqQ ln(Y1Q)

0LS estimation had shown that the Bertalanffy model seemed relatively 

insensitive to the effects of thinning. Hence a prior estimate of zero 

with an infinite variance and zero covariance was thought likely to be 

satisfactory for the thinning parameters.

For the posterior model 58 plots were extracted from the data base. 

These plots all had at least nine volume measurements, the age of first 

measurement being 13 or less, although 49 of the plots were measured
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within one year of age ten. The data are summarised in Appendix 1.5b.

The average number of observations was 10.5 and the average growth period 

24.7 years.

FIRST STAGE MODEL DEVELOPMENT

Using the prior estimate, Equation VIII.2a without any thinning 

parameters was then estimated. For increased accuracy the analytical 

derivatives were used instead of the numerical approximation described 

in Appendix 2. The estimated parameters p and â  are shown in Figure 

VIII.1, together with the 95% confidence limits for each estimate. The 

estimated parameters show similar trends with site potential to the un

thinned plots which are plotted in Figure VII.1.

Thinning parameters

The two single thinning parameter models (Equations VIII.2b and 

VIII.2c) and the three two parameter models (Equations VIII.2d, VIII.2e 

and VIII.2f) were then fitted to the data.

Comparing the single parameter models with Equation VIII.2a showed 

Equation VIII.2b to be significantly better for only 9 out of the 58 plots, 

Equation VIII.2c for only 7. When an extra parameter was added 

(Equations VIII.2d, VIII.2e and VIII.2f), the results were significantly 

better in only 4, 3 and 1 plot out of the 58. It was extremely difficult 

to get parameter estimates for some plots, convergence being extremely 

slow for Equations VIII.2d, VIII.2e and VIII.2f. This suggests over- 

parameterisation in the sense that the equations seemed to be statistic

ally incompatible with the data. In view of this, Equation VIII.2g with 

three thinning parameters was not even fitted to the data.
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Figure I/III.1

Conditioned Bertalanffy model 
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First stage estimates and 95% confidence limits
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SECOND STAGE MODEL DEVELOPMENT 

Site potential

For Equation V/111.2a without any thinning parameters, Bartlett’s 

test (1937) snowed that the assumption of homogeneity was invalid (chi- 

square 404.5) and that the parameter estimates were quite highly correl

ated, the correlation between p and being 0.77.

Various forms of the second stage models were then tried for 

Equation VIII.2a without any thinning parameters, and the initial trials 

are summarised in Table VIII.1. Using a linear structure in for p

(Model 8) was inferior to the logarithmic form (Model 1). A quadratic 

form in site potential (Model 10) was significantly better than the linear, 

but variants of this model (Models 11-15) did not show significant gains. 

The incorporation of the quadratic parameter gave only a slight gain over 

the logarithmic form. Moreover, the quadratic implied that a minimum 

value of p was reached at Y = 259, which was within the range of the 

data, some 7 plots having Y values in excess of this figure. No ten

able argument could be advanced to justify the acceptance of a minimum 

value within the range of the data, and hence it was rejected.

The posterior model was therefore the simple model Equation VIII.3.

p = 0.05271 - 0.006484 ln(Y ) (VIII.3)
(0.00411) (0.000821)

a = -0.003467 Y 
(0.000151)

Various second stage models (linear functions in Ŷ  ) were then 

fitted to the first stage parameter estimates for Equations VIII.2b and 

VIII.2c each with a single thinning parameter (three parameters in total). 

All models had nonsignificant zeta values (see Appendix 6) for the thinning 

parameter, with the highest zeta value being 0.3, considerably less than 

the critical value of 1.96. This confirmed the suspicion that 7 or 9
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plots uith significant thinning parameters out of the 58 plots were too 

feu for satisfactory second stage models to be developed. Equation 

VIII.3 was accepted as the best model to date and thinning parameters 

were not included in the model.

Other variables

Stocking at age ten (IM̂ ) was evaluated in addition to site poten

tial in the second stage models, but Models 2, 6, 7, 9, 11 and 15,

Table VIII.1, show that the variable was not significant.

The data could not be divided into the same seven groups based on 

soil type used in the CLS analysis because some groups had too feu 

observations. The data were therefore divided into four soil groups 

based on the groups defined in the OLS estimation.

1 Group C, the main group of sandy soils, 33 plots.

2 Group B, Caroline and Uandilo sands, 17 plots.

3 Group D, Tantanoola flinty sand, 4 plots.

4 Miscellaneous, the other groups (A, E, E and G), 4 plots.

Although the fourth group is heterogeneous in terms of soil type it 

enabled the other groups to be separated and analysed.

When any one of the three parameters in Equation VIII.3 uas replaced 

by parameters for each soil type and all parameters uere re-estimated, 

increasing the total number of parameters to six, the residual sum 

squares uas reduced by less than 2% (Table VIII.2) and none of the four 

soil varying parameters differed from any other regardless of uhich uas 

replaced. Soil type could not be included in the model. The comparison 

betueen Equations VII.8 and V.12 in Chapter VII indicated that the stand

ard errors of the parameters in the GLS estimation uere underestimated by 

a factor of betueen 3.5 and 6. Assuming that this also holds for

Equation VI.12 it uas evident that that equation may have too many param-
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eters, and thus the inability of the GLS analysis to discriminate 

between groups of soil types seemed quite reasonable.

The forest groupings defined in Appendix 1.6a were evaluated in the 

same way (Table 'Jill.2). The yield curves do not vary between forests.

As form variables were not significant in the GLS analysis where 

the standard errors of the parameters were underestimated they were not 

even considered in the GLS analysis.

Alternative error structures

Further analysis of this posterior model with alternative error 

structures (Table VIII.3) showed that the implicit recognition of the 

correlation between the parameters gave an improvement in relative 

efficiency: relaxing the assumption of correlation between parameters

reduced the relative efficiency to 0.157. However the advantage of 

explicitly recognizing the variance heterogeneity was minimal and was 

totally obscured when the assumption of correlation was also relaxed.

EXAMINATION OF THE DEVELOPMENTAL DATA

The posterior model (Equation VIII.3) and the data are plotted in 

Figures VIII.2a and VIII.2b keeping the data separate by forest area.

Of the thirteen Mount Burr plots, yields were consistently over

estimated for two plots, 55 and 123, and were overestimated at later 

ages, for two other plots, 57 and EP24B. EP24D was estimated satis

factorily although it is adjacent to EP24B. EP24D was planted at 9x9 

feet and EP24B at 6x6 feet, so the difference seemed attributable to 

spacing. However the range of initial spacing in the data was too 

narrow for this variable to have a significant effect in the GLS analysis.
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Figure VIII.2a

Posterior: estimated yield functions for
developmental data
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Five of the six Mount Gambier plots were fitted satisfactorily.

In the remaining plot (527) yield was overestimated consistently.

The yield curves overestimated for plots 412 and 418 at Myora, but 

plot 418 had an inexplicable discontinuity in the actual trend which may 

be anomalous. Plot 409 at Myora was overestimated at later ages and 

this plot also had an inexplicable discontinuity.

For the twenty five Penola plots, yields were consistently under

estimated for two plots (352 and 356). The few that were underestimated 

at later ages (313, 345 and 347) were balanced by others (365 and 324) 

which were overestimated at later ages. The actual shape of the yield 

function itself was not really suited to plots such as 325 and 313.

Of the two Comaum plots the yield function overestimates slightly 

for plot 204 at later ages.

In general the anomalous plots on all forests have similar charac

teristics. Yields for plots with higher initial stocking or for plots 

on shallow heavy soils were generally overestimated at later ages. 

Underestimates seemed to occur where plots have access to a shallow 

water table, or where plots are located on soils that overly a volcanic 

base, possibly providing access to more nutrients as the tree roots 

penetrate the deep sands. The GLS analysis failed to pick up these 

trends because the soil differences were not well represented in the data

EXAMINATION OF THE INDEPENDENT TEST DATA

Independent test data with at least 5 measurements for volume over 

at least a 15 year growth period, and with measurements at or near age 10 

were then extracted from the data base. Equation Will.3 was fitted to 

these independent test data. The data and the estimated yield function 

are plotted in Figure Will.3a and Will.3b by forest area.
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Figure VIII.3a

Posterior: estimated yield functions for
test data

+ ♦ K 4 X

S 5 5 S 3

♦ ♦ * «

2 ? 2 S



MT
.G

AM
BI

ER
 

/ 
»«• 

+ 
MY

OR
A 

CO
MA

UM

1 69

Figurs VIII.3b

Posterior: estimated yield functions for
test data



When the data were pooled the mean deviate was significantly 

different from zero, with Equation VIII.3 underestimating yield. For 

the 378 observations the mean deviate of —7.46 had a standard error of 

2.39. This was rather disturbing and seemed too great to be attribut

able solely to chance. On investigation it was found that the way in 

which the two data sets were differentiated on number of measurements 

and on the length of growth period available approximately split the 

data into two historically different data sets in the pre-1940 plantings 

and the post-1940 plantings.

Over the years forest practice has changed gradually and this is 

reflected in two general but important differences between the develop

mental data and the independent test data. Firstly the tendency has 

been for the thinning regimes in current sample plot practice to have 

become heavier over the years and thus the plots in the test data gen

erally have heavier thinning regimes than the plots in the developmental 

data. The GLS analysis indicated that increment, and hence yield, is 

slightly lower for heavily thinned stands and although thinning param

eters were not significant in the GLS analysis this possibly explains 

the significantly lower mean deviate for the test data.

Secondly, as the plantation program expanded, the range of soil 

types planted changed and so did the range in the sample plot series.

For example, of the soil groups recognised in the OLS analysis the terra 

rossa soils with the highest estimated value of the parameter p^ were 

represented by only one plot out of 58 in the developmental data, but by 

six out of 55 in the test data. The change in the distribution of soil 

type between the two data sets is likely to aggravate the thinning effect, 

explaining why the mean deviate for the test data was significantly 

different from zero. This was possible even though neither thinning nor 

soil type were significant in the GLS analysis because the range of these

170

variables was somewhat reduced.
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SUMMARY

The GLS analysis, unlike the OLS- analysis, satisfied the statistical 

assumptions that could be evaluated. Analysis of the first stage models 

used to develop the prior in Chapter l/II indicated that serial correla

tion was not a problem. Because a Bayesian approach was adopted, tests 

of serial correlation were irrelevant for the first stage posterior 

models because these models were influenced by the informative prior.

The GLS analysis explicitly took account of the plot induced heterogeneity 

that the OLS analysis had indicated was the most important of the three 

sources considered in Chapter III.

The GLS analysis of the Bertalanffy model form produced a simple 

conditioned yield model (Equation 1/III.3). Although superior to the 

OLS analysis, the behaviour of the independent test data suggests that 

caution should be exercised in its use in practice, and further it 

indicates the necessity for the model to be re-developed as more measure

ments are available for the plots that were used in the independent test

data.
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IX CONCLUSIONS

The development of this study fell naturally into three separate 

phases.

In the first phase (Chapter l/), Ordinary Least Squares (OLS) 

techniques were used to estimate and compare a variety of different 

models using data from unthinned permanent sample plots. This phase 

centred around a comparison of the Bertalanffy model with other models 

such as the Bednarz, Oohnson-Schumacher (or Clutter), Gornpertz and poly

nomial models. The Bertalanffy model seemed marginally preferable to 

the Bednarz model, all others being clearly inferior.

A number of different forms of the Bertalanffy model were evaluated 

including both the Mitscherlich (or monomolecular) and Chapman-Richards 

forms, and variants of them based on yield, the derivative of yield with 

respect to age or periodic annual increment as the dependent variables, 

with or without conditioning through the value of site potential. The 

results suggested that the allometric constant (r) for the catabolic 

destruction rate in the Bertalanffy model could be taken as 1.0 while 

the allometric constant (m) for the anabolic growth rate could be taken 

as zero.

This Mitscherlich or monomolecular form was preferred, even though 

it is not sigmoidal in shape. The absence of the point of inflection 

may reflect the limitations of the data, which did not span very young 

ages, or it may reflect the actual properties of yield when measured in 

terms of volume to 10cm top diameter underbark. There are an infinite 

number of transcendental functions with sigmoidal properties, although 

few can be fitted with so few parameters, and the sequence: general

Bertalanffy, second level Bertalanffy (or Chapman-Richards), Mitscher

lich (or monomolecular), provides a logical series of model forms of

decreasing complexity



The conditioned periodic annual increment version of the Mitscher

lich form proved to be a superior predictor to its unconditioned analogue 

and to any of the yield or derivative forms. Unlike linear models, a 

conditioned nonlinear model is not necessarily an inferior estimator to 

unconditioned forms with more parameters.

The model currently used for yield prediction, the graphically 

defined yield table of Lewis, was shown to be a satisfactory predictor 

but was open to bias and necessarily lacked an objective measure of 

precision.

In the second phase of the study (Chapter VI), Ordinary Least 

Squares (OLS) techniques were used to extend the earlier results of the 

conditioned periodic annual increment model for the unthinned stands to 

include other stand variables such as those relating to thinning and soil 

type. Thinning was taken into account in two ways. Firstly, a variable 

representing the level of competition was incorporated in a manner which 

approximated the Langsaeter or Möller hypothesis regarding the effects 

of thinning. Secondly, a variable representing thinning shock was in

corporated, essentially as an overriding correction factor to the model. 

Seven groups of soil types were introduced by appropriate definition of 

dummy variables and incorporation of these into the model. Form was 

also investigated butthe variables introduced were not found to be useful.

Although some of the estimated parameters were not significantly 

different from zero, the following model seemed to be the most approp

riate of those tested.
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Pa i
{  (V A+i  + y a ) /  1 } 6

10

where

1 -  e x p ( - p ( A  -  Aq ) )

1 -  e x p ( - p ( 10 -  Aq ) )

—4
P = Pg + ^ 0 .5 8 5 5  10_.  Y1Q

( 0 .1 1 6 4  10 )

(VI.2)

(1 /1 .7 )

( 1/1.1 2 )

PO'

P0

P0

p0

p
o '

p0

0 .00030
( 0 . 0 0 0 9 3 )

f o r v o l c a n i c  s o i l s

0 .0 030 2
( 0 . 0 0 0 5 2 )

f o r C a r o l i n e ,  bJandi lo and Myora sands

0 .00539
( 0 . 0 0 0 3 6 )

f o r o t h e r  y e l l o w  and w h i t e  sands

0.01119  
(0 .0 0131  )

f o r T a n t a n o o la  f l i n t y  sands

0 .0 1759  
(0 .0 0201  )

f o r t e r r a  r o s s a  s o i l s  and brown s o i l s  f rom Comaum

0.01172
( 0 . 0 0 2 2 5 )

f o r y e l l o w  sands  f rom  Comaum

0.0 0534
( 0 . 0 0 1 7 5 )

f o r r e n d z i n a s

0.005075
( 0 . 0 0 2 6 2 3 )

f o r a l l  s o i l  t y p e s  combined

A = 10 .0  e x p ( - 0 . 009172 Y )
( 0 . 0 0 0 8 4 1 )  lU

Z = ( 1 . 7 0 0  + 0 .4 4 2 6  1o“ ? D -  0 .7 3 8 0  1 0~6 D2 ) (1 .0  -  0 .4 2 8 7  S) 
( 0 . 1 1 4 )  ( 0 . 2 3 3 5  10“° )  ( 0 . 3 0 5 0  10“ b ) (0 .0731  )

and where

Pa i  = p e r i o d i c  a n n u a l  i n c r e m e n t ,

Y = y i e l d  a t  age A,H

A = age,

i  = i n c r e m e n t  p e r i o d ,

Y^q = s i t e  p o t e n t i a l ,

D = c o m p e t i t i o n  l e v e l  ( v o l u m e ) ,  and,

S = t h i n n i n g  s h o c k ,  ( l / t / (  \Jb i ) ) ,  r e l a t i v e  vo lume,  t h e  e f f e c t

l a s t i n g  one y e a r  o n l y .
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This model was tested using data from other regions. for the 

three forests in the Adelaide Hills region where reasonably good data 

were available, the model was a satisfactory predictor. For the small 

outlying Forest Reserves of Noolook and Cave Range in the upper part of 

the south-east region and for Rundaleer and Uirrabara Forest Reserves in 

the Northern region, the model overestimated, but the data were too 

sparse to allow detailed investigation. Simple correction factors to 

increment were developed for use until better data are available.

Importantly to South Australia it was shown that second rotation 

stands can be considered to have the same yield function as first 

rotation stands.

In the third phase (Chapters VII and VIII) Generalized Least Squares 

(GLS) techniques were introduced to overcome statistical defects in the 

DLS analyses. A yield form of the Mitscherlich model was fitted to each 

of the plots from unthinned stands in turn. The resulting parameter 

estimates were then related to differences between the stands, notably 

in terms of site potential.

The resulting function for unthinned stands was then used as an 

informative prior in a Bayesian analysis of the data from thinned stands, 

on a plot by plot basis. The analysis included various models of the 

effect of thinning but no thinning variables were significant. The 

parameter estimates were again related to differences between the stands 

such as site potential and soil type using GLS. The use of the 

Bayesian analysis enabled a sequential approach to model building to be 

adopted, in an effort to avoid likely problems from misspecification 

otherwise introduced by trying to estimate too many parameters from too 

few data from each plot.

The GLS analysis produced a far simpler model than the CLS analysis 

because thinning and soil variables were omitted, having failed to yield

parameter estimates significantly different from zero.



(IX.1)

1 77

1 - exp(-p(A - 10 exp(-a^ )))
1 - exp(-p(10 - 10 exp(— a^ ) ) )

where

p = 0.05271 - 0.005484 ln(Y )
(0.00411 ) (0.000821 ) 10

(VIII.3)

a = "0.003467 Y* 
(0.000151 )

and where

Y^ = yield at age A,

A = age, and,

Y^q= site potential, yield at age 10.

Any comparison of OLS and GLS results must necessarily be somewhat 

equivocal in the light of the complexity of the models being studied and 

the inadequacies of the data. Nevertheless, some points need to be 

stressed in comparing the OLS and GLS results.

Firstly, the OLS technique probably yielded biased estimates of 

the standard errors of the parameters, underestimating the true values 

substantially. This casts considerable doubt on the entire sequence 

of hypothesis testing of a particular model in moving from one model 

form to the final form accepted. Thus, while the model summarized in 

Equations VI.2, VI.7 and VI.12 seems appealing, the statistical basis of 

that model is questionable.

On the other hand, the data used to develop the GLS model did not 

adequately cover the range of soil types and thinning intensities. The 

omission of these variables from the GLS model may reflect inadequacies 

of the data or may be well— foundeo: only further data and analysis can

provide an answer to this.

On balance, the GLS technique seems to offer greater advantages for 

future work of this kind. The ability to build models sequentially in

a Bayesian framework has definite advantages in clarifying the form of
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the model and reducing the number of alternatives to be tried. The 

testing of hypotheses is also placed on a sounder basis than that for 

the QLS analyses as used in this study.

The GLS technique can also be expanded to cater for simultaneous 

models of other dependent variables beside yield, such as height and 

basal area. The joint estimation of such models would enable the 

correlations between these variables to be taken into account and used 

to improve the efficiency of the estimates. Some preliminary work was 

carried out along these lines and the results seem promising, but further 

modifications to the programs are required before the analysis can be 

completed.
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APPENDIX 1 

DATA

SUMMARY OF THE DATA BASE 1.1

SOIL TYPE 1.2
Key to soil types 1.2a
Summary by plots 1.2b
Notes on specific plots 1.2c
Occurred«, of soil types by forest district 1.2d

UNTHINNED STAND DATA 1.3
Plots in developmental and test data 1.3a
Developmental data 1,3b
Test data 1.3c

DATA FROM THE LOWER SOUTH-EAST 1.4
Developmental data by age and site quality 1.4a
Test data by age and site quality 1.4b
Developmental data by thinning 1,4c
Test data by thinning 1,4d
Combined data by soil type 1.4e
Second rotation plots 1,4f

DATA FROM OTHER REGIONS 1.5
Noolook and Cave Range data 1.5a
Adelaide Hills and Northern regional data 1,5b

DATA FOR GLS ANALYSIS
Plots for prior estimate by soil type and forest 
Plots for posterior estimate

1.6 
1.6a 
1,6b
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A ppend ix  1.1

SUMMARY OF DATA BASF

Key to  a b b r e v ia t i o n s
P in P l a n t a t i o n  y e a r
Cpt Compartment number
BA Basa l a re a
Vol Volume
PDH P re d o m in a n t  h e ig h t
No Number o f
Min Minimum
Max Maximum
Meas M easurem ents



SUMMARY OF PLOT MEASUREMENTS
Type of Measurement

Plot
Soil

Pin Cpt Type
Site 

Quality No
Meas

BA
Min
Age

Max
Age

No
Meas

Vol
Min
Age

Max
Age

No
Meas

PDH
Min
Age

Max
Age

Mount Burr Forest Reserve

E P 2 4 A 1 9 3 8 16 T F 1 I 11 11 35 9 11 35 10 11 35
E P 2 4 B 1 9 3 8 16 T F 1 I 11 11 35 10 11 35 10 11 35
E P 2 4 C 1 9 3 8 16 T F 1 I 10 12 35 8 13 35 8 13 35
E P 2 4 D 19 3 8 16 T F 1 I 11 11 35 10 11 35 10 11 35
E P 2 4 E 1 9 3 8 16 TF 1 I 10 12 35 8 13 35 8 13 35
E P 5 2 1 9 4 0 8 M B 3 V 11 13 34 9 13 34 10 13 34
E P 8 2 1 9 4 4 7 M B 3 IV 10 9 28 9 9 28 9 9 28
37 1 9 1 7 13 V - l IV 19 18 56 10 18 50 7 18 50
38 1 9 1 7 13 V - l III 18 18 56 10 18 50 3 34 50
39 1 9 1 7 13 V - l IV + 18 18 56 10 18 50 4 34 50
41 19 2 0 44 V - l I I I + 21 15 53 15 15 50 10 15 50
42 1 9 2 0 34 V - l III 22 15 53 15 15 50 8 30 50
53 1 9 2 5 24 M B 1 V 16 10 47 11 10 46 5 32 46
54 1 9 2 5 27 M B l IV 16 10 47 11 10 46 5 32 46
55 1 9 2 5 27 MB 1 V 16 10 47 10 10 46 9 10 46
57 1 9 2 5 18 M B 2 I 22 10 47 13 10 45 15 10 45
58 1 9 2 5 14 MB l V 16 10 47 12 10 4 3 6 24 43
63 1 9 6 3 52 M B l II 0 0 0 0 0 0 7 5 11
73 1 9 2 9 21 M M 1 III 16 6 44 11 9 41 6 22 41
74 1 9 2 9 21 MM 1 III 16 6 44 11 9 41 5 24 41
75 1 9 2 9 21 M M 1 II 17 6 43 10 9 43 11 11 4 3
76 1 9 2 9 21 M M 1 II 17 6 43 13 9 4 3 7 24 43
81 1 9 3 0 1 M B 2 III 13 5 41 10 8 41 9 10 41
87 1 9 3 0 6 M B  3 III 14 5 41 8 8 41 5 18 41
89 1 9 3 0 11 M B 3 I I / I I I 14 5 44 10 8 44 8 14 44

11 5 1 9 3 6 4 M B l I v+ 13 9 37 13 9 37 10 13 37
11 6 1 9 3 6 4 M B 2 IV + 15 9 38 13 10 38 12 14 38
11 7 1 9 3 6 4 M B 3 IV - 13 9 35 13 9 35 10 14 35
11 8 1 9 3 6 4 K B  3 IV - 13 10 37 13 10 37 11 14 37
11 9 1 9 3 6 4 C V 1 IV 11 9 35 11 g 35 11 9 35
12 0 1 9 3 6 4 M M 2 IV 9 9 35 9 9 35 6 19 35
12 1 1 9 3 6 2 M B 2 V 12 9 38 12 9 38 9 15 38
12 2 1 9 3 6 5 V - l I I I - 13 9 37 13 9 37 10 13 37
1 2 3 1 9 3 7 3 M B  3 IV 13 8 34 12 8 34 10 13 34
124 1 9 3 7 3 M B 2 V 7 11 35 7 11 35 6 14 35
12 6 1 9 2 8 2 M B 3 I V 14 17 46 12 17 46 11 17 46
1 2 7 1 9 2 8 2 M B 3 IV 13 17 46 12 17 46 10 17 46
1 2 8 1 9 2 8 2 M B 3 IV- 13 17 46 12 17 46 12 17 46
1 2 9 1 9 2 5 18 M B 2 II 0 0 0 0 0 0 9 21 44
13 9 1 9 3 8 1 M M 3 IV 10 10 34 10 10 34 9 13 34
14 0 1 9 4 0 3 C V 3 IV+ 11 8 34 9 11 34 10 11 34
141 1 9 4 0 14 M B 3 I V 10 8 32 9 10 32 9 10 32
1 42 1 9 4 0 15 M B 3 IV - 10 8 32 7 11 32 8 11 32
1 4 3 1 9 4 0 14 V - l I I I / I V 10 8 32 9 10 32 8 12 32
144 1 9 3 7 4 M B l IV 10 11 37 9 11 37 9 14 37
14 8 1 9 4 0 2 M B 3 V 8 13 31 8 13 31 8 13 31
1 4 9 1 9 4 0 1 Y S 3 V I I 8 8 33 7 11 33 7 11 33
1 5 0 1 9 4 0 8 Y M 3 V - 9 8 33 7 11 33 7 11 33
151 1 9 4 0 19 V - l III 10 8 31 9 11 31 9 11 31
15 5 1 9 4 3 3 R I 1 I 9 11 30 6 11 28 7 11 28
15 6 1 9 4 4 2 M B 3 V 9 10 29 7 10 29 8 10 29
15 7 1 9 4 2 10 M B 3 V / V I 9 12 31 6 12 29 6 12 29
15 8 1 9 4 4 4 M B 3 V / V I 9 10 29 6 10 27 7 10 27
17 3 1 9 4 7 10 M B 3 V I / V I  I 12 15 26 5 15 25 9 15 25
174 1 9 4 7 10 M B  3 V I / V I I 12 15 26 5 15 25 8 15 25
17 5 1 9 4 8 5 M B 2 V I / V I I 13 14 26 5 14 24 9 14 24
1 7 6 A 1 9 5 5 4 M B l I V / V 10 10 19 3 10 19 8 10 19
1 7 6 B 1 9 5 5 4 MB l I V / V 10 10 19 3 10 19 8 10 19
1 7 6 C 1 9 5 5 4 M B l IV 10 10 19 3 10 19 8 10 19
1 7 6 D 1 9 5 5 4 M B l I V - 10 10 19 3 10 19 9 10 19
1 76 E 1 9 5 5 4 M B 2 I V / V 10 10 19 3 10 19 8 10 19
1 7 6 F 1 9 5 5 4 M B l I V / V 10 10 19 3 10 19 8 10 19
1 7 6 G 1 9 5 5 4 T R 1 I V / I V - 10 10 19 3 10 19 9 10 19
1 7 6 H 1 9 5 5 4 M B  2 I V / V 10 10 19 3 10 19 9 10 19
17 6J 1 9 5 5 4 M B l I V / V 10 10 19 3 10 19 8 10 19
17 7A 19 5 4 1 M B l I V / V 10 11 20 2 11 15 7 11 18
1 7 7 B 19 5 4 1 M B l V 10 11 20 2 11 15 7 11 18
1 7 7 C 19 5 4 1 M B l V 10 11 20 2 11 15 9 11 20
1 7 7 D 19 5 4 1 M B l V 10 11 20 2 11 15 7 11 18
1 7 7 E 19 5 4 1 M B l V / V + 10 11 20 2 11 15 8 11 20
1 7 7 F 19 5 4 1 MB l I V / V 10 11 20 2 11 15 7 11 18
1 7 7 G 1 9 5 4 1 M B l v+ 10 11 20 2 11 15 6 11 18
1 7 7 H 1 9 5 4 1 M B l V / V  + 10 11 20 2 11 15 9 11 20
1 7 7 J 19 5 4 1 M B l V / V + 10 11 20 2 11 15 6 11 18
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SUMMARY OF PLOT MEASUREMENTS
Type of Measurement

Pin
Soil 

Cpt Type
Site 

Quality No
Meas

BA
Min
Age

Max
Age

No
Meas

Vol
Min
Age

Max
Age

No
Meas

Forest Reserve

1923 8 K-2 IV 17 17 50 15 17 50 13
1923 8 K-2 IV+ 17 17 50 15 17 50 14
1922 4 NS 3 II/III 20 13 50 13 16 50 11
1922 4 NS 3 III+ 19 13 50 13 16 50 12
1923 8 K-3 IV 19 12 50 13 17 50 12
1923 8 K-3 IV 21 12 50 16 15 50 12
1924 1 WNl 11+ 15 11 50 13 11 50 8
1924 1 WN1 I- 17 11 50 12 11 50 10
1925 7 NS2 III+ 19 10 47 12 13 45 8
1925 1 K-3 V 17 10 47 13 10 45 10
1925 1 K-2 V 17 10 47 13 10 45 8
1956 8 NS3 VI + 10 9 18 2 11 16 10
1956 9 NS1 V- 11 9 19 3 11 19 11
1956 8 NS 1 VI 10 9 18 2 11 16 10
1956 8 NS3 V- 10 9 18 2 11 16 10
1956 8 NS2 V/V+ 10 9 18 2 11 16 10
1927 59 NS 3 IV+ 16 8 44 12 11 44 8
1927 57 NS3 III 15 8 46 13 11 46 8
1927 55 KN1 IV 17 8 46 14 11 46 9
1927 54 KN2 IV 18 8 46 16 11 46 12
1927 54 K-3 IV 18 8 46 16 11 46 14
1927 57 K-3 IV- 15 8 46 14 11 46 9
1927 56 NS 3 IV 17 8 46 16 11 46 11
1927 56 NS3 IV 17 8 46 14 11 46 12
1929 5 NS2 III/IV 18 6 45 13 9 45 8
1929 2 K-l V/VI 14 6 41 10 9 41 4
1924 6 WS1 IV 18 11 50 12 11 50 9
1924 6 WS1 III 19 11 50 12 14 50 9
1927 59 NS3 IV+ 15 17 46 11 17 44 10
1936 34 WS1 I 14 9 36 12 9 36 11
1936 20 WS1 III- 13 9 36 12 9 36 11
1935 22 NS 1 v+ 11 10 37 10 10 37 9
1935 22 NS 1 IV- 12 10 37 11 10 37 10
1935 15 NS 1 III + 12 10 38 12 10 38 10
1934 25 NS 1 IV- 12 11 40 10 11 40 9
1934 25 NS2 IV/V 12 11 40 10 11 40 9
1936 13 WS1 II 12 12 37 12 12 37 12
1937 3 WS1 1+ 12 11 35 12 11 35 12
1937 3 WN2 III- 10 11 35 10 11 35 10
1937 3 K-2 IV 11 11 36 8 11 36 9
1937 5 WS1 11+ 11 11 36 10 11 33 10
1937 5 WS1 II 12 11 36 11 11 34 11
1937 6 KN3 IV 11 11 36 9 11 36 10
1937 1 KN1 IV 12 11 36 10 11 36 11
1937 1 KNl III 11 11 37 11 11 37 11
1937 4 NS1 11+ 13 11 37 12 11 37 12
1937 5 NS2 III- 11 11 37 11 11 37 11
1937 6 NS2 I 13 11 37 12 11 37 12
1937 13 NS 1 II 12 11 36 10 11 33 11
1937 12 K-l V 12 11 36 8 11 34 9
1937 8 NS2 11+ 12 11 36 11 11 33 11
1937 10 KNl VI 11 11 36 9 11 36 9
1938 1 NS2 v+ 9 10 34 9 10 34 9
1938 10 K-l VI 7 10 32 6 10 32 7
1938 11 K-l VII 7 10 33 6 10 33 7
1941 2 WS1 III 8 10 31 8 10 31 8
1944 3 NS2 III 9 7 28 8 9 28 8
1942 2 NS1 III 9 10 32 9 10 32 o
1944 1 WS1 II 7 8 29 6 10 29 6
1941 4 WS1 v+ 11 10 32 8 10 29 8
1944 4 WS1 II 10 8 30 8 10 27 8
1944 4 WS1 II 10 8 30 8 10 27 8
1944 3 NS 2 II- 9 7 28 8 9 28 8
1944 3 NS 1 IV 18 7 29 9 9 29 9
1946 4 KN3 VII 12 16 28 4 16 25 9
1946 4 KN 3 VII 13 16 28 4 16 26 10
1949 6 NS3 VI 11 15 25 4 15 22 8
1949 6 NS2 VI 11 15 25 4 15 22 8
1949 6 NS2 VI 11 15 25 4 1 5 22 8



SUMMARY OF PLOT MEASUREMENTS
Type of Measurement

Plot Pin
Soil Site

Cpt Type Quality No
Meas

BA
Min
Age

Max
Age

No
Meas

Vol
Min
Age

Max
Age

No
Meas

PDH
Min
Age

Max
Age

Mount Gambier Forest Reserve

50 8 19 2 4 10 M B  1 I V + 18 11 50 11 13 50 7 25 50
511 19 2 6 9 M B l III 16 9 44 12 11 44 9 16 44
513 19 3 0 2 M B 1 IV + 13 5 39 10 8 39 9 10 39
514 19 2 8 8 W S 1 III + 15 7 41 10 9 41 8 14 41
524 1 9 2 8 28 W S 1 II 11 17 45 9 17 45 9 17 45
526 1 9 3 7 7 T F 1 II 14 8 35 12 8 33 10 12 33
5 27 1 9 3 7 2 M B 2 IV 11 11 35 10 11 35 10 11 35
5 2 8 1 9 3 7 1 M B l II - 11 11 34 11 11 34 11 11 34
530 1 9 3 8 21 TR 1 IV + 9 10 34 5 10 30 5 10 30
531 1 9 3 8 18 T R 1 IV 10 10 34 5 10 30 5 10 30
5 3 2 1 9 4 0 2 MB l III + 9 8 31 8 11 31 8 11 31
53 3 1 9 4 0 1 M B l II 11 8 32 10 11 32 10 11 32
53 5 19 4 0 8 RE 1 IV 8 8 30 7 11 30 7 11 30
53 6 1 9 4 0 8 RE 1 V 8 8 30 7 11 30 7 11 30
53 8 1 9 3 8 9 T F 1 I 11 10 34 11 10 34 9 11 34
53 9 1 9 3 8 5 T F 1 1 + 11 10 34 9 10 31 8 12 31
540 19 4 0 20 T F 1 1 + 12 8 32 9 11 29 9 11 29
541 19 4 0 21 T F 1 I 10 10 33 9 10 30 9 10 30
54 2 19 4 4 14 M B l II 9 8 27 8 10 27 8 10 27
543 1 9 4 4 16 MB l II 12 7 29 9 9 29 9 9 29
54 7 1 9 4 4 12 M M 2 I 7 8 29 5 13 29 6 13 29
54 8 1 9 4 4 5 T F 1 III 9 9 28 9 9 28 9 9 28
549 19 4 4 1 T R 1 IV 8 9 28 8 9 28 8 9 28
55 0 1 9 4 4 2 T F 1 IV 8 9 28 8 9 28 8 9 28
55 3 1 9 4 3 2 T F 1 11 9 10 30 8 10 27 8 10 27
5 55 1 9 2 6 2 M B 3 V 7 27 47 5 27 47 6 27 47
557 1 9 2 8 1 Y S 3 V 6 25 45 6 25 45 6 25 45
5 58 1 9 3 5 7 .MB 3 V 8 18 37 8 18 37 8 18 37
5 59 1 9 3 5 7 M B  3 V 8 18 37 8 18 37 8 18 37
560 1 9 4 5 4 W S 1 I 14 10 27 8 10 27 11 10 27
56 3 19 4 8 15 T R 1 I I I - 10 9 23 6 9 23 10 9 23
564 1 9 4 8 15 T R 1 V 16 9 25 6 9 25 14 9 25
56 5 1 9 4 8 15 T R 1 V 16 9 25 6 9 25 14 9 25
57 1 19 4 6 1 W S 1 I 10 11 25 7 11 25 10 11 25
5 7 2 1 9 4 6 1 W S 1 I 10 11 25 7 11 25 10 11 25
5 73 1 9 4 6 1 W S 1 I 10 11 25 7 11 25 10 11 25
57 6 19 4 8 15 Y S 3 V I I 12 14 26 4 14 24 9 14 24
57 7 1 9 4 8 IE Y S 3 V I I 12 14 26 4 14 24 9 14 24
57 8 1 9 4 8 IE YS 3 VI 12 14 26 5 14 23 9 14 24
57 9 1 9 4 8 IE Y S 3 V I / V I - 12 14 26 5 14 23 8 14 24

M y  or a a n d  C a r o l i n e F o r e s t R e s e r v e s

4 0 2 1 9 3 0 24 C S 3 I V 10 18 42 9 18 42 9 18 42
4 0 3 1 9 3 0 22 C S 3 IV 7 18 41 7 18 41 6 20 41
40 4 1 9 3 0 20 C S 2 II 10 18 42 10 18 42 10 18 42
4 0 5 1 9 2 9 8A C S 3 11 + 9 19 42 6 19 42 5 21 42
4 0 7 1 9 3 6 83 C S 3 II 12 12 38 11 12 38 10 14 38
4 0 8 1 9 3 6 91 C S 3 II 12 12 37 12 12 37 11 13 37
4 0 9 1 9 3 6 87 C S 3 I- 12 12 36 11 12 36 10 13 36
41 0 1 9 3 6 81 M S 3 III 11 12 38 11 12 38 10 14 38
41 1 1 9 3 5 74 C S 1 11 + 11 13 39 11 13 39 10 14 39
4 1 2 1 9 3 5 77 C S 2 I 11 13 39 11 13 39 10 15 39
4 1 3 1 9 3 7 109 C S 2 I 9 11 37 8 11 37 7 13 37
414 1 9 3 8 11 2 C S 1 11 + 11 10 35 11 10 35 10 12 35
4 1 5 1 9 3 8 114 C S 3 I I - 10 10 33 10 10 33 10 10 33
4 1 7 1 9 3 8 114 C S 1 II 11 10 35 11 10 35 10 12 35
4 1 8 1 9 3 8 117 T R l I V 11 10 35 10 10 35 9 14 35
4 2 2 19 4 0 122 C S 3 I I I / I V 10 8 33 8 11 31 8 11 31
4 2 3 19 4 0 12 5 C S 3 I I I - 10 8 31 9 11 31 9 11 31
4 2 5 1 9 4 2 136 C S 2 I- 10 9 29 9 10 29 9 10 29
4 2 6 1 9 4 2 136 C S 3 II 11 9 31 10 10 31 10 10 31
4 2 7 1 9 4 2 136 C S 2 II 11 9 31 10 10 31 10 10 31
43 3 19 4 4 145 C S 3 I 6 10 25 6 10 25 6 10 25
4 3 4 1 9 4 2 134 C S 3 V 7 12 30 7 12 30 7 12 30
4 3 5 1 9 4 4 148 C S 2 III 8 11 28 8 11 28 8 11 28
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SUMMARY OF PLOT MEASUREMENTS
Type of Measurement

Plot
Soil

Pin Cpt Type
Site 

Qual i ty No
BA

Min Ma x
Vol 

No Min Max No
PDH
Min Max

Meas Age Age Me as Age Age Meas Age Age

Coma u m

2 0 0

Forest

1938

Reserve

1 BS1 I II- 9 10 31 9 10 31 8 12 31
2 0 2 1938 2 ESI IV+ 9 10 31 Q 10 28 9 10 31
2G 3 1938 3 BS 2 IV 10 13 36 10 13 36 10 10 36
204 1939 7 DY 3 II- 10 9 3 2 10 9 32 10 9 32
209 1942 23 BS 1 IV 9 11 29 7 1 1 29 8 11 29
2 1 2 1944 29 DY 3 V 9 10 29 7 10 27 8 10 27
2 1 S 1948 41 DY 3 VI 13 1 0 25 8 1 0 25 13 10 25
2 20 A 1956 65 NS 3 VI 0 0 0 0 0 0 13 4 18
220D 1956 65 NS 3 VI 0 0 0 0 0 0 13 4 18
2 2 1A 1956 65 NS 3 VI 0 0 0 0 0 0 . 13 4 18
221D 1956 65 NS 3 VI 0 0 0 0 0 0 13 4 18
222A 1958 73 NS 3 VI I 0 0 0 0 0 0 13 2 16
222D 1958 7 3 NS 3 VII 0 0 0 0 0 0 13 2 16

Cave Range Forest Reserve

T P C 5 4 1 1954 1 1A CYl V 3 9 21 3 9 21 3 9 2 1
TPC542 1954 1 1 A CY1 VI + 3 9 21 3 9 21 3 9 2 1
TPC571 1957 14 CYl V 3 9 18 3 9 18 3 9 18
TPC573 1957 13 CYl VI 3 9 1 8 3 9 1 8 3 9 18
TPC592 1959 17 CYl IV/V 3 9 1 6 3 9 16 3 9 16
TPC593 1959 17 CYl VI 3 o 16 3 9 16 2 9 15

Noolook Forest Reserve

TPN541 1954 4 NR1 V + 4 9 2 1 4 9 2 1 4 9 2 1
TPN542 1954 5 NR1 IV/V 4 9 21 4 g 21 4 9 2 1
TPN543 1954 6 NR1 IV/V 4 9 21 4 9 21 4 9 2 1
TPN544 1954 6 NR1 V 4 9 2 1 4 9 2 1 4 9 2 1
TPN552 1955 8 NT 1 V 4 9 2 0 4 9 2 0 4 9 2 0
TPN554 1955 9 NY 3 I- 4 9 2 0 4 9 2 0 4 9 2 0
TPN555 1955 7 NT 1 VI 4 9 2 0 4 9 2 0 4 9 2 0
TPN556 1955 8 NT 1 IV 4 9 2 0 4 9 2 0 4 9 2 0
TPN561 1956 12 NT 1 V 3 9 19 3 9 19 3 9 19
TPN562 1956 12 NT 1 VI 3 9 19 3 9 19 3 9 19
TPN564 1956 1 2 NY2 V 3 9 19 3 9 19 3 9 19
TPN571 1957 14 NR 1 IV 3 9 18 2 9 18 3 9 18
TPN572 1957 14 NR1 V 3 9 18 2 9 18 3 9 18
TPN585 1958 15 NY2 1 1 / 1 11 3 9 17 2 9 17 3 9 17
TPN591 1959 18 NY 3 I 3 9 16 3 9 16 3 9 16
TPN593 1959 18 NY 1 III- 3 9 16 3 9 16 3 9 15



SUMMARY OF PLOT MEASUREMENTS
Type of Measurement

Plot
Soil

Pin Cpt Type
Site 

Quality No
Meas

BA
Min
Age

Max
Age

No
Meas

Vol
Min
Age

Max
Age

No
Meas

PDH
Min
Age

Max
Age

Wir rabara Forest Reserve

908 1949 1 WA1 V 11 14 25 4 14 21 6 14 21
909 1944 11 WA1 VI 11 19 32 4 19 26 6 19 26
910 1944 11 WL1 VI 12 19 32 4 19 26 6 19 26911 1944 15 WLl VII 11 19 32 5 19 27 7 19 29912 1944 4 WR1 VI + 12 19 32 4 19 26 6 19 26913 1944 4 WRl V- 12 19 32 4 19 26 6 19 26'
914 1945 2 WR1 V 12 18 31 4 18 25 6 18 25
915 1945 2 WA1 V/V- 12 18 31 4 18 25 6 18 25

Bundaleer Forest Reserve

956 1946 46 BDl vyv- 10 20 30 4 20 30 8 20 30957 1946 46 BD1 V- 10 20 30 4 20 30 8 20 30
958 1948 50 BR1 VI + 10 18 28 4 18 28 8 18 28
959 1948 50 BR1 VI 10 18 28 4 18 28 8 18 28
960 1948 50 BR1 VI + 10 18 28 4 18 28 8 18 28
961 1950 57 BRl VI 6 16 21 3 17 21 5 16 21
962 1950 57 BR1 VI 9 16 26 2 17 18 3 16 19
963 1953 63 BRl VI + 9 13 23 2 14 15 4 13 16
964 1953 63 BRl VI 9 13 23 2 14 15 4 13 16
965 1953 63 BRl VI 9 13 23 2 14 15 4 13 16
966 1953 63 BRl V/VI 9 13 23 2 14 15 4 13 16
967 1953 63 BRl V/VI 9 13 23 2 14 15 4 13 16

Mount Crawford Forest Reserve

701 1929 114A CAl V 11 19 45 10 19 45 9 21 45
702 1936 198 CA1 IV 11 12 35 10 12 35 9 14 35
704 1936 202 AS1 II 13 12 37 8 12 37 8 12 37
705 1937 210 CAl II/III 11 11 36 9 11 33 9 11 33
714 1943 232 AC1 VII + 19 10 31 9 10 31 13 10 31
714A 1943 232 AC 1 VII + 15 17 31 5 17 31 9 17 31
715 1944 235 AC1 V 18 9 30 8 9 30 12 9 30
715A 1944 235 AC 1 V 15 16 30 5 16 30 9 16 30
718 1940 225 CAl IV/V 9 13 33 8 13 33 8 13 33

Kuitpo

605

Forest

1936

Reserve

160 AL2 III/IV 12 12 38 10 12 38 11 12 38
606 1936 155 ML1 IV/V 12 12 38 11 12 38 11 12 38
607 1936 162 MDl V- 11 12 38 10 12 38 8 17 38
610 1936 83A TL1 III 11 12 36 10 12 36 10 12 36
612 1937 149 ML1 IV+ 11 11 35 11 11 35 10 14 35
613 1937 149 ML1 v/v- 12 11 37 11 11 35 11 11 35
616 1941 24 AL1 III 8 13 32 8 13 32 8 13 32
617 1942 37 LL1 VI- 9 12 32 7 12 32 9 12 32
617A 1942 37 LL1 VI/VII 7 18 32 5 18 32 7 18 32
619 1943 30 LL1 VI/VII 16 11 31 8 11 28 11 11 30
619A 1943 30 LL1 VI/VI I 13 18 31 5 18 28 8 18 30
622 1944 10 MLl IV+ 10 10 30 8 10 28 9 10 30

Second Valley Forest Reserve

651 1935 50 SA1 IV 12 13 38 11 13 38 11 13 38
658 1944 204 SOI V 17 10 30 7 10 30 10 10 30
658A 1944 204 SOI V/VI 15 16 30 5 16 30 8 16 30
658B 1944 204 SOI V 15 16 30 5 16 30 8 16 30
658C 1944 204 SOI VI 15 16 30 5 16 30 7 16 30
659 1944 204 SOI VI 15 10 30 8 10 30 11 10 30
659A 1944 204 SOI VI- 13 16 30 6 16 30 9 16 30
662A 1949 209 SOI IV/IV+ 12 12 24 5 14 24 9 12 24
662B 1949 209 SOI IV/IV+ 12 12 24 5 14 24 9 12 24
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Appendix 1 .2a

Key to  s o i l  type s

SOUTH EASTERN REGION

NS Nangwarry sand DY Deep y e l lo w  sand
MB Mount Burr sand YS Young sand
CS C a ro l in e  sand K- K i l b r i d e  sand
YM Young/Mount B u rr  t r a n s . KN K i lb r id e /N a n g w a r ry  t r a n s .
ns Myora sand WS Wandilo sand
WN W and ilo /N angw arry  t r a n s . RI Riddoch sand
CU Coarse v a l le y  s o i l BS Brown s o i l  from  Comaum
MM Mount M u ir  sand TR T e rra  rossa
TF T an tanoo la  f l i n t y  sand V- U o lca n ic
RE Rendzina

CAUE RANGE F.R.

CY Y e llow  sand

NOOLOOK F .R .

NR Red sand NT R e d /y e l lo w  t r a n s .
NY Y e l low  sand

liJIRRABARA F .R .

UA A l l u v i a l  loam UL Grey brown loam
WR Red brown e a r th

BUNDALEER F.R.

BR Red brown e a r t h

MOUNT CRAWFORD F.R .

AS A l l u v i a l sand AC Cromer sand
CA A l l u v i a l sandy c la y  & c la y

KUITPO F.R .

AL A l l u v i a l  sand
TL T ra n s p o r te d  loam
LL L a t e r i t e  r id g e  loam

MD Mid s lo p e  loamy sand o r  sand
ML M id - lo w e r  s lope  sandy loam j

SECOND VALLEY F.R.

SA A l l u v i a l  s o i l s SO L a t e r i t e  s o i l s
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Summary by P l o t s Append ix  1 .2 b

SOUTH EASTERN REGION

NS1 NS2 ' NS3 MB1 1482 I4B3 CS1 CS2 CS3

315B
315C
346
347
348 
349X 
360 
363 
376X 
383 
D f\\J  1 
DAV 2

310 
31 5 E 
332 
350
361
362 
365 
367 
375 
382
398
399

300
301 
31 5 A 
315D
321
322
327
328 
341 
397
220 A 
220D
221 A
221 D
222 A 
222D

53X
54
55 
58X 
63

. „ „X115 
144 
1 76 A 
176B 
1 76C 
1 76D 
176F 
1763 
177 A 
177B 
177C 
177D 
177 E 
1 77F 
1 77 G 
177H 
1773 
508 
511 
513 
528
532
533
542
543

57 
81 X 

11 6X 
121 
124 
129 
170D
175
176 E 
176H 
527X

EP52 
EP82 

87X 
89 X 

117X 
11 8X 
123X 
126
127
128
„ . . x141
142 
148
156
157
158
170 A
171 A 
171 D
173
174 
555
558
559

411
414
417

404
412
413 
425 
427 
435

402
403 
405
407
408
409 
415 
422X 
423X 
426
433
434

DY3 YH3 KN1 KN2 KN3 YS3 K-1 K-2 K~3

204
212
218

150 323
358X
359
366

324 357X
395
396

149 
172 A 
172D 
557
576
577
578
579

335
364X
368
369

X
Y

314
354

304
305 
313
325
326

x See A ppend ix  1 .2 c
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n s 3 US1 WJM1 liiJ\l2 R I1 Cl'1 Cl/3 BS1 BS2

4 1 0 X 5 1 4
5 2 4 X
5 6 0
5 7 1  X
5 7 2 X
5 7 3 X
3 3 7
3 3 8  
3 4 4  
3 4 5 X
3 5 1
3 5 2
3 5 5
3 5 6  
3 7 4 X 
3 7 7
3 7 9
3 8 0
3 8 1

3 0 6
3 0 7

3 5 3 1 5 5 1 1 9 1 4 0 2 0 0
2 0 2
2 0 9

2 0 3

TF1 TR1 m i m 2 m 3 V - 1 RE1 n/ a

E P24A
E P 2 4 B
E P 24C
E P24D
E P 2 4 E
5 2 5
5 3 8
5 3 9
5 4 0
54 1  
5 4 8  
5 5 0  
5 5 3

1 7 6 G
5 3 0
5 3 1  
5 4 9
5 6 3
5 6 4
5 6 5  
4 1 8

7 3
7 4
7 5
7 6

1 2 0 X
5 4 7

1 3 9 X 3 7
3 8
3 9
41
4 2  

1 2 2  
1 4 3  
1 5 1

5 3 5
5 3 6

TP1 B64 
TP1G 61 
T P 1 G 6 2  
TP1 G63 
TP1 T61 
T P 1 T 6 3  
T P 2 B 6 4  
TP2G 61 
T P 2 G 6 2  
T P 2 G 6 3  
T P 3 B 6 4  
T P 3 G 6 3  
T P 4 B 6 4  
T P 5 B 6 4

x See Appendix 1 .2 c



CAVE RANGE FR.

NODLOOK F .R .

UIRRABARA F .R .

BUNDALEER F .R .

MT.CRAWFORD F.

KUTPO F .R .

SECOND
VALLEY F .R .

CY1
TPC541
TPC542
TPC571
TPC573
TPC592
TPC593

NR1 NY1 NY2 NY3 NT1
TPN541
TPN542
TPN543
TPN544
TPN571
TPN572

TPN593 TPN564
TPN585

TPN554
TPN591

TPN552
TPN555
TPN556
TPN561
TPN562

WA1 ÜJR1 WL1

908 912 910
909 913 911
915 914

BD1 BR1

956 958
957 959

960

CAI AS1 AC1

701 704 714
702 71 4 A
705 715
718 715A

AL1 AL2 TL1 ML1 MD1 LL1

616 605 610 606 607 617
612 61 7A
613 619
622 619A

SA1 S01

651 658
658 A
658 B
658C
659
659 A
662A
662 B
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A ppend ix  1 ,2c

N otes  on s p e c i f i c  p l o t s

The s o i l  ty p e  as coded r e f e r s  to  th e  p re d o m in a n t  s o i l  t y p e .  These 

n o te s  r e f e r  to  p o s s ib le  s e co n d a ry  p r o f i l e s  o r  v a r i a t i o n s  i n  a s i n g l e

h o le  compared w i t h  th e  o t h e r  h o le s .

P l o t V a r i a t i o n

58 p o s s i b l y  a Mount M u i r  t r a n s i t i o n a l

120 139 Mount B u r r / v o l c a n i c  t r a n s i t i o n a l

81 87 89 115 
116 117 118 
123 141

Mount B u r r  sand s o i l s  o v e r  a v o l c a n i c  base

53 Mount B u r r  sand b u t  p o s s i b l y  a t e r r a  ro s s a  i n f l u e n c e

323 S h a l lo w  and wet

345 p o s s i b l y  a Nangwarry  sand t r a n s i t i o n a l

357 c l o s e r  t o  a K i l b r i d e  sand

358 c l o s e r  t o  a Nangwarry  sand

364 t r a n s i t i o n a l  sandy swamp s o i l

374 p o s s i b l y  a K i l b r i d e  sand t r a n s i t i o n a l

376 some U a n d i lo  sand i n f l u e n c e

410 a m ix t u r e  o f  s o i l  t y p e s

422 423 T e r r a  ro s s a  i n f l u e n c e

524 Mount B u r r  t r a n s i t i o n a l

527 Mount M u i r  t r a n s i t i o n a l

571 572 573 p o s s i b l y  a Mount B u r r  sand t r a n s i t i o n a l
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Appendix 1.2d

Occurrence, of soil types 
by

forest district

Soil
type

Soil type
(Stephens et ale, 1941)

Mo
un
t 

Bu
rr

Ta
nt
an
oo
la

Mo
un
t 

Ga
mb
ie
r

CO
o>.
e : Pe

no
la

Co
ma
um

NS Nangwarry sand X *

MB Mount Burr sand * * *

DY Deep yellou sand *

CS Caroline sand X *

YS Young sand * * * X

K- Kilbride sand *

KN Kilbride/Nangwarry *

US Uandilo sand X * * *

UN Uandilo/Nanguarry *

RI Riddoch sand X

BS Broun sand *

T F Tantanoola flinty sand X * *

C V Coarse sandy valley soils X

MM Mount Muir X X

TR Terra rossa * * * X X

V- Volcanic X X X

RE Rendzina
»

-  - _ . I

X

Note: * soil type occurs commonly on this forest district
x soil type occurs as a minor occurrence
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Appendix 1•3

UNTHINNED STAND DATA

Appendix 1.3a lists the plots that were included in both the 

developmental and test data sets. These data sets are graphically 

depicted in Appendices 1.3b and 1.3c.
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Appendix 1.3a

Plots in developmental and test data

Developmental Test
data data

Plot numbers EP24C
EP24E

Number of plots

Average number of 
measurements
Average growth period
Age range 8-478-50
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Appendix 1 . 3b

Developmental data

307
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( Y E A R S  )
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A p p e n d i x  1 . 4

DATA FROM THE LOWER SOUTH EAST
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Inspection of' the data from the lower south east of South Australia 

(excluding Moolook and Cave Range forest reserves) showed that there 

were relatively few data at later ages from poorer sites. The data 

were divided by plots (to ensure the independence of the developmental 

and test data sets). The developmental data included a random 70/£ of 

the low site quality plots and plots measured at later ages, and 50/ of 

the other plots. The objective was to provide a balance by increment 

periods of approximately 60-40/ with the developmental data being better 

balanced than the test data. The data are summarised by age and site 

quality in Appendices 1.4a and 1.4b.

The range of periodic annual increment in the developmental data 

was 7.0 to 62.9 m /ha, mean 27.3 with a standard deviation of 8.0. The 

test data had a mean of 28.6 with a standard deviation of 8.7, somewhat 

surprising in view of the care taken to provide a better balance in the 

developmental data, but attributable to the random selection technique.

The data cover a range of thinnings (one plot having received six 

thinnings and 26 plots five thinnings) with the plots thinned most often 

being on the better sites. The distribution of the developmental and 

test data by thinning and site potential is detailed in Appendices 

1.4c and 1.4d, where it can be seen that the data cover a relatively 

wide range of stand conditions.

Appendix 1.2 details the soil types for the data. There are a 

number of soil types represented by only a few plots so that it was 

considered impractical to evaluate soil type on independent developmental 

data testing the models against independent test data. The data were 

therefore combined for the soil type evaluation. Appendix 1,4e details 

how the 1638 increment periods are distributed by soil type and site 

quality. It must be remembered that for example the 20 observations for 

soil type WS1 and site quality II came from only two plots.
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It should be noted that the age of measurement in these tables is 

the age at the start of the increment period so that although in 

Appendix 1,4a there appears to be only 3 plots measured after age 45 

there were in fact 7 plots measured at age 50.
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Combined Data by S o i l  Type

S o i l
Type

S i t e  Q u a l i t y T o t a l

I I I I I I IV V VI V I I

NS1 20 19 27 10 1 77
MS2 11 17 28 13 18 6 93
NS3 36 49 1 4 90
MB1 34 18 53 47 152
HB2 12 9 21 21 4 67
M33 16 90 39 10 8 163
CS1 30 30
CS2 25 18 7 50
CS3 15 44 8 21 6 94
DY3 9 6 7 22
YH3 6 6
KN1 10 22 8 40
KN2 15 15
KIM3 8 6 14
YS3 5 8 12 25
K—1 7 14 5 26
K-2 35 12 47
K -3 55 12 67
riS3 10 10
ldS1 47 57 38 11 7 160
UN1 11 12 23
WN2 9 9
RI1 5 5
c \n 10 10
CV3 8 8
BS1 8 13 21
BS2 9 g
TF1 74 18 8 7 107
TR1 5 26 10 41
mm 21 20 41
(vl(vl2 4 8 12
m 3 9 9
V-1 57 26 83
RE1 6 6 12

T o t a l 204 280 306 542 21 3 58 35 1638
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Appendix 1 , 4 f

Second r o t a t i o n  p l o t s

F o r e s t  Re se rve Pin P l o t S i t e  Q u a l i t y Age r a n g e

Mount Burr 1936 115 IV+ 9-37

1936 116 IV+ 10-38

1936 117 IV- 9-35

1936 118 IV- 10-37

1936 119 IV 9-35

1935 120 IV 9-35

1937 124 V 11-35

1940 140 IV+ 11-34

1940 141 IV 10-32

1940 142 IV- 11-32

1940 143 I I I / I V 10-32

1940 149 VII 11-33

1940 EP52 V 13-34

1944 EP82 IV 9-28

T a n t a n o o l a 1947 173 Vl /VI I 15-25

1947 174 VI1+ 15-25

1948 175 VII+ 14-24

1955 177 ( 1 ) V 11-15

P e n o la 1946 395 VII 16-25

1946 396 VII 16-26

1956 315 ( 2 ) v / v i 11-16

Note (1 )

( 2 )

n i n e  p l o t s  

f i v e  p l o t s
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A p p e n d i x  1 . 5

DATA FROM OTHER REGIONS
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DATA FOR GLS ANALYSIS
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APPENDIX 2

EVALUATION OE THE PARTIAL DERIVATIVES
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For each evaluation of a partial derivative the function was eval

uated at intervals (h=±( n/2)delta) either side of the estimated parameter 

value, where delta was a relatively small value and n an integer. 

Expressing the function as a Taylor’s series.

f (b+h)

where

r=n£ fr(b)

b = the parameter estimate, 

h = ±(n/2)delta, and

f (b) is the rth derivative of the function, 

and solving the equation for f (b) enabled an estimate to be made of the 

derivative. The accuracy of this approximation depended on the order of 

the series and on the value of delta.

Evaluation of simple test data using a simple growth model indicated

that the fourth order was sufficient giving results within an order of
-410 of the correct figures, however to ensure accuracy a sixth order 

was used. The value of delta was more difficult to determine. Pre

liminary evaluation indicated that the optimum value was of the order
_3

of 10 of the estimated parameter value. Smaller valuesof delta 

tended to introduce problems with machine noise, and large values of 

delta reduced the accuracy of the approximation, although changes of 

order 10  ̂ or 10  ̂ had little effect.

The problem could have been solved by evaluating all the models 

using a range of delta values, accepting as the best values of delta those 

which provided the minimum variance estimates. However this would have 

necessitated many evaluations of a model form, and as there were a large 

number of models evaluated in the study, it was impractical to carry out 

this procedure for all models. The delta values were checked for these 

models for which parameter estimates are reported and for a number of 

other models within each group.



It is impractical to report these evaluations in this Appendix, but 

the following example indicates how the analysis was carried out and the 

sort of results obtained.

222

The conditioned Bertalanffy periodic increment model

- exp(-p(A2-A0))| - |l - exp(-p(A1-A[]) )|
1 - exp(-p(10-AQ))

where
Aq = 10 exp(-a1 Y10)

P = P 0 + P1 Y10 

and where
Pai = periodic annual increment between ages Â  and i\ t 

g = site potential,

Aq = the age at which volume growth commences, and,

Pq , p̂  and â  are the parameters to be estimated, 

was evaluated in Chapter l/, Equation V. 12, where it was concluded that 

it was the best of the models developed along that line and also the best 

model developed by CLS using the unthinned data.

Pai 10
(A2 - A1)

Appendix 2.0a shows the effect of changing the delta values for this 

model. Over a wide range of delta values the models were all relatively 

efficient, but within this range the lowest total deviates squared value 

was at the edge of the range where a slight change in delta made it 

either impossible to fit the model or provided a markedly less efficient 

model. The program provides asymptotically efficient estimates rather 

than true minimum variance estimates and the fluctuations within the 

bounded region reflect the effect of this on the models. The delta 

values selected were in the middle of this range.

/S . Pq = .00001 

=  .0000011

Here the total deviates squared were 8562.8 although the minimum was

8557.6. These 'middle' values of delta also coincided with the sensible
~3first subjective estimate of 10 of the estimated value of the parameter.
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APPENDIX 3

SECOND LEI/EL BERTALANFFY MODEL
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Appendix 3.1

Integration of the second level Bertalanffy equation 
to give a yield equation.

The second level Bertalanffy equation

d Y  v m  V—  = nY - pY

can be integrated using Bernoulli's equation. 

Dividing by Ym

dY -m 1-m
dfl* Y =  n -  P Y

and substituting u = Y1 - m

du _ -(m-1 ) dY
dA ~ ym dA

du_ f_1_) _ _dY f 1__)
dA \l-m / “ dA \ ym j

n - pu

1 ) dA + cf p u - n /-
—  ln(pu-n) = (m-1 )A + c

u = —  < 1 + expP ) |-p(1-m)A + C

1 - m
|1 + exp

which can be rewritten as 
' 1

j-p(1-m)A + c^j
1-m

1 - m
Y 1 + c ^ x p j - p ( 1 - m ) ( A - c 2 ) | |

1 - m

where ĉ  and c^ are constants.
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The constants and c^ can be defined in a number of uays:

c^ = Aq (the age at which growth commences)

A=A,

which
- { p c  + ci ) }

1
1-m

can only be defined if m^1 , and then c^-1

c2 = A^ (the age at which growth rate culminates)

dY m v —  = ny - PY

d2Y |mnYm  ̂ - p | dY
dA 0 at A=A

ie Y 

therefore

if}
1

1 -m

{? <’",>}
1

1-m

A=A
{?}

1
1 -m

which can only be defined if m^1, and then c^=(m-1)

For the logistic m=2, ie c^=+1.
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The Gompertz model form (Equation IV.17)

Y = a exp | -exp £-b(A-A^}j 

can be reformulated

ln(Y) = ln(a) - exp |-b(A-A^)|
i- '

therefore

^  = V b exp |-b(A-Ai)|

= bY ln(a/Y)

which has the same form as the limit form of the second level 

Bertalanffy equation.

HOWEVER this logic, as used by Pienaar (1966) assumes that a and b are 

defined at m=1, which is not so if

a and b p ( 1 - m ) .

Therefore the logic is inconclusive if Bertalanffy's model is used, and 

assumes a and b are defined and not equal to zero as m approaches one.



228
Appendix 3.2

The limit form of the second level Bertalanffy as m approaches 1.0

The second level Bertalanffy equation (Equation II/.9) with c^-1 and 

c2“Aq can be reformulated into the Chapman-Richards form:
1

by substituting
1

b = p(1-m ) 

Differentiating

using L'Hopitals rule

Lim aX-1 x_ ----  = ln( a )x-*0 x v 1

then for m = 1

d_Y
dA bY ln(a/Y)
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APPENDIX 4

EXPLORATDRY ANALYSES OF UNTHINNED DATA

Analysis of trend in variance 4.1

Bertalanffy; general model 4.2

Eertalanffy; unconditioned periodic annual increment 4.3

Bertalanffy; conditioned yield 4.4

Bohnson-Schumacher; linear unconditioned 4.5a

Bohnson-Schumacher; nonlinear unconditioned 4.5b

Bohnson-Schumacher; nonlinear conditioned 4.5c

Bednarz; conditioned yield 4.5a

Bednarz; conditioned periodic annual increment 4.6b

Gompertz; conditioned yield 4.7
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Analysis of trend in variance

To investigate whether yield and periodic annual increment could 

be used as the dependent variables without the necessity of weighting, 

the unthinned developmental data were partitioned into age-site potential 

cells, and periodic annual increment into increment-period cells. The 

age cells were of eight years, 10-17, 18-25, 26-33, 34-41 and 42-49, the 

site potential cells having boundaries at = 100 and 200. Increment 

period was divided into years.

Bartlett’s test was applied to the variances for each cell. When 

yield was investigated the value of Chi-square was 21.1 for 15 cells and 

when periodic annual increment was investigated the value of Chi-square 

was 15.5 for the 15 age site potential cells and 12.3 for the seven 

increment periodic cells. hone of these values was significant and it 

was inferred that the models could be developed unweighted.
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Bertalanffy: general model

30000

20000
Total
deviates
squared

10000

Total deviates squared

Value Value of m
of
r float 0.0 0.5 0.667 1 .0 1.5 2.0

float 5819.81 5819.82
0.5 5820.8
0.667 5820.0 9436.1
1.0 5823.33 5830.7 6901.5 7468.6
1.5 5865.3 7785.1 10861.6
2.0 5904.3 8592.3 12650.2 16455.3
3.0 5975.3 9846.1 15408.7 20551 .8 24927.3

Note: 1 m=0.002 r=0,682
2 m=0.0 r=0.833
3 m=0.050 r=1.0
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APPENDIX 5

ANALYSIS OF DATA FROM ALL STANDS

Competition; reformulation of p 5.1a

Competition; correction to increment 5.1b

Competition; alternative indices 5.1c

Thinning shock 5.2

Form 5.3
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â
—

a  > -

E  E
O  O O CO a □ a o c CO CO a + + CO CD• • • • • • • • • • • • CD CD • •
CO o □ c o o a a CO a □ CO co E  E  a  o
II II II II II 1! II II II II II II II II Ii II
E  E E E E C= cl E E E E E E  E  E  E  E

o <r~ CD CN CO NT UO TO r- CC CD a CN CO N t  UO2 CN CN CN CN CN CN CN CN CN CN c o t o  CO CO CO to

N
ot

e 
th

at
 

rn
is

sp
ec

if
ic

at
io

n
 

ha
s 

re
du

ce
d 

th
e 

ef
fi

ci
en

cy
 

of
 

th
e 

es
ti

m
at

e



Co
mp
et
it
io
n;
 

al
te
rn
at
iv
e 

in
di
ce
s

243

Appendix 5.1c

1—1 0
CD 0 o -  co r -  o -
O =  (-4 •  • •  •

"O D 0 cn i n a  cd
•H D 0 o  i n CM CO
CD CT o -  o LO in
0 0 cn □ CD CO

QC CM CO CM 04

0
f-i

C-i 0
0 4->

-D  <4— 0 i n  i n UD CO
E O E
o 0

s P
0
Q.

O
-̂-

> -

CD

CL
X
0 a CM

• Q
o ^— CM

• II TO
o +
5T“ M Q

II
o "G

cC +
CD

■a
II

a
• M

□
II
E

r~1
0

TD CM
O ^— a

e : • co 0 0
r=> JO E E

+ 0 0
Q rH rH

CM CM □ o
• JO =>

1---1 +
□ cn cn a cn cn

c  c r - c  c
0 > - •H  *H > - •H  *H
C ■a _x ■0 JX
o JO c  o CL C  0

•H + 0  Q + 0  o
- p o 4-> -P O - p  - p
0 CL 0  0 CL on 0
o II II II II II II
CT CL O  Q a a  o

LJ

□ O ’ CO
2 CO CM



T
hi

nn
in

g 
Sh

oc
k

244

Appendix 5 .2

JT.
-P
•H
3

TO
0
IU
CO
n

S
ig

n
if

ic
a

n
c

e

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig

S
ig CD

LJ N
S

E '—1
O CD

CJ TD <r- T— C- C"- O  C- O r~  r - o UD LD
O XT“ -̂-

e :

3t
«—1
CO CO Mt M  CM r -  M  CO r -  CD 5T- CM o - r~ c n
3 0 • • • • • • • • • • • • •  • • • •

-O = Ei CTi o <r- CD M  O  N  N  N  D CM CD CD CD CM
•H D CO O CD o Mj- CD CD CM CM CO LD O CD CD CO CO
CO 0 3 o CD CD CD CD NT LD LD LD CM c n c n  c n CO CD CD
CD c r CD CD or c n CD CD CO O  O  !> C'- O  IN- O [> O

r r CO CM CM CM CM CM CM CM CM CM CN CM CM CM CM CM CM CM

CO
CU

u 0
CD 4->

JD  4 _ 0 LD C D CO C D c o  c d  c d  r -  r - o O CO c n
E o F
3 0

Ei
0
CL

•H
JD

CM
Q
4-1
D=>

•H CD
0

JD +
r s ' ---^

O S w / •H
\ JO

> - a
/ ---- 4->

0 / ^ N D3
•H o

V__/ CM 4 J
CL •rH JD 0 r=>
X JD  ^  C=> + CM
0 JD  L=> - H  ------ "---^ "---- Q0

o JD =  ^  \  \  \ •H •H +
• 0 5 •H n _ ^  - p  _ p  - p  4->

CD N \ \  >  >  >  5 JD JD •H
4-> 4 -> 4-> 4-> JD JO

|| 0 5 05 0 5  0  0  0  0 ___ 0 5
□ + + + + \ \

cc 0 0 0 0  CD CD a  o 4-> 4-> 4-> -U \
+ -L + -{- • • • • 4-> :=> :=> 4-1

CD o CD o CD CD <T- T- r- T- 0 5 D5
• • • • • • '---- '---- V_/ C-- ^ ^ -- —̂ r— —̂

1--1 O V— '--- 0 0  0 0 0 0
CD • II II II II II II CM CM CM CM + + + + + +
■a o —̂ —̂ ^—Csl O  O  C J  q M CM CM CM M  CM
o II M INI M IN I M  IN  Q  CM CM CM CM O O .  O a LJ Q

e : E CM JD  JD  X )  JD CM CM CM CM CM CM
-Q + + + + JD JD  JO JD JO JD
+ Q Q a  a + 4 -  + + + 4 "

4J Q r- v- c- Q Q Q a Q o
-̂-- L 5  r -  JD  D  JD  JD C— ^ ^ — —̂
• Mt JD  + + + + JD JD  JD JD JD o

05 CL + □  CD CD CD + + + + + +
w + O  JD  JD  JD  JD CD a  c d CD CD CD

CM CM M M Nl N  CM JD  w  n_x n_̂ JD JD  JO JD JO JD
e CD CD CD Q a  a  II 1! II II II II II II II li II

1—1 CD CD C D CD CD CD c— <r- S-- ^ ^ — — <r~ ^--
0=> CL CL CL CL n  n  INI INI N  INI N i n i INI IN M INI INI

+ + + 4* +  4"
0 O CD O Q CD O
C CM CM CM CM CM CM
o CL CL CL CL CL CL

■H + + + + +  +
4-) O CD CD □ a  a  CD CD CD CD CD CD O  CD O CD CD
0 C-- S-- <T“" C-- ^ ^ ^ ^ ^ X-- -̂- ^--
3 > - > - > - > - > -  > - > - > - > - > -  > - > -  > > - > -
c r ^--- C-- ^— <;— ^ ^ ^ s C--- s ^— -̂-- X—

U J CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL a CL
+ + + + +  +  +  +  +  +  + + +  + + + +

□ CD a O CD CD a  CD CD CD CD O CD O a a CD
CL CL CL CL CL CL CL CL CL CL CL CL a  c l CL CL CL
II II II II II II il II II II II II II II II II II
CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL CL

o CM CD Nj- L D  UD o  c o  c n  O CM CD N t L D UD C
-̂- ^ ^ --

lo
te

 
* 

no
te

 
th

at
 

m
is

sp
ec

if
ic

at
io

n
 

ha
s 

re
du

ce
d 

th
e 

ef
fi

ci
en

cy
 

of
 

th
e 

es
ti

m
at

e 

D 
th

e 
in

de
x 

of
 

co
m

p
et

it
io

n
 

le
v

el
 

w
as

 
st

an
d

in
g

 
vo

lu
m

e



245

Appendix 5.3

cn cn
•H •H cn cn cn cn cn CD

C-i cn cn 2 21 2 2 2 2
0
CL0 0 i— 1

> 1— 0 0 in CD O ’ in CO ex co
•H 3 0 • • • • • • •
-P 2 TD E P cn CP to <r- co CP
0 C •H 3 0 in t> CO o CD CD co
i—1 CO 0 0 3 o- r- CP CO CO CD CP0 -p 0 er CO co CD co CO CO CO
er cn er 0 —̂ c—

o

TD 0 CP CPc cn •H cn CO cn cn cn cn
0 0 -p

cn cn 2 2 2 2 2 2

0 r—|
0 0 0 O O ’ CP CP tx CPCP P 3 0 • • • • • • •
0 0 TD E p CP -̂ o m CD CD CD
P CL •H 3 0 in CO co CP t> CO
0 0 0 0 3 r- !> CD o- l> O CP
P t- 0 er co CO CO CD CD CO CDcC er 0 r-

TO CP Ol CP
c •H •H •H cn cn cn cn cn
0 cn cn cn 2 2 2 2 2
-pCO p i— i0 0 0 0 co o er. CP S- IO
Ol CL 3 0 • • • • • • •
0 0 TO E p CP o co ex m o O
P I- •H 3 0 m [> o to CP in in
0 0 0 3 t> o CP co CO CP CP0 er co 00 CO co CD 00 CDcC er 0 C“

TO
C CP
0 P •H cn cn cn cn cn cn cn

X -P o cn 2 2 2 2 2 2 2
0 cn -p

TJ o
c 0 0 r"H
•H 05 L_ 0 0 xr CD CP LD to CP

•H 3 0 • • • • • • •
E -P E TO E p CP ro UD CD O ’ o CO
P 0 P •H 3 0 ex O r— T— S- to m
O i—1 O 0 0 3 co CD co CO CP CP CPu_ 0 e_ 0 CT GO CO co CO CO co co

er er 0 *- r_

p
o-p
o cn CP0 •H ■H cn cn cn cn cn cn
e. o cn cn 2 2 2 2 2 2

S—
EP 0
o cn i—1
U. 0 0 0 to CP CO in m O

3 0 • • • • • • •
TO -P TD E P o m ro ID o CO
C 0 •H 3 0 i> o c- -̂ o m
0 0 0 3 l> CP CD CD CP CP p
-p 0 er co CD CO CO co CO COcn er 0 r“ —̂

cn•H cn cn cn cn cn cn cn
E cn 2 2 2 2 2 z 2
O P i— 1
Ll- o 0 0 t> CD 00 O ID

4J 3 0 • • • • • • •
TO G TO E p O ’ O CD O to P
C 0 •H 3 0 O ’ CD ro in CO in O
0 <4_ 0 0 3 CP CO CP CP CP CP 00
-P 0 CT co CO co co CO CD CO
cn er 0 T— V— r_

cn
0

o x-N +• O1—1 S- '— ✓
>- /—x

VN r- CNI
CX 0 Q• i ex
1-1 CD w TO
>  r- Q. 4*>- X o u. U. ü_ Li_ u_ u_ 0_
0 CL 0 —̂ r- <:— T“ -̂ <;— —̂
C + CD TO Q_ U- r4-

+
C- o_ Q_

o CD + + 4- + + + +•H CL II CD o —̂ CD —̂ ex
-P II □ TO CL CL 0 TD 2 2 CD
0 CL cC II II l| II II II II3 II □ T- «:— CD -̂ ex
CT CL CL 0 2 2 2 co
LJ

__________
rx

XTin
pCO

C0 0 
u (0 3 CT CO
E3CO
tu
3TO
•HCO
0
er

0C-i0-p
0E0P
0CL
EM
OQ_
2C
0-P
0
-P
3
O
n-p
•H
3

0
2
O

JZ-P
• H
3
2
0
P
0
CLEO<_)



246

APPENDIX 6



247

Qeneralized Least Squares Estimation 
of Yield Functions

I. S. F erguson

J. W. L eech

Abstract. Data were obtained from 9 measurements of 20 unthinned plots established in 
Monterey pine plantations in South Australia. A two-stage procedure for estimation of the 
yield functions was developed, drawing on the theory relating to random coefficients and to 
seemingly unrelated equations. 'In the first stage, coefficients relating yield to age for each 
plot were estimated using ordinary least squares. In the second stage these plot coefficients 
were then regressed against plot variables such as site index and stocking at age 10. The 
error terms in the second stage violated the assumptions of ordinary least squares, being 
heterogeneous across plots and correlated across coefficients. A generalized least squares 
algorithm was therefore developed and programmed to estimate the final coefficients and 
other relevant statistics. The algorithm also enabled comparison of the final coefficients 
based on alternative assumptions about the structure of the error terms. The results showed 
that the coefficients estimated under the assumption of heterogeneous correlated errors 
were more efficient than those under other assumptions. Recognition of the correlations 
between first stage coefficients proved especially important. Comparison of the hetero
geneous correlated results with those from ordinary least squares applied to the pooled data 
from all plots also showed that while the latter estimates of the coefficients seemed robust, 
their variances were grossly underestimated. Model selection based on ordinary least 
squares and pooled data may therefore be misleading. Generalized least squares estimators 
offer substantial advantages in this respect and are consistent and asymptotically efficient. 
F orest Sci. 24:27-42.

Additional key words. Statistical analysis, mathematical models, Monterey pine, Pinus 
radiata.

T his pa per  deals with the problem of estimating yield functions for plantations of 
Monterey pine (Pinus radiata D. Don) located in the southeast of South Australia. 
Data used in these analyses were obtained from repeated measurement of perma
nent plots, often spanning 40 years in time. These data pose a number of problems 
for efficient estimation of yield functions. A new and more efficient technique has

The authors are, respectively, Senior Lecturer, Department of Forestry, Australian National 
University, Canberra, Australia; and Assistant Forest Resources Officer, Woods and Forests 
Department of South Australia, currently undertaking Ph. D. studies at the Australian National 
University.

The theory, techniques, and initial empirical research for this paper were developed while the 
»cnior author was on study leave at the College of Forest Resources, University of Washington. 
The assistance of Dean J. Bethel and Professor G. F. Schreuder in providing research facilities 
and computer time is gratefully acknowledged. This paper was first presented to a Workshop 
organized by Research Working Group 2, Mensuration and Management, of the Standing Com- 
mitlcc of the Australian Forestry Council. Thanks are due to a number of participants for their 
comments. Special acknowledgment is due to Mr. J. Miles of the Department of Forestry, 
Australian National University, who developed the computer program for generalized least 
squares estimation; and to the Director of the Woods and Forests Department of South Aus
tralia for permission to publish this paper. Manuscript received May 3, 1977.
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been developed for this purpose. This paper outlines the approach used and reports 
the results for a yield function suitable for use in unthinned stands.

Structure of the Growth Model

Nonlinear models such as the Chapman-Richards model or variants of ii have been 
used extensively in recent work in estimating site or yield functions (Pienaar and 
Turnbull 1973). However, these models pose difficult problems in relation to 
statistical inference about alternative hypotheses. Moreover some of the problems 
associated with the data available for this study arise in both linear and nonlinear 
models. It was therefore simpler to start with linear form for which w'ell-developed 
techniques of inference were available.

The log/reciprocal model provides a useful starting point:

In v =  bi -f b2/a : (1)

where In denotes logarithm to base e,
v denotes volume of the z'th observation, 
a denotes age of the z’th observation, 

bi, b2 denote the fixed coefficients.

The log/reciprocal model (equation 1) has a number of desirable properties for 
the present study. Bailey and Clutter (1974) suggested that the simple form in 
equation (1) could be generalized to provide a polymorphic system of curves by 
including a further coefficient (c), and by making the slope coefficient plot-specific 
(b2i) :

In v =  bi +  b2i( l / a ) c (2)

This extension seems unduly restrictive, however, since it must either be fitted by 
nonlinear regression or by undertaking further transforms of the model to obtain 
a linear form (Bailey and Clutter 1974). An alternative and more powerful gen
eralization would be:

In v =  bu + b2i( l / a)  +  h3i( l / a )2 4 - . . .  (3)

where bu are the coefficients of a polynomial in (1 /a).

Equation (3) is linear in the coefficients and can thus be estimated directly using 
ordinary least squares. Each of the coefficients can be related to site or to other 
variables which affect differences between the plots. This enables the asymptotic 
value of volume to vary according to site, while still allowing the point of inflexion 
to vary with site (cf. Bailey and Clutter 1974).

Since the log-reciprocal transform itself substantially linearizes the relationship, a 
high-order polynomial is unlikely to be required. Nevertheless the iank of the 
matrix of independent variables in the polynomial needs to be established before 
proceeding further. Thus we proceed to discuss briefly the data and the results of 
the first stage of the estimation process, which involved fitting polynomials to each 
plot separately.

Data

The data used in this study were derived from successive measurements of a series 
of 20 permanent plots in Monterey pine plantations in the southeast of South Aus
tralia. All the plots had been left unthinned. The first measurement of each plot

28 /  Forest Science
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TABLE 1. Number of plots showing significant improvement in fit.

Forms of model
Number of plots showing 
significant improvement

Linear to quadratic 15
Quadratic to cubic 9
Cubic to quartic 5

had been carried out at or near age 10 years. Subsequent measurements were car
ried out at varying intervals to ages of 40 or 50 years. The standards of measure
ment were notable for strict adherence to well-established and documented proce
dures, using highly trained and experienced staff.

The irregular number of observations in the plots posed a problem. Although 
variable numbers of observations could be handled by the techniques outlined in this 
paper, the advantages seemed to be outweighed by the additional computational 
burden.

Thus the data were culled to reduce all plots to nine observations. The first and 
last measurements were retained in each plot, in order to maintain the maximum 
period of growth possible. For each plot the surplus observations were culled ran
domly.

F irst-S tage M odel

A polynomial was fitted to the data1 from each plot using ordinary least squares. 
The most appropriate order for the polynomial was not clear, although consideration 
of the second-stage model suggested that it should be consistent for all plots. Thus 
linear, quadratic, cubic, and quartic forms of the model were fitted to each plot.

The various forms of the polynomial model were then tested to determine whether 
the addition of each successive term represented a significant difference over the 
simpler forms. Inspection of the plot variances of the residuals for any one form 
of the polynomial model indicated that the plot variances were markedly hetero
geneous.

Differences in the pattern of heterogeneity between different forms of the model 
seemed to eliminate an analysis of variance based on the pooled data. Tests were 
therefore carried out by plots to establish whether each additional term represented 
a significant improvement over the previous form. The numbers of the calculated 
values of the F statistic which exceeded the critical value at the 95 percent probabil
ity level are summarized in Table 1.

The results in Table 1 suggested that the quadratic form was probably superior 
to the linear, but the other comparisons were not so clear. The signs and values of 
the higher order coefficients in the cubic and quartic forms were notably erratic. 
Thus quadratic and higher forms were pursued in the second-stage analyses. Since 
the cubic and quartic proved to be untenable in the second stage, only the results for 
the quadratic form will be reported in subsequent sections.

The estimated values of the coefficients for the quadratic model are shown in 
Table 2, together with the values of site index (j4) and stocking at age 10 years 
(n<). In accord with South Australian practice, site index was measured by the esti
mated volume per unit area the plot would carry at age 10 years.

1 Age was measured in tens of years to provide better-conditioned moment matrices for the 
first-stage estimates. All subsequent results reflect this scaling of age.

V o l u m e  24, N u m b e r  1, 1978 /  29



250

TABLE 2. Estimated coefficients and plot data for quadratic first-stage model.

Plot

Estimated coefficients

b n  b i t  b s«

Site index 
(m*/ha) 

.*«

Stocking (age 10) 
(Stems/ha)

rii

1 7.902 -3.503 1.131 253.2 1549
2 7.826 -3.479 1.044 223.9 1495
3 7.621 -3.141 0.870 204.1 1690
4 7.956 -4.436 1.873 184.5 1700
5 7.886 -4.532 2.125 179.2 1619
6 7.522 -2.552 0.122 168.5 1673
7 7.525 -2.890 0.402 164.2 1703
8 7.699 -3.983 1.442 161.1 1716
9 7.650 -3.213 0.528 145.2 1549

10 7.434 -3.148 0.717 143.8 1680
11 7.407 -2.716 0.238 143.1 1680
12 7.713 —4.065 1.445 141.5 1737
13 7.275 -2.465 0.062 135.0 1468
14 7.648 -3.637 0.815 132.1 1982
15 7.390 -1.713 -0.991 119.1 1208
16 7.524 -3.374 0.460 111.3 2162
17 7.398 -3.142 0.276 93.7 1834
18 7.093 -2.816 -0.023 70.0 1673
19 7.027 -1.817 -0.954 69.1 1581
20 7.013 -2.153 -0.878 57.2 1609

The data in Table 2 are arranged in descending order of site and provide some 
visual evidence of a probable correlation between the values of the coefficients and 
the values of site index.

The estimated values of the elements (cr^4) of the variance-covariance matrix for 
these coefficients are summarized in Table 3. Since the matrices for each plot are 
symmetric, only the diagonal and upper diagonal elements are shown.

Considerable heterogeneity between plots is apparent in the data in Table 3. 
Bartlett’s test of homogeneity was used to examine this problem, using the estimated 
variances of the residuals for each plot. The calculated value of the test statistic 
was 65.6. This statistic is approximately distributed as a x2 variable with 19 degrees 
of freedom. The calculated value exceeds the critical value (30.1) of x2 at the 95 
percent probability level and thus the variances of the residuals are significantly 
heterogeneous.

Scatter diagrams of the residuals for each plot gave no indication of heterogeneity 
or of serial correlation within any of the plots. The Durbin-Watson statistic was also 
calculated for each plot, even though its value is questionable with so few observa
tions. The published critical bounds only go down to 15 observations (Theil 1971). 
Extrapolating these to 9 observations (and recognizing the dangers inherent), the 
lower bound is about 0.8 and the upper bound is about 1.5 at the 95 percent proba
bility level. None of the plots had calculated values of the statistic below the lower 
bound. Six fell in the inconclusive zone (between upper and lower critical bounds) 
for positive serial correlation and six in the inconclusive zone for negative serial 
correlation. If serial correlation were present in the first-stage model, one would 
expect it to be consistent (either positive or negative) for all or most plots. These 
results suggest that serial correlation was not a serious problem in the data.
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TABLE 3. Estimated variances and covariances of first-stage coefficients.

Estimated variances and covariances (X  10"*)

Plot <r-u‘ C u * O  22* OTs4 ffzi* 0 3 3 *

1 9 -36 159 30 -141 129
2 48 -171 6524 122 -478 362
3 18 -71 306 61 -272 250
4 8 -34 162 34 -165 171
5 10 -47 242 50 -263 292
6 104 -368 1370 260 -988 731
7 25 -80 269 49 -174 118
8 21 -82 333 68 -283 247
9 23 -77 279 54 -203 154

10 26 -112 516 98 -467 433
11 30 -93 318 59 -210 144
12 24 -105 491 102 -497 519
13 41 -143 515 100 -369 268
14 15 -83 485 ' 107 -639 855
15 74 -230 783 146 -517 356
16 25 -127 655 138 -722 811
17 7 -30 129 25 -113 103
18 10 -39 153 30 -121 99
19 37 -135 522 105 -416 339
20 45 -105 536 104 -386 288

S ec o n d -S tage M o del

The estimated coefficients for the first-stage models enable yield predictions to be 
made for any plot in the sample but not for any other plot. The second-stage model 
is concerned with the development of a more general model, capable of making 
yield predictions for any plot drawn from the same population as the sample.

Consider the estimated coefficients for the quadratic form of equation (3), shown 
in Table 2. Each plot can be regarded as a random sample from the population of 
all plots. Thus these coefficients can be regarded as random variables or “random 
coefficients,” to use the terminology of the literature on growth curves and related 
work (e.g. Potthoff and Roy 1964, Rao 1965, Grizzle and Allen 19693,.. Swamy 
(1971), Rosenberg (1973), and Fearn (1965) have further developed the relevant 
theory (both classical and Bayesian) regarding random coefficient models, and 
efficient unbiased estimators of the expected values (and variances) of these coeffi
cients have been developed for various applications. Leak’s (1966) pioneering 
work with repeated measurements in forestry data developed what would now be 
recognized as large-sample estimators of the expected values and variances for a 
random coefficients model.

These models need not be limited to random coefficients, as Grizzle and Allen 
(1969) and Rosenberg (1973) have noted. The coefficients of the first-stage model 
can be postulated to be random functions of other exogenous variables. Neverthe
less the techniques for estimation of random functions received little attention in the 
literature on random coefficients models.

The problem of estimating random functions is exactly analogous to that of esti
mating “seemingly unrelated equations,” although this does not seem to have been 
recognized previously in the literature. The theory and techniques of estimation for
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the latter problem were first developed by Zcllner (1962). Goldberger (1964), 
Dhrymes (1970), and Theil (1971) also contain useful contributions on the 
problem.

Before turning to the formal development for estimation of a general model of 
this type, let us consider the structure of the second-stage model in more detail. 
The regression coefficients in equation (3) may be postulated to be random func
tions of site index and any other appropriate variables. As a specific example, let us 
postulate that the intercept term in equation (3) is a linear function of the logarithm 
of site index, v/hich seems reasonable because this coefficient determines the 
asymptotic value of volume as age approaches infinity:

bn — an +  In Si + Su (4)

The random error (8^) may be attributed to the inherently stochastic nature of 
biological relationships and/or to the large number of potentially important factors 
which are not taken explicitly into account in the model. For example, the genotype 
of the planting stock and a multitude of soil and microclimatic factors are known to 
be potentially important determinants of forest growth, but none of them appear in 
this model.

The detail of the structure in terms of the variables, and the form in which they 
are included, may vary between the different regression coefficients. Hence it is 
desirable to adopt a more general formulation of equation (4):

bn — % anZji + bu (5)
i

where the subscript Z (=  1,2, 3) is used to denote the Zth regression coefficient
in equation (3),

Zji denotes the jth (= 1 , 2 . . . )  independent variable for the 
Zth plot.

For any one first-stage coefficient it seems reasonable to assume that the errors 
(8ji) in equation (5) are identically and independently distributed with mean zero 
and variance denoted An. However the covariances between the error terms of 
different first-stage coefficients will not in general be equal to zero (i.e., Aim ^  0), 
because the coefficients are generally interrelated. For example, other things being 
equal, a particular soil type is likely to affect all of the first-stage coefficients for a 
particular plot in some related manner.

The formulation in equation (5) is based on the true regression coefficient. 
Clearly, errors of estimation in the first-stage must also be recognized:

. >=*
bu =  ]£ aij Zn +  8ji 4- eu

where b u denotes the estimated values of the Zth coefficient (Z 
the Zth plot,

eu denotes the error of the estimate of the Zth coefficient for the Zth plot.

In this form, it will be apparent that the second-stage coefficients (au) should 
not be estimated by ordinary least squares applied separately to the data for each 
coefficient. The combined error term (Sn + eu) does not obey the assumptions 
underlying ordinary least squares; the variance of one component (eu) being hetero
geneous from plot to plot. Moreover more powerful techniques are available which 
take advantage of the properties of the error term to increase the efficiency of esti
mation of the second-stage coefficients.

( 6 )

= 1 , 2 . . . )  for
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Generalized Least Squares

The model outlined in equation (6) can be developed fully in matrix notation thus:

B = ZA + U (7)

where B ' = \B^. Bv, B*] 

and

and

and

and

Equation (7) is applicable to other first-stage models such as the cubic form by 
appropriate modification of the dimensions of the components.

Note that the submatrix of independent variables (Zi) need not be identical for 
all values of l. Indeed, if all these submatrices were identical, much of the gain in 
efficiency which accrues from a generalized least squares approach would be lost 
(Theil 1971).

Using equation (4) as a specific example, the submatrix (Z ?) would contain the 
vectors derived from Zu = 1 and z2i =  In for / =  1 . .  . 20.

Assuming the variance-covariance matrix of errors (U) in equation (6) is known, 
the theory of generalized least squares (Aitken 1934-1935) may be used to derive 
best linear unbiased estimates for the second-stage model. These are sometimes 
referred to as Aitken estimators.

The generalized least squares approach involves a transformation of the model:

TB =  TZA +  TU (8)

hi ,* . . A h,<. • i>\, 2 0 J

“Zx 0 o  “

0 Zo 0

_0 0 Z 3 _

~ Z i ,  i • • • •  Z l ,  20

J * n .l •  Z m , 20_

Z =

A ' = [ A u A o, A 3]

A  i —  [<21,1, A i ,  2 • • • 1

U' =  [Uu u 2, U3]

V l  -  [Ml, I f  Wz, 2 • • ■ Ui t 2 0 ]

Mz . i  =  8 h  +  e n  .

where T is a square matrix such that:

T'T =  [E(UU')]1 =  W-1 (9)

where E denotes the expected value operator
and W denotes the known variance-covariance of the error terms in equation 

(7).

Under these conditions it can be shown (Theil 1971) that

E[T'V] = 0 (10)

E[T'UU'T] = I (11)
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where I denotes an identity matrix.

Hence equation (8) fulfills the assumption underlying least squares and can be 
estimated using ordinary least squares. The resultant Aitken estimators of the 
coefficients (A ) can be shown to be best linear unbiased estimators (Theil 1971).

Of course, the variance-covariance matrix (Ik) is not known. We therefore 
follow the usual practice of substituting an estimate for it. Swamy (1971) has 
developed an unbiased estimator, which will be outlined in the next section, and has 
shown that so-called feasible Aitken estimators (Dhrymes 1970) based on it are 
consistent and asymptotically efficient. Thus throughout the remainder of this 
paper we will use W to denote the estimated variance-covariance matrix.

The feasible Aitken estimators can be calculated using the following formula:

A =  [Z'W-'Z]-1 [Z'\V~lB] (12)

where A ’ — [Alt A 2, A 3]

[Z'W-'Z]-1 =
"ZT Wu-1 
Z2' w 2l-* Zx 
Z3' Ws,-1 Zx

Zi' wx o-1 Zo
Zo' W22_* Z2
Z3' wz o-1 z 2

Zi Wi3_1 z3- 
Z2' W23-1 z 3 
Z3' w33_1 z3

-1

[Z'W-'B]
ZT WXX-1 Bi + Zx' W12-1 Bo +  Zx' W7!,-1 ß 3
Z2' H7,!-1 ßx + Zo' W72o~̂  ß 2 + Zo' Ikoa"1 ß
Z3' Ikai-1 Bx + Z3' Iks,-1 ß 2 +  Z3' IT33-1 ß

3

3_

The partitioned matrices provide a somewhat simpler basis for computation and 
aid comparisons with other developments later in this paper.

The inverse matrix [Z'W7*1Z]_1 in equation (12) has been shown (Theil 1971) to 
provide a consistent estimator of the variance-covariance matrix for the estimated 
coefficients, i.e.:

Var (/l)  =  [Z 'lk-1Z]-1 (13)
where Var is used to denote the variance-covariance operator.

V ariance-Covariance Error Matrix

Following Swamy (1971), an unbiased estimator of the variance-covariance error 
matrix (W7) can be derived in two stages. First, the variance-covariance matrix ( r )  
for the estimated first-stage coefficients (bu) can be calculated in the usual way:

r =
7n

7 2 1

7 3 1

7 l 2  7 1 3  

7 2 2  723

73 2  733

(14)

where y lm = (2  &i. t>mi ~  2  2  bmi/n ) /(n  -  1).
For the quadratic form of the first-stage model, the following values were 

obtained:

r =
' .6128 -.6582 
-.6582 .6128
-.1793 .2109

.1793

.2109

.0774

This matrix includes the errors of estimation in the coefficients. This component 
can be estimated separately from the mean (over the 20 plots) of the relevant
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variance or covariance elements derived in the first-stage fitting by ordinär)’ least 
squares. Thus the variance-covariance matrix of the 8u terms can be estimated as 
follows:

A =
A n  A 1 2  A 1 3  

A 2 1  A 0 2  A 2 3

A 3 1  A 3 2  A 3 3 _

and Aim - y i m - ' Z  Vim/* •
4

The values in the matrix can be used to estimate the correlation coefficient ( llm) 
between the error terms (8Zi, 8mi) associated with different regression coefficients 
in the second stage model:

/i2 =  - . 972, /13 =  —.823, l23 =  .876 .

The high values obtained suggest that substantial gains in efficiency should accrue 
from recognition of this feature in the estimating process.

The second stage in estimating the final variance-covariance matrix ( W) involves 
adding the variances and covariances attributable to the first-stage estimation to the 
A matrix, for each plot:

—

Wn* WJ2* w 13,_1 

W 2 1 *  W o r i  W ‘2 3 1

_ W ’3 i*  W 3 2 1 > ^ 3 3 ’

W jm — A im +  <r lm (16)
where the superscript i is used to denote the elements of the W matrix for the ith 

plot.

The elements of the 20 matrices so derived can be rearranged to form the W 
matrix:

^13“
^ 2 3

V/3s

and

wi,«1 0  . . .

(17)

Each of the Wlm submatrices is a diagonal matrix with zero off-diagonal elements. 
The diagonal elements are the variance or covariance elements for each plot. It is 
thus obvious that the variance-covariance matrix W is far removed from the struc
ture embodied in the assumption underlying ordinary least squares, which would 
imply that W was a diagonal matrix with constant values along the diagonal.

Alternative Forms of Error Matrix

Comparison of the structure of the error matrix with alternative forms seems desir
able so that the theoretical gains in efficiency can be examined empirically.
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Heterogeneous and Correlated.—The treatment in the preceding sections seems 
appropriate in view of the evidence to date. Significant heterogeneity existed 
between the variance-covariance matrices of different plots and high correlations 
existed between the errors for different regression coefficients. Nevertheless a num
ber of alternative forms can be examined within the same framework. The resulting 
modifications of equation (12) will be reviewed briefly to provide a basis for sub
sequent analyses.

Heterogeneous and Independent.—If the combined error term (6It + e;i) is 
assumed to be heterogeneous across plots but independent for different coefficients, 
the off-diagonal submatrices in equation (12) equal zero. Thus the components of 
equation (12) become:

[Z' W 1 Z ] 1 =
“( Z /  Z i)-1

0 
0

0 0
(Z/Woo-1 Zo)-'  o  •

0 (Z /W ^ Z a ) -1

[Z' W-1 B]
z , W u-1 B {  
Z2 W22-1 B2 
z.  Woo-1 Bo

(18)

Such a model could be estimated by weighted least squares applied separately to 
each of the three regression coefficients.

Homogeneous and Correlated.—If the error term is assumed to be homogeneous 
across plots but correlated for different coefficients, the W i^1 submatrices are 
simply replaced by the scalar value for the inverse of the variance or covariance 
element concerned:

[Z' W 1 Z]-1
o-ir1 Z /  Z, 0"i2 Z \  Z 2 cri3_1 Z \  Z z -1

«-or1 Z d Z 1 er22-1  Zo Zo cr23 _1 Z 2 Z z -1

31_1 Z z  Z \ O’32_1 Zz  Z 2 ° r33_1 Z z  Zz -1

[Z' W 1 B]
"on -1  Z {  B\ +  CTao-1 Zj' B2 + o-j3_1 Zi B-i 
cr2i_1 Z 2 B\ *f* croo-1 Z2 B2 T er23_1 Z 2 B$ 
cr3i-1 Z2 B\ +  cr32  ̂Z2 B2 +  c 33-1 Z% B$

(19)

where crim_1 is the inverse of the (constant) variance or covariance elements for all 
plots.

This formulation does not decompose to separate equations as in the previous 
section and can only be estimated by joint generalised least squares.

Homogeneous and Independent.—If the error term is assumed to be both homo
geneous across plots and independent for different coefficients, the components of 
equation (12) simplify still further:

[Z' w-1 Z]-1 =
~o-u (Z 1' Z j)-1 

0 
0

0 0 
0~22 (Z2f Z 2)_1 0

0 & 3 z ( Z z '  Z z ) - 1

[Z' W-1 B] =
"on -1 Z /  B f  

O"22_1 Z 2 Bo 
O' 33_1 Zz Bz_

( 20)

Clearly this model could be estimated by applying ordinary least squares sepa
rately to the data for each regression coefficient, because the cr terms cancel on 
multiplication.
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Homogeneous and Independent Using Pooled Data.—One further possibility war
rants comparison. Suppose the assumptions regarding random coefficients or func
tions are dropped. The first- and second-stage models can then be combined on the 
assumption that the coefficients are fixed, not random:

In v< =  ^  flj x {j +  €i (21)
j

where denotes the jih fixed coefficient,
Xji denotes the jth independent variable for the zth observation,
6i denotes the random error term.

If the error term in equation (21) is assumed to be homogeneous for all observa
tions, and the error teims for different observations are assumed to be independent, 
equation (21) can be estimated by applying ordinary least squares to the pooled 
data covering all plots and measurements.

Analyses

A computer program was developed to compute the second-stage model based on 
equation (12) (Miles and others 1978).

The first models were based on the assumption that the error terms were hetero
geneous and correlated. The cubic form of the first-stage model was eliminated 
from further consideration at this stage, because the estimated error matrix for the 
regression coefficients (A) had some off-diagonal terms whose square exceeded the 
value of the product of the corresponding diagonal terms. This indicates (Swamy 
1971) that either the assumed model is incorrect or that statistical variability has 
obscured the underlying relation. In the light of the F tests carried out on the 
earlier model, reported earlier, the former seemed more likely.

For the quadratic model, different forms of the Zx submatrices were examined to 
determine the most appropriate structure for the second-stage models in relation to 
the independent variables. Site index, stocking at age 10 years, and dummy vari
ables for soil types were included in various forms and combinations.

Tests of significance for an individual independent variable were based on the 
following test statistic:

£ =
Ch

VVar (flj)
(22)

where £ denotes the test statistic which is asymptotically a N (0, 1) variate, 
flj denotes the estimated value of the regression coefficient,

Var (Qi) denotes the estimated value of the variance of the coefficient.
Where joint tests of significance were required to test whether two or more coeffi

cients were jointly significantly different from zero, F tests were carried out based 
on the alternative models with and without the variables concerned (Theil 1971):

(L p - k 2) SSr-SSi
(*2- * : ) ’ SS2 K ’

where L, p denotes the number of equations and plots respectively, 
ki, k2 denote the numbers of coefficients in models 1 and 2,

SSlf SS2 denote the error terms of squares for models 1 and 2 (SSi > SS2).

This statistic is distributed as the F statistic with k2 -  kx on Lp -  k2 degrees of 
freedom.

Having selected the most appropriate form of the second-stage model, compari-
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sons with alternative forms of the error matrix were made by- appropriate modifica
tion of the data used in the computer program. As noted earlier, the homogeneous 
independent form using the pooled data could not be estimated with this program 
and was estimated separately using ordinary least squares.

For alternative forms of the error matrix, the relative efficiency of the model can 
be gauged by the ratio of the generalized variances, which are determinants of the 
variance-covariance matrices for the final coefficients:

j V a r ,  (A)  I 
‘ |Var2 ( A ) I (24)

where R.E. denotes efficiency, measured relative to the heterogeneous correlated 
form (model 1),

Varj (A)  and Var2 (A)  denote the estimated variance-covariance ma
trices for the regression coefficients in model 1 and model 2 (the 
alternative).

R e s u l t s

Heterogeneous and Correlated Error Matrix.—A large number of alternative mod
els, using different forms of the Z ( submatrices, were estimated by generalized least 
squares, based on the assumption of heterogeneous and correlated error terms. The 
complete details are too voluminous to report in detail but selected results are sum
marised in Table 4.

The joint dependent variables showm in Table 4 are the coefficients estimated 
from the first-stage model and are associated with the intercept term, the reciprocal 
of age term, and the reciprocal of age squared term respectively (see equation 3). 
The Z matrix variables in Table 4 comprised a unit vector (1), the logarithm of site 
index (In $;), and the stocking at age 10 years (n<).

The results for model 1 in Table 4 show that the estimated coefficients for the 
stocking variable (rt{) were not significantly different from zero in the case of the

TABLE 4. Results of GLS estimation of alternative models.

Z matrix 
variables

Joint dependent variables Error sums

Model b n b  2» b z i
of squares 

(ss)

1 1 * ♦ *
In S i ♦ * * 30.35

Th n.s. ♦ n.s.

2 1 * n.s. *
In Si * * * 34.66

Hi *

3 1 ♦ •
In Si * ♦ * 36.76

n t n.s.

4 1 * *
In St ♦ * * 40.66

Hi

* denotes significant zeta value (5 95 percent probability level; 
n.s. denotes not significantly different from zero; 

blank denotes the variable was not included.
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F igure 1. Predicted surfaces and actual values of yield.

first and third dependent variables. Models 2 and 3 show the results for various 
intermediate deletions and inclusions in the Z  matrix, culminating in model 4. A ll 
the estimated coefficients were significantly different from zero in model 4, and F 
tests (see equation 22) showed that the other models were not significantly different 
from it.

Model 4 was therefore selected as the best model. Expanding both the first and 
second stages this model can be written:
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TABLE 5. Results for alternative forms of error matrix.

Independent variables Relative
Model 1 In S i In S i / a i l/fl43 In S i / a i 1 efficiency

Heterogeneous 5.155 .485 -.648 -4.637 1.061 1.0
correlated (.205)1 (.009) (.0013) (.341) (.016)

Homogeneous 5.161 .482 -.642 -4.653 1.060 .92
correlated (.206) (.009) (.0013) (.347) (.016)

Heterogeneous 4.481 .621 -.645 -7.127 1.561 .00014
independent (.638) (.026) (.0013) (6.114) (.252)

Homogeneous 4.485 .619 -.642 -7.136 1.563 .00014
independent (-639) (.026) (.0013) (6.184) (.255)

Pooled data OLS 5.029 .496 -.578 -5.073 1.079 '
(.012) (.0005) (.0005) (.056) (.003)

1 Estimated variances are shown in parentheses below the respective coefficient.

ln V* =  5.155 +  0.485 In s» — 0.648 In 4.637/a? + 1.061 In Si/ac (25)
(.45) (.09) (.04) (.58) (.12)

where the figures in brackets are the standard errors for the coefficient concerned.

Using the results for the model based on heterogeneous and correlated errors 
(equation 25), graphs of the predicted surfaces and actual values of yield were pre
pared for the 20 plots (Fig. 1).

The graphs show that the predicted surfaces provided an excellent visual fit for 9 
of the plots. The predicted surface tended to deviate from the actual values for 
three or so of the observations at older ages in 4 of the plots, although the fit was 
still generally tolerable. In three plots (73, 89, 307), the predicted surfaces con
sistently underestimated actual yields and in 4 plots (58, 120, 321, 323) they con
sistently overestimated the actual values, sometimes markedly.

The poor performance of the predicted surfaces in 7 plots is, we believe, related 
to differences in soil types and/or soil-water regimes. However there were insuffi
cient plots available in the various types to prove this in the present data set. No 
method of estimation can overcome this type of problem unless additional data or 
information are available.

Other Forms of the Error Matrix.—A model identical in form to that in equation 
(25) was re-estimated using alternative assumptions about the nature of the error 
matrix. The results are shown in Table 5.

The independent variables shown at the top of Table 5 are identical to those in 
equation (25), unity being used to indicate the intercept term. The estimated values 
of the coefficients for the heterogeneous correlated model shown in equation (25) 
are repeated in Table 5, with the estimated values of the respective variances shown 
in brackets immediately below them. This model formed the basis for comparisons 
with other models (see equation 24) and therefore has a relative efficiency of 1.0.

When the error matrix was assumed to be homogeneous but still correlated, the 
estimates calculated from equation (18) had a relative efficiency of .92 and ihe 
coefficient values differed little from those for the heterogeneous correlated model.

When the error matrix was assumed to be either heterogeneous independent or 
homogeneous independent, the estimated values of the coefficients (see equations 
19 and 20) diverged from those for the heterogeneous correlated model; the differ-
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ences being well beyond the limits of the confidence intervals in some cases. Rela
tive efficiency also dropped to .00014, indicating the dramatic decrease in precision 
for the estimates from these two models. The results of the homogeneous indepen
dent model correspond with those which would be obtained by applying ordinary' 
least squares to the data for each first-stage coefficient separately. These results 
highlight the dangers and inefficiency which can arise from this procedure.

The last model in Table 5 was estimated by pooling all data from all plots. The 
model was then re-estimated using ordinary least squares, assuming the error term 
to be of homogeneous variance and independent both across and within plots. The 
estimated values of the coefficients for this model differed little from those of the 
heterogeneous correlated model, which suggests that the ordinary least squares 
estimates are reasonably robust under this assumption. However, the estimates of 
the variances were markedly lower than those for the heterogeneous correlated 
model and reflect a serious bias in the ordinary least squares results.

This bias stems from the implicit assumption that the pooled observations con
stitute a random sample whereas the observations within a plot are clearly related. 
Thus the inherent variation in the pooled data is less than would be the case for a 
truly random sample, leading to a gross underestimate of the sampling variance 
attached to the coefficients. As might be expected, scatter plots of the residuals for 
this model showed a marked serial correlation, in that nearly all the residuals within 
any one plot had consistent signs.

The underestimation of variances has serious implications. In estimating growth 
models, hypothesis testing is invariably carried out to choose between alternative 
models. Underestimation of the variances is likely to result in misleading results 
from these tests, especially if stepwise regression is used. Under these circumstances 
the method of model selection may not be nearly as robust as the estimates of the 
coefficients.

Conclusions

The analysis of yield data from remeasurements of permanent plots spanning a long 
period of time has a long history in forestry. Prior to the development (in a readily 
accessible form) of statistical techniques such as multiple regression, the established 
practice was to fit the data for each plot by eye. A process of “harmonization” 
was then employed to achieve sensible trends across all plots and sites.

This practice was well founded because, within the limits of the techniques avail
able, it attempted to make the most effective use of the data available. The gen
eralized least squares technique described in this paper represents a rigorous exten
sion of this practice; rigorous in the sense that it is designed to be statistically 
efficient in the use of the data.

As with the graphical process of harmonization, generalized least squares gives 
more weight to the plots with the least variable trends. Similarly it recognizes the 
interrelationships between the parameters of the function. If the plot intercept is to 
be changed, its impact on other plot coefficients is taken into account and vice versa. 
Finally it gives due weight to the distinction between observations on plots and those 
within plots.

The development of computer packages for multiple regression analysis spawned 
a new wave of estimation of yield functions. Most of this work has focused solely 
on the deterministic structure of the model; the structure of the error term being 
largely neglected. The results of this study show- that this can be a potentially 
dangerous course to follow in the case of remeasurements of permanent plots.

Where sufficient remeasurements are available, generalized least squares offers a 
new and efficient technique for estimation of yield functions.
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Program CLS—Generalized Least Squares tor Two-Stage A^odel Development

Note by J. A. Miles, I. S. Ferguson, and J. W. Leech

Program GLS estimates the second stage of the two-stage model described by Ferguson 
and Leech (1978). Estimation of the first stage can be carried out using any standard 
regression program, provided it can be modified to write out the data in the format 
required for the second-stage analyses.

The GLS user must supply an external procedure, coded in a suitable language, speci
fying transformations of the exogenous variables. Each transformed variable is scaled 
by GLS to improve the conditioning of the weighted moment matrix and thus reduce the 
possibility of numerical instability in the results. GLS was coded in ALGOL to take 
advantage of the dynamic run-time storage allocation.

Second-stage models involving 20 plots, 3 first-stage parameters per plot, and up to 9 
second-stage parameters, took less than 2 seconds run-time on a Univac 1100/42 under 
EXEC 8.

Copies of the program, together with user instructions, test data and output, can be 
obtained from Dr. I. S. Ferguson, Department of Forestry, Australian National Univer
sity, P. O. Box 4, Canberra, A.C.T. 2601, Australia
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