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(i1)

Abétract

Data from radiata pine stands in the south-east of South Australia
were used to investigate various aspects of stand yield models with a
view to establishing a satisfactory predictive model for use in South
Australia,. In the first phase of the analyses data from unthinned
stands were used with Ordinary Least Squares (0LS) technigques to invest=-
igate variou; model structures that have been pfoposed in the past, to
determine whether yield or increment was the better dependent variable,.
and to investigate conditioning through a knouwn ﬁasg point, defined aé
site potenﬁial, ahd takén as yield at ége 16. The second phase extended
these analyses‘to include invéstigation of the effects of thinning var-
iations and soil differences, aﬁd alsoc investiogated the_uée of‘the mddel
both for other forest régions ;n South Australia and for second rotatiﬁn
stands, Because these analyses were statiétically unsafisfaﬁtory
Generalized Least Squares (GLS) and Bayesian‘stétiétical methods uere’
used in the third phase tﬁ deveiop a simple yield prediction model that

is statiétically sound.  This technique offers considerable promise for

‘Future worke,

where

" The conditioned form of the Mitscherlich ormonomolecular model below
was the most satisfactory yield prediction model developed for radiate

pine stands in South Australia.

Y

A= Y10

{1- exp(=p(A = 10 oxp(=2,))) }

1 = exp(-p(10 - 10 exp(-a1)))

p = 0.,05271 - 0,006484 ln(Y1D)

a, = -~0,003467 Y1U

1
and where
YA = yield at age A,
A = age, and, -

Y, .= site potential,
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I INTRODUCTION

South Australia has little native forest and of necessity the
Government became interested in plantation forestry over a hundred years

ago, only 40 years after the state was first settled,

By 1920 the Woods and Forests Department realized that radiata pine,

pinus radiata (D.Don.), had the greatest growth potential of the species

tried, and had developed a satisfactory silvicultural system for the
management of the species, During the subsequent economic depression
plantation establishment increased dramatically., . The Depgrfmenttnom o
controls some 76 700 ha of plantation of whicﬁa68 900 ha haue been
planted with radiata ﬁine. This resource is managed on an aﬁproximately
50 year rotation and has -a comparatively even distribution of age classes

as can be seen in Figure I.1.

Prediction of future yield in South Australia is especially critical,
Current prediction techniques (Leuwis, Keéves and Leéch; 1976) indicate
that the increment of the resource is approximately equal to the commit-

" ment to existing industry. The potential for expanding the area of
plantations is very limited because of high land prices and the limited
;fea of suitable soils, Moreover Keeves (1966) has shoun that the

second rotation on any site has, and will have; a lower yield than the

~ first, so that future industry expansion is limited,

The objective of this study was to develop a yiéld prediction model
for the radiata pine plantations‘invthe lower south=east of South
~ Australia so that the Woods and Forests Department can continue to

efficiently manage its plantation resource,

However, the study has wider implications. In 1975 Australia had
some 565 000 ha of coniferous plantations, amounting to 1.3% of the forest
area, Of this area some 394 000 ha or 70% were planted with radiata pine

(Australia, Department of Agriculture, 1976). The proportion of
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4
Australia's wcod production obtained from coniferous plantations has in=-

creased from 6% in 1950/51 to 18% in 1970/71 (Wilson, 1974) and the
FORWOGD Conference (Australian Forestry Cocuncil, 1974) predicted that
the proportion will -be some 57% by the year 2010, On the basis of the
existing plantation resource.alone radiata pine will become the major

commercial forest type in Australia within a relatively few years.

The Mensuration and Management Research wofking Group of thé Stand-
ing Committee of the Australian Forestry Council discussed growth models
for radiata pine at a meeting at baloundra, Queensland, in 1974, The
Group acknowledged that differences existed between regions within
Australiarin the growth of radiata pine, but the Group pointed out that
a detailed analysis of the differences in growth and form bétween‘regions
would lead to a‘better understanding of the species,. and hence lead to
better prediction hodels. The Group concluded that development of a
generalized growth model which recognised such differences wés both

possible and highly desirable,

Because South Austfalia has a long hisﬁdry of plantation forestry
and has probably the best radiata pine greowth data available, this study
could well provide the basis for managers of radiata pine in other areas
- to review their long term piénning models and provide a basis for a
.generalized model, Indeedka secondary objective of this study was to
| investigate the utilify of fhe south—éast model'in relatidn to other
radiata pine areas in South Australia as a precursor toc an investigation

of the further transportability of the model,
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i1 THE DATA

South Australia is the driest state in Australia with only 142% of
the area receiving more than 600 mm of rainfall per year (Bednall, 1957).
Intensive forestry is necessarily limited to these hicgher rainfall aréas,
the lafgest area of which is in the south-east of the state, The main
plantation resource in the lower south~east has been described by Bednall
(1957) and Douglas (1974), and consists of some 100 000 ha of softwood
plantations located in a compact unit as shown in Figure II.1, Some
61 000 ha are controlled by the moods and Forests Department (MOcdé and

Forests, 1976), of which 55 400 ha have been planted with radiata pine.

Elsewhere in the state the Woods and Forests Departmént has some
13 400 ha of radiata pine plantations, ﬁredominantly in five forest
reserves geographically separated from one'another; Bundaleer and
Wirrabara Forest Reserves in the Northern région, and Mount Crawford,
Kuitpo and Second Valley Forest Reserves in the Adelaide Hills or Central
region (Figure II.2). Data from these areas were used to evaluate
whether thé modél developed uéing data from the lower south-east of the

state could be extended to other areas,

Management practice in South Australia

Current managemeht practice in South Australia has recently been
described in detail by Lewis, Keeves and Leech (1976). However, some

features of current practice need to be'reiteratéd here,

In South Austfalia radiata pine plantations are stratifisd into
volume productivity classes which are termed site quality classes,v
volume being considered a more effective basis for stratification than
uppér stand heighﬁ (Keeves, 1970). Site guality assessmant ié based on-

total volume production to 10 cm top diameter underbark at age 9% years.
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Figure II.2
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Inventory is carried out on a five yearly cycle using temporary
.0.1 ha plots. The.intensity of sampling is such that the average
logging unit of some 30 ha has five plots selected at random mithin site
guality strata, In each plot diameters are measured and the trees to be
removed during the next five year period are demarcated, Volumes
available from thinning are estimated using a tree volume equation, with
appropriate adjustment for increment on the thinnings between time of

inventory'and the scheduled year of thinning (Leech, 1973),

A short term (five year) cutting plan is then produced, delineating
where thinning and clear felling should be carried out. -The inventory
data and the cutting plan are also used to predict yield from the
resource some 60 years into the future, using a deterministic simulation
model developed by the author.. The mddel develgped in this study is.
intended to replace the yield prediction modei currently incorporated in

that long term planning maodel,

Permanent Sample Plots

Foliowing the first forest inventory in South Australia psrhanent
sample plots‘were established in 1935 and these have been‘gradually
augmented so ﬁhat there are at present 313 plots in radiata pine plant-
ations in the south~east of the étate, These plots have beeh remeasured

at various intervals and provided the data base for this study.

The plots generally couerithe range of past silviculfural,practice
and, although they do not cover recent changes in estabiishment practice
and early maintenance, they are typical of the major part of the Foréé£
estate that,will contribute to the cut for thg next 20 years or so.
Models developed from these data Cah therefore be used in long term

planning,
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Plots heve generally been measured mcre frequently for basal aresa

and upper stand height than for volume, measurement frequency decreasing
with increasing age, but have always been measured for volume at time of
thinning. The thinning regime for each plot was prescribed at plot
establishment, although some plots have been rescheduled to widen the

t
range of. treatments,

Mensuration practice has remained more or less constant since plots
wefe first established and is described in detail elsewhere (lLeuis,
Keeves and Leech, 1976). However, two aspects of measﬁrement have
changed over times
1 sampling for volume, and,

2 height estimaticn,
These were conéidered further to see uvhether the changes had any serious

implications for this study.

PlotVVUlumes have always been estimated from the volume of sample
trees, individual trees being estimated by the 3 m or 10 foot sectional
'metﬁod (Jerram, 1939) or the Regional Volume Table (Leuis and McIntyre, -
1963; Lewis, McIntyre and Leech, 1973), Thus any variations in form
have been taken into account in the esﬁimated plot volumes, Sampling
intensity and the method of selection of Samhle trees Have-changed
gradually over tﬁe years, Initially arithmetic mean tres methods
. (Jerram, 1939 ) were used, changing later to the use of Jolly's»(1950)

- volume-basal area-line = . and evolhing to‘the current stratified
randon sampling frame(based on the volume basal area line)developed by
Keeves (1961).» Nevartﬁeless, analysis of some 32 plots where all trees
were measured by the 17 Fdot sectional methcd (the data Keeves ueced)

- indicated that although the early volume estimates were somguhat less

precise than recent methads, they were unbizsed (Keeves, PSTS,COMM, )a



1M
Initially mean dominant height was estimated. The current defin-

ition of 'predominant height! (Lewis, Keeves and Leech, 1976) has only
been in use since 1962, This change has more serious_consequences than
those for volume because the differences between the two measures may be
substantial, Estimates of predominant height were available fof some
Elots prior to 1962 but their precision and biaswere unknown, The
estimates wére considered satisfactory for the detefmination of form

estimates but were considered unsafisfactory for the development of

height prediction models,

" VARIABLES

~ As in most studles of thls klnd spannlng long perlods of tlme, the

data available dictate the. varlables mhlch can be uaed in the model,
Yield

The»objECtiverf a yield mudel is to p:édict the~§tiliéable‘volumeb
of woad that can be takan from a 31te. - The utiliéable volums depends '
on the volume avallable -and the volume lost or wasted in logglng, and f
this lose or wastage varies con31derably dependlnc an the equ1pment
used, ,However, thls,study ;s restricted to_estlmatlng the valume
available, It:is’enuisaged that separate studiés will:be.cérfiedvout ,'
from time tb time:to détarmine or reﬁisa,ﬁhe‘volume.lost oriﬁasteaiin

~ logging.
~ The Qolume aVailabié has,béén defined as'including both standing
volume and the volume lost due to mortality and thinning, measured~‘

underbark in cubic metres per hectare tec a 10vcm,top‘diameter.j
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Age

Rge is generally considered to be the most important independent
variable in growth and yield studies (Buckman, 1962) and was the only
independent variable in many of the earller models. In South Australia

»plantations are establlshed in winter using one year old seedllngs,
however the age of the plantation is taken as the number of years sincs
planting out, ignoring the period in the nursery, All permanent sample
plot data were measured in the period betuween late May'andieerly |
Septembef? with the measurement program starting in the same locality
each year and orogreseing in the same seguence so that measurements in
any plot were generally mace in the same month each time. The seasonal

fluctuation in growth within each year (Pawsey, 1964) can therefore ke.

ignored,

Site potential

'*Site quality assessment is earried out in South Aestralia inuthe
summer when the stand reaches age 9% years ; however, as the plots were
all measured in wlnter the base age for this study was assumed to be
10 years. In this study the total volume yield underbark at ageb-'vv
1D years (Y1D) in cubic metres per hectare to a 10 cm top dlameter was
used as the»deflnltlon-of site potential, The relatlonshlp between
site potential (Y ) and site quallty from the age 9% aeeesSment is

shown in Table ITe1e - - e

For olotsvwhere therevuere no measurements‘at agevjq,'Y10 was
estimated by linear interpolation, oT if'tnis‘mas not'possible; by
extrapolation. The extranolation wasrbased onbthe auetage of the Firat
two valume increments,available and was confirmed by eomoaring eetimated‘
- Yﬁo,uith extrapolation using Lemis's yield_table (Leuis,_Keeves'and
'Leeeh, 1976), and by inspection of the basal areafaoe'trend; ‘many of the

‘plots having been measured for basal area before volume measursment



Table 11,1
Relationship betweén
site quality and site potential
Site potential (Y,.)
3 10
Site quality m~/ha to 10cm top
diameter underbark
SQ I 273
sqQ II 223
sq 111 175
5Q 1V 131
SQ Vv 80
5Q VI 37
5Q VII 7

13
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commenced,

Stand density

Indices of stand density inevitably raise issues concerning
definition and measurement (iLeech, 1973), however in this study the
choice of a variable to use as an index of stand density was restricted.
There was no point in using indices based on such variables as standing
basal area or upper stand height because such variables change»contin—
uously with ége and require a separate’model to be developed for predic-
tion of future density., Only two of the variables available seemed

appropriate, stocking and standing volume.

Stocking, the number of trees standing per hectare, has the advantage
of being readily measured in the field, but is not entirely adequéte as a
index of density (Leech, 1973), Although not so eaéy to measurse,
standing volume is measured on all permanent sample plots and can
readily be estimated for inventory plots. Stending volume seemed’likely
to provide a better index than number of trees so both these variables

were tried in. subsequent analyses,

Thinning

The description of a thinning regime can be separated into three

_ parts (Lewis, 1959; Ford-Robertson, 1971).

1 Thinning type; indicating the categories of trees to be removed

~in the thinning based on size or crown classification. -

2 Thinning grade; indicating the quantity to be removed, expressed

in terms of number cf trees, basal area cr volume.
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3 Thinning interval; indicating at what stages in the development of
fhe stand these removals are to be made. This is generally
expressed in years although it could be expressed in terms of

volume or basal area grdwth since the last thinning.

The thinning type practised in Scuth Australia has for many years

been essentially a thinning from below with all suppressed and sub-

dominant trees being removed as well as a proportion of the co-dominants

and dominants tc help space the trees. Indices of thinning typé are
generally ratios of either mean tfeé diameter (Lewis, 1959; Bfaathe,
1957; Joergensen, 1957) or volume (Lewis, Keeves and Lesch, 1976),‘0f |
the trees removed from the stand to those either before or after
thinning. Within the auailable data the range‘of thinning type was
quite narrouw (if thinning type was defined as fheAratio of'the mean diam-
eter of thinnings to the mean diameter beforévthihning, the mean thinning
fype was 0,92 with a standard deviation of 0.04), and thus thinning tyﬁe

was not included as a variable in the subsequent analyses.

The grade of a thinning is a measure of the change in ﬁompetition 
level due to that thinning. Gfade is commonly specifigd in terms df
either residual basal afea (Gentlergz_glf, 1962; Robinson, 1968) or
residuax'number of trees (Lewis, 1959, 1963) and in this absolute form

is in essence an index of stand density which has already been discussed.

~ Buckman (1962) considered the more logical measure to be the proportion‘

of the forest cut either as volume, basal area or number of trees per

unit area. This relative form provides a measure of the shock that the

~

stand has suffered in thinning and should obviously be based on the same

variable as stand density.

Thinning interval is defined as the number of years between thinnings.

Nbrmai South Australian practice is to thin SQ I and II stands every five

- years, SQ III every six, SQ IV and V evéry sevén; and SQ VI and. VII every.

eight to ten years depending on the health of the stand. Logging
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practice generally keeps within one or two years of this ideal, Perm-
anent sample plots include a someuhat wider range of thinning interval

than normal plantation practice,

Soil

The soils of the squth-east region of South Australia have been
described and typed by Stephens (Stephens et al., 1941) who conducted a
detailed soil survey of much of the forest area. Tﬁ:ee soil profiles
have been desdribed on all permanent sample plots and have been allocated
to these soil types with three depth phases superiméosed. For other
regions the soil profiles were allodated to a soil type on the basis of
a number of different surveYs, but the soil types generally reflect

morphological differences on a broader scale than the south-east SUTVBY.

Farm

When considering the possible effect of form on increment or yield
the differences between form factor and taper need to be considered;
both being related to different>aspects‘0f the concept of form.‘ A
number of aiternative stend based indices of form were available based
on standing basal area (mz/ha) and a ﬁeaéure of upper stand height,
predominantiheight (m). These indices are'crudeiproxies " for ths more

commonly used tree based indices, but were the best available,

1 ‘Stand form factor, the ratio of standing volume ta the product of

basal area and predominant height.

2 Stand form factor at:age'10, possibly an indicator of differences
between soil types or regions because it is unaffected by thinning

and is age invariant.

3 Relative stand form Féctor, the ratio of current stand form factor

to stand form factor at age 10,
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4 Average stand taper, the ratio of mean tree diameter to predominant

height, mean tree diameter being the diameter equivalent to the mean
basal area, This was considered more likely to vary between soil
types than stand form factor as cn some heavier soils higher than
average basal area is accompanied by lower than average predominant

height,

5 Average stand taper at age 10, possibly a better index than average
taper because, as with form factor at age 10, it is age invariant

and independent of thinning.

6 Relative stand taper, the ratio of average stand taper to average

stand taper at age 10.

Where data at age 10 years were not available, interpolated or

extrapolated figures were used,

Other sources of variation

In discussing tree growth in relation to the environment Gaertner
(1964 ) summarised the literatﬁrs on the effect of nutrition, moist&re,
temperature snd various aspects of light., - He and Glock (1955) cited
considsrable.svidenpe of correlation betﬁeen rainfall snd growth, work
supported by Fielding and Millett (1941) for radiata pine, There are:
few meteorological stations in fustralia with records of temperature and
hours of suﬁlighf, snd even these seldom cover the temporai'range of the
forest growth data avsilable for this study., Investigation of long
term rainfall records revealed many anomalies and»discontinuities which
made it impossible to develop a useful rainfall index for this study.
Moreover, thsAStations are too sparsebto enable rainfall fo be estimated
for each plot. In view of tﬁis lack of suitable data, climatological

variables were not included in this study.
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Variables reflecting man-made influences such as nutrition and tree
breeding were not available in a form suitable for inclusion in these
analyses., This is clearly an area which warrants urgent attention in
the future, since future yields will be affected by these influences.
However, their omission‘uas not critical to this study as the bulk of
the present plantation estate was not established from seed orchard

stock and has not received intensive treatment with fertilizers,

THE DATA BASE

The data were extracted from manually maihtained perﬁanent sample
plot registers and files and were coded for punching onto cards, After
the data were punched and veeified a program developed by the author
was used to check the data as rigorously es possible, finally producing
appropriately formatted data files and a facsimile of the register.
Painstaking reconciliation of this register with the manually maintained
register, resolving any remaining sources of difference or ambiguity,

ensured that the data were as error free as possible,

The data were largely measured in imperial Units,.the conversion to
metric being made in 1973, The data base thus included metric meaeure-
ments and metric conversion of imperial measurements, eut careful check=
ing reduced potential errors from this source to e‘minim;h}

The data are summarised in a number of tables in Appendix 1.

'Appendix‘1.1 summarises the complete data base, Appendix 1.2 the eoil‘
types, and Appendices 1.3 to 1.6 the different data sets'ueed during

the anelyees.
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ITI STATISTICAL METHODS

Introduction

The estimation of the relationship between one variable and a

- number of others is a common problem in forestry and is generally
accomplished by the use of multiple linear regression analysis using
the 'Ordinary Least Squares' (0OLS) technigue, Multiple regression
requires a model with a linear structure, the linearity referring to

the copefficients or parameters of the independent variables,

J=k
y; = :z: by X; 5+ € ' | (I11.1)
3=1 -
where
Y is theni'th cbservation of the dependent variable,
(i=1.....n),
‘xij is the i'th observation of the j'th independent variable,
(i=1evuean, d=Tereaek),
b. is the j'th parameter to be estimated, (j=Tesesek),
e, is thé error term for the i'th observation,
n is the number of ﬁbservations, and,

k 1is the number of parameters,

The linear model can be stated in matrix form as

Y=XB8+E . R (111.2)
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OLS is widely psed to estimate the parameters of linear models and
has been developed and discussed in detail by many authors including
Kendall and Stuart (1961), Johnston (1963), Goldberger (1964), Drapef
and Smith (1966) and Theil (1971), If the analysis 0% a mndel violatés
any of the assumptions that undérly OLS analysis, other tschniques may
be more appropriate, These technigues includeftuo stage least squa#es
~(25L8), generalized least squares (GLS), the use of instrumental var-
iables, lagged variables, Qeighting and:dummyvvariables. Hobever, oLsS
generally représents the best stabting.point'far an} analysis, providing
initial results which can'be used to test whether the model conforms with

the underlying assumptions.
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Linearity is often too restrictive a requirement and models with a
nonlinear structure may need to be examined. The general form of a

nonlinear model can be represented thus:

Y = f(B,X) + E (111.3)

uhere the f operator is used to denote a function nonlinear

in the parameters B, and where the notation is as for Equation III.2,

Sometimes a nonlinear model can be transformed (for example by
taking logarithms) to obtain a form which is linear in the parameters,
These intrinsically linear models, to use Draper and Smitﬁ's (1966)

terminology, can be estimated in the transformed state using 0OLS,

In general, however, OLS cannot be uéed to estimate the parametsrs
of nonlinear medels, The normal eéuations which result from different-
iating the objective function aré not linear in the unknown parameters,
and no exact analytical solution for these equations exists, An
iterative approximate solution must be employed. Even so, there is no
single algorithm which will unfailingly yield satisfactory estimates

of the parameters of nonlinear models,

Nonlinear models uhich are not intrinsically lineaf constituted a
major iﬁterest'in this study.' The étatistical thsory relafing'to
parameter estimation for these models is not well developed, However,
the results of the linear model thsory often seem applicable to them, at
leaét}to an acceptable order of approximation (Goldfeld and Quahdt, 19723
Box and Tiao, 1973), and hence it sesmed appropriate to frame this revieu

around the linear theory fesults, which are well established and coherent,
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PROPERTIES OF ESTIMATORS AND PREDICTORS

The following propserties (Kendall and Stuart, 1961; Graybill,
1961; Wonnacott and Wonnacott, 1970) are generally sought for linear

estimators:

1 An estimator should be unbiased. An unbiased estimator is one
that on average has the same value as the true estimator, For

e .
example bj is an unbiesed estimator of bj if

E(bj) = bj ' ' | (111.4)

where

E is the expected value of the parameter,

Bias is defined as

B = E(b.) - b, . (111.5)
. J J ‘
J
where
Bb is the bias of the parameter bj'
J
2 An estimator should be efficient, When comparing two alternative

: A
estimates of bj’ 33 and bj then the most efficient estimator is the
one with the lower vabiance. The ratio of the variances provides

a measure of the relative efficiency if the estimators are'unbiased.

A . o
The relative efficiency of bj compared with bj is:

5, | o
R = —02;-‘-— | ~ (111,6)
Y ‘
J

where

R is the relative efficiency, and, .

2 ' : 2 2
0'/5 is the varieance of the estimator /l:?j, G-@j>0' /Bj.
J ' '

The most efficient estimator is the minimum variance estimator as by

definition thers can be no estimator with a greater relative sffic-

iency.
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3. An estimator should be consistent. Estimators are said to be

consistent if

2
E(Gj - b)) >0 (111.7)
and as
| 2
E(B. - b))% = A + Ob, (111.8)
J J bj J

an estimator bj is consistent if

Lim B = 0 (111.9)
: J
n——soco
2 : ,
Lim o’b = 0 (111.10)
J
N— oo

If only the bias approaches zero then the estimators are said to be

asymptotically unbiased, but not strictly cohsistent.

4 An estimator should be sufficient., - An estimator is said to be
sufficient if it contains all the information in the set of obser=-
vations regarding the parameter toc be estimated (Fisher, 1921,

1925; Deutsch, 1965).

QLS estimators possess these properties pfovided that the data and
model conform with‘the assumptions underlying tclassical normal linear
regression', to use Goldberger's (1964)‘termin§logy. Under these con-
diticns OLS estimators are also identical to the maximum likelihood
estimators., 0LS estimators also provide pfedictoré which are best

(i.e. minimum variance) linear unbiased predictors (Theil, 1971).

For nonlinear models with independent, normal and identically
distributed errérs, OLS estimators are likewise identical to the maximum
likelihood estimators and are therefore asymptotically efficient, con~
sistent and sufficient es£imators (Goidfeld and Quandt, 1972), However,
~unlike linear models, the smail~sample properﬁies or theée estimators are
not well established, Moreover, in contrast to the exact salutions

available for linear models, these prcoperties are further complicated by
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errors of estimation which may be introduced through the iterative
~ approximate process of soluticn, Thus the properties of predictors

based on small-sample OLS estimators of nonlinear models are not well

defined,

MISSPECIFICATION

The assuhptions underlying the use of OLS estimation for classical

normal linear regression models are as follows (Goldberger, 1964):

1 The variance should be homogenecus over the range of the .

dependent variable,

2 The error terms should be independent of one another.
3 The error terms should be normally distributed,
4 The rank of the matrix of observations should be equal to the

number of paramefers to be estimated .and less than the number

of observations,
5 The variables should be measured without érror.
6 The modei should have the borrect structure and include all the

.relevant variables, but no others,

If OLS estimation methods are used for a model that is misspeéified
in terms of these assumptions then the estimates may be biased; ine-

“efficient and/or.inconsiétent depending on the form of the misspecificatidn,

as the following sections indicate.

Homogeneity of variance

The variance of the error term is assumed to be independentbbf the
independent variables and homogeneous (Kendail and Stuart, 19613 Johnsten,

19633 Wonnacott and Wonnacott, 1970),
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Il

E(E-g’) 6° 1 (111.11)

where

I is the identity matrix of order mxn,

E, is the errofrg?-the i’ '+ observations, and,
SN
0’2is the variance,
If this assumption is violated then the estimators are unbiased but

inefficient (Johnston, 1963).

To test the variance for homogeneity the data are generally
partitioned and the variance of each cell calculated. There is geﬁeral
agreement (Sokal and Rohlf, 19693 Acton, 1959) that Bartlett's test of
homogeneity (i937) is better than either Hartley's (1950) or Cochran's
(1941) test although Actonvconsiders that none of these’tésts is robust,

all being sensitive to non-normality in the underlying distribution,

Heterogeneity seemed most likely to arise between different plots,
and within any one plot the variance might also increase with increasing
age or with decreasing site ‘potential, As ihsufficient data were .
available to test for heterogeneity by age within plots, the first test.
was by plots alone. The data were then poecled and partitioned into age
and site potential cells and the cell variances tested for heterogeneity.
As a third test the data were ordered on thé expected value of the
dependent variable and divided into approximately equal célls in a

general omnibus test for all other possible sources of heterogeneity.

To overcome heterogeneity, observations are generally weighted by
the reeciprocal of the.sqﬂafe root of the estimated variénce (Cunia, 19643
Freese, 1964; Johnston, 1963). If heterogeneity exists and a suitable
estimating function forvvariénce cannot be developed theﬁ extensiﬁn to
more advanced estimation techniques than 0OLS may be necessary, but the

gain in efficiency must be balanced against the increase in the complexity
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of the estimation technique.

Serial correlation

The error term in the linear model is assumed to be unbiased,

that is
E(ei) =0 (111.12)
and as well the error terms are assumed to be independent of one another
(Kendall and Stuart, 1961; Graybill, 1961).
E(eiei‘) =0 for all i # it ‘ (111.13)
If the latter assumption is violated then the OLS estimaters will be

inefficient (Johnston, 1963).

Serial correlation most commonly occurs in time series.due to mis-
specification either by omitting variables (wonnacott aﬁd wonnacoft,
lQ?U) or by selecting the wrong model structure (Cochrane and Orcutt,
1949), Errors in the data are another possible source of sériai
correlation (Cochrane and Orcutt, 1949) but these seemed unlikeiy_to be
of importance in this study, As noted garlier thevdata for this study
were all collected at the same‘time of the year thus eliminating one

source of seasonally induced serial correlation.

The most commonly used test for serial correlation is that of

Durbin and Watson (1950, 1951).

The statistic is

i=n

. 2
D(es=e5y)
d= =2 o (111.14)
i=n :
E (e )2 . .
(e; )
1=
where
n is the number of observations, p

ei is the error of the i'th observations, and,

d is the test statistic.
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This test in its original form is not an exact test but provides upper

and lower bounds to an inconcluéive zone for from 15 to 100 observations.
Because it is not an exact test a number of authors have developed nom=
inally exact tests of which the one by Theil and Nagar (1961) is probably
the most commonly used, In their latest paper Durbin and Watson (1971)
concluded that many of these exact tests are "too inaccurate for practical
use", and further refined an approximation they had suggested in their

earlier papers. However, this also seemed inappropriate for this'study.

In this study‘the number'of observations from each plot was limited
to 16 or fewer, generally 10-13. Although serial correlation wés
tested by plots where possiblé, the results were seldom conclusive
because of the low number of observations. The test was also carried

out on the pooled data, although there is no adequate test for serial
correlation in these circumstances (Heathcote, pers.comm.).  The plots
in the test data were ordered by site potentiaL, and the observations
within each plot ordered by age. The d statistic calculated on this
pooled data is biased slightly by the inclusion of the difference
between the last observation of one plot'and the first of the next and
this difference is unlikely to be serially correlated, There were too
many observations inrthe podled data for the tabulated upper and lower
bounds to be dsed, ahd the extfa'calculation necessary for the Durbin
watsonoryroximation'of the 'exéct' statistic seemed inappropriate in
view of the inadequacy of‘the teét for the pooled data. _The'critical
values of‘the statiétic were therefdie calculated by the technique’bf
Theil and Nagar (1961), in the absence of better alternétives. For the
individual plotidata the tabulated Durbin and Watson statistics were

. extrapolated uwhere necessary.
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Normality

When making inferences about model structure using statistical tests
of hypotheses the error tefm is assumed to be normally distributed.
Normality could be tested using the Chi-square statistic, but this test.
is not specific in that it fails to indicate whether skewness or kurtosis
is the problem. To overcome this problem Sokal and Rohlf (1969) and
snedecor and Cochran (1967 ) describe techniques for estimating moment
statistics of skewness and kurtosis. These two statistics are then
compared wifh t (two tailed) for infinite eegrees of Freedom.vi The
Shapiro=Wilk statistic (Shapiro and Wilk, 1955) is more eowerfui
(Shapiro, wilk and Chen, 1968) than these other statistics but the fests
of relative power indicated little gain when the number of observations

increased past 50.

Tests of normality could not>be carried out by plots because there
were too feuw observafinns even for the‘Shaeiro—wilk test. ‘For‘the
pooled data there were more than 100 observations and in these. cases the
Shapiro=Wilk test is difficult to apply and perhaps even dangerous
(D'Agosting, 1971). The moment statistics were therefore selected as
the feet statistics ﬁecause they indiceted the type of departure from
normality and were relatively powerful for the sample sizes used in

this study,

Rank

The rank of the matrix of observations must be equal to the number
of parameters to be estimated, that is, no exact linear relationship can
exist between any of the independent variables. The rank must also be

~ less than the number of -observations.
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In general, these assumptions are easily met by careful definition
and selection of the set of independent variables. However, marked
collinearity between any two independent variables gives rise to

parameter estimates with very high sampling errors, Thus this condition

also needs to be avoided,

Measurement error

OLS assumee that the variables are measured without error (Kendall
and Stuart, 19613 UWonnacott and wonnacott, 1970)e If the dependent
variable is measured with error, but the error is unbiased, then the
variance of the error term for the model is inflated accordingly,

This problem‘is therefore of comparatively 1ittle concern, although the
increase in the error variance may obscure relationships between the

dependent and independent variables,

Errors of measurement in the independent variables may give rise

to more serious problems unless;

-1 the errors are unbiased, and,"
2 the data to be used in subsequent prediction are measured

invthe same way as those used to estimate the parameters,
Under these circumstances 0OLS estimators will give unbiased predictions
(Wonnacott end wonnacott, 1970), even though the estimators are biased
relative to those appropriate to tne independent variablee when measured

-without error,

The measurement practice used in the development of the data base
has been deecribed by Lewis, Keeves and Leech (1976) and in part by
Leeche(1973). Although measurement errors exist, every possibie effart
has been nade to reduce the incidence of tnese to a minimum by care and
by strict adherence to standerd proceduree. The effect of measurement

error was unlikely to be important and was ignored,



Structure

There are three main forms of structural misspecifications:

1 choosing the wrong model structure, for example by using the
logarithm of the dependent variable whefe that transformation
is inappropriate to the model,

2 omission of an explanatory independent variable, and,

3 inclusion of independent variables that are irrelevant,

The first type of structural misspecification can obviously lead
to an inefficient predictioh model even though the estimators themselves

are efficient.

If relevant independent variables are omitted, either by mistake or
because data are not available, then the estimates of the remaining
parameters are likely to be biased and inefficient (Wonnacott and

Wonnacott, 1970).

If irrelevant independent variableé are iAGluded then the estimators
should be unbiased, but they will be inefficient because there are fewer
degrees of freedom in the residuals'used to estimate the variance,
Beéauée of the 'noisy' parameters the model is likely tc be an errati§

predictor, especially when used ocutside the range of the originéi data,

Although more complex tests of specification have been developed
(Ramsey, 1969, 1974), a simple specification test was usedvin this study.
The deviates obtained when thebmodel was fitted to independent t;st data
were regressed against a second order polyrnomial in each of the indepen-
dent variables, An analysis of variance was then used to determine‘
whether or not the regressions Qere significant and the model mis-

,spécified.
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ESTIMATION

Estimation of the parameters of linear models is relatively simple
because an analytical solution exists (Kendall and Stuart, 19613 Theil,
19713 Draper and Smith, 1966), Algorithms which incorporate this
technique have been implemented in a number of computer programs for
multipla regression analysis and two well=known programs REX (Grosen-

baugh, 1967) and SPSS (Nie et al,, 1975) were used in this study.

For nonlinear models the objective function cannot be minimized
analytically and a number of alternative algbrithms—(GoldFeld and
Quandt, 19723 Sadler, 1975) have been developed to'approximate the

minimization iteratively,

The algorithms commence from feasible starting values for the
parameters and aim to reduce the objective function by successively

- changing the parameter values until a minimum is reached,

There is no certainty that a particular algorithm will be satisfac-
tory for all models and all data sets, Goldfeld and Quandt (1972)
invéstigated a number of alternative algorithms, testing them against
different models and data sets in an effort to compare their effective-
ness, No one algorithmvwés the most efficient for all‘the examples,
but two particular algorithms performed‘consistently well, Refined
versions of these algorithms are implemented in a nonlinear parameter
estimation program developed by Bard (1967); the Gauss—Newton methed
(Eigenpress and Greenstadt, 1966; Carroll, 1961), and the Davidon~

Fletcher-Powell method (Fletcher and Powell, 19633 Sadler, 1975).

As the algorithms are iterative it is necessary to use terminating
criteria to stop computation at an appropriate end point, Three

criteria are appreopriate,
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1 The change in the parameter estimates between successive iterations

should be within a preset tolerance,

Ab,
i

< d1 ('le + d2) for the i parameters (111.15)
In this criterion (Marguardt, 1963).d1 is the desired tolerance
for the parameter and d2 ensures that if the estimated parameter
is close to zerc then computation will stop. Setting

d1 = 0,00001 and d2 = 0.001 has been found to work well in

practice (Marquardt, 1963),

2 The relative change in the objective function betﬁeen iterations
should also be within an a?bitrary tolerance; commonly Marquardt's
criterion. This is especially useful when the responéeAsurface
of the objective function is relatively flat for changes in the

parameters,

3 The number of iterations should be less than an arbitrary
maximum so that if the other criteria fail because the algorithm

cannot converge that particular model then computation will cease,

To enéure that the algbrithm has converged, that is, a trué
minimum has been reached (a stationary minimum, bﬁt not necéssarily
a global one), the Hessian matrix (matrix of second order derivatiﬁes
of the function) should be positive definite (Morrison, 1976). There
is no guarantee fhat the minimum is a global one, but careful specifica=

tion and testing of the model can reduce any doubt in this regard.

' The nonlinear parameter estimation program of Bard (1967) Qses
vNarquardt's’(1963) criterion for convergence and pfouideS'thGrmation
éufficient té show whether or not the Hessian matrix is positive
definite. The prbgram is Flexibie‘and relatively easy to use and waé

therefore used in this studye.
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A uéer supplied subroutine is required to evaluate the function
and its partial derivatives. For most growth models the partial
derivatives are complex so an additional subroutine was developed to
evaluate the partial derivatives numerically. This reduced the com=
plexity of the programming changes necessary between models. The

technique adopted is detailed in Appendix 2.

TESTING
Three different types of tests were Qsed in this study:

1 Hypothesis tests to determine whether one model is better

than another or to determine whether a model is internally

cqnsistent.:
2 Tests of the assumptions underlying ths model,
3 Tests of the model as a predictor.

~ Hypothesis testing

In developing a satisfactory model it was necessary to discriminate
between models and between alternative forms of each model by testing a
null hypothesis against its alternatiﬁe (Johnston, 1963; Draper and
Smith,.lgﬁﬁ; WOﬁnacott and wohﬁacott, 1970). Two important considera-
tions in deciding houw the alternative hypotheses should be tested were
1 the choice of the test statistic, and,

2 the choice of the significance level.

Analysis of variance based on the F statistié or tests using the
t statistic were used to test hypothesesiconcefning alternative forms
- of a particular‘linear model; sﬁch as the inciusion ar otherwise of an
additional parameter, These tests are well known and extensively

documented {e.g. Lebmann, 1959),
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For nonlinéar models the situation is not so clear cut, As noted
earlier the small=-sample properties of OLS estimators of nonlinear models
are not well established., Moreover, estimates of the precision of the
parameter estimates afe generally based on a linear approximation, which
may or may not be sufficiently accurate (Guttman and Meeter, 1965),
depending on the particular form of the model and the characteristics:

of the surface of the likelihood function.

Nevertheless Gallant (1975), who studied models similar in form to
those of interest in this study, recommended the use of a test statistic
C, analogous to the use of the F statistic in anaiyses of variance for

linear models.

2 ;.2 , B o
c = o, -/02 : (111.15)
where 0’? and 0'2 denote the maximum likelihood estimates of the
variance of %he respective error terms in the two altermative
. 2 2
models, 0'2> G .
The statistic is tested against-the critical values of the

statistic C*.

C*x=1-1 rp/(n-j) \ - (111.16)
where ,—9‘ '4&£;§ cq pw oaes

Fp = upper 100p% points of an F distribﬁfion,

i = number of parameters of interest,

J = the total numbef of parameters, and,

n = the total number of observations,

- Again, following Gallant's (1975) work, the (approximate) t stat-
istic was used to test hypotheses regarding the inclusion or otherwise

of individual parameters in a particular model.

Tests of hypotheses involving disparate families of both linear and
nonlinear models were achieved by comparing the predictive properties of

the models using independent test data, This seemed more apprepriate
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than the complex tests of Cox (1961, 1962),
The level of significance to be used in hypothesis testing must also
be carefully considered, bearing in mind the possibility of both Type I

errors (rejecting a correct null hypothesis)and Type II errors (accepting

a false null hypothesis) (Lehmann, 1959).

Because. there was little difference in the effect of each type of
error it was desiraﬁle to balance the probability of each type of error.
As the probability of a Type II error depends on the significance level
selected (the probability of a Type I error), the model and the data, it

was clearly impossible to set a priori the probability of a Type II error

with any confidence,

When the'dependent variable was yield‘and the data were pooled then
p=.01 was selected‘as the appropriate level, When iﬁcrement was the
deﬁendent variable, or when the model was fittgd to individﬁal plct data,
then the lower level of p=,05 seemed more abpropriate. These levels
were used to test hypotheses both within and betﬁeen-models. When
assumptions in the analysis were tested and when the model was evaluated
as a predictor then p#;01 was used to ensure consistency between different

developmental lines,

Testing the assumptions underlying the analysis

The models were tested'uéing’independent tést data to ensure that
the assumptions underlying the analysis were not vioclated, Bartlett's
(1937) test was used to test that the variance'ofvthé error term was
homogeneous. Three different teStsiweré carried out on partitioned
data: | |
1 data partitioned by ploﬁs;

2 data partitioned by age/site potential cells, and,

3 data ordered on the estimated value of the dépendent variable
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and divided into approximately equal sized partitions,.

The Durbin-Watson d statistic (Durbin and Watson, 1950, 1951, 1971)
was used fo test for serial COrrelation; The test was only applied to
the final model selected within each family of models, The data rarely
allowed the test to be by plots, so in general the data were pooled,

ignoring the slight bias that this may have introduced,

The moment statistics of skewness and kurtosis (Sokal and Rohlf,
1969; Snedecor and Cochran, 1967) were used to test that the errors

were normally distributed, an assumption necessary for hypothesis testing.

Testing predictions

One commbn criterion for a suitable predictor is that it be un=
biased over the whole of the regression‘surface. To test this the
independent test data were partitioned and within each partition a
t test was used to see whether the mean deviate was.significantly

different from zero.

Two different ways of partitioning the data were used for these
t tests, Data were partitioned by plots in an attempt to discern

whether there had been misspecificatidn in relation to plot variables

or error characteristics., Further subdivision of the observations

within plots intoc age classes waS'not’possible because of the small
number of observations available in each plot, Hence the data were
pooled ahd partitioned into site potential and age:classes, in the hope
that this would enable problehs of misspecificétion relating to age to

be discerned, Site poténtial was subdivided into three classes, based
on boundary values of 200 and 100 ms/ha; These values corresponded
closély to the bouhdary values of SQ II and I1I, and SQ‘IU and V respect=~
ively.  These data were Fu:ther'subdivided into age classes of 11=-16,

17=-23, 24~30, 31=39 and 40-50 years, the boundary values being chosen so
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that the classes spanned roughly equal ranges of yield,

Comparisons between models developed with different depe;dent
variables (yield, periodic increment, transformed yield) were achieved
by evaluating each model as a yield predictor on the independent test
data,. Other things being equal, the best model was selected from those

which were unbiased, according to the standard deviation of the deviates,

Summary of testing procedure

The statistical methods adopted can be summarised as. follouws,
1 For parameter estimation of nonlinear models convergence was

confirmed by checking.that the Hessian matrix was positive

definite.
2 Discrimination between alternative hypotheses was by:
i Gallant's (1975) test eon the variance ratio to test

betpeen nonlinéarvmodels, or an analysis of variance
for linear models, and,
ii t test on each parameter in turn to test the model for
internal consistency.,
3 The aésumﬁtion underlying the analysis was tested on
independent test data.
.i ‘Bartlett's test (1937) was used to test for homogeneity

of variance:

a data partitioned by plots,
b data partitioned by age and site potential, and,
c data ordered by the estimated value of the dependent

variable and paftitioned into approximately equal

cells,
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Durbin and Watson's (1950, 1951, 1571) statistic was used to

test for serial cérrelation on dats ofdered:

a by plots if there were sufficient observations,
or
b pooled, ignoring the slight bias this introduces if

there were insufficient data to test by plots.
Moment statistics of skewness and kurtosis (Sokal and
Rohlf, 19693 Snedecor and Cochran, 1967) were used to
test for normality,
As a further test of misspecification, the deviates were
regressed against a second order polynomial in each 6f

the independent variables.

The suitability of the model as a predictor was evaluated with

independent test data by the following tests:

i

ii

the mean deviate for each plot was tested against t to
determine whether misspecification had occurred,

The mean deviate for each age and site potential cell was

'tested,against' t to determine whether the model was

biased, especially with respect to age,

Alternative prediction models which were gtherwise satiéfactory

were compared by using them to predict yield for the observations

in the independent test data,

deviation of the deviates was selected,

The model with the lowest standard
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IV GROWTH AND YIELD MODELS

In the biological literature the relative importance of statistical
analysis and biological inference in developing models is the subject of
much debate, ‘IF a model is developed on a purely statistical basis
without any dedﬁctive reasoning as to the form of the model, then it is
likely to be satisfactory only when used'in very restricted situations
where the data are similar to those used in the estimation of the model.
Under these circumstances extrapolation is dangerous and so are infer-
ences at thé extremes of the data range, On the other hand if no
statistical analysis is used then the model will be of lesser practical
value because there will be no indication of accuracy or precision,
Kowalski and Gﬁire cautioned (1974):

"...if must be emphasized that finding a function which

makes biological sense has much more to recommend it than

searching for a function that will provide only a close

mathematical fit,  Mere goodness of fit is no justification

for adopting a given function since several functions may

fit the data equally well." '

In principle both biclogical and statistical inference should be
used to develop a model o that it‘wili be useful in a wide range of

-~ practical situatiohs; In practice this may be difficu;t to carry out
successfully, Forest growth-is the result of the complex interaction
between many different and sometimes inter-rélated prﬁcesses. ~ Many

~of these processés have been modelléd éuccessfully; but‘it can bé
difficult td link them together into one coherent model. It is

‘generélly possible to use only relatively simple bidlogicai inference
and this may tend to limit the formulation of biological hypotheses to

very simple approaches,

The pattern of growth can be divided intc three phases, In the
initial juvenile phase both yield and growth rate are initially low,b
but both increase until growth rate reaches a maximum. After this

phase growth rate declines, but at first mean annual increment still
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increases, a phase of relatively vigorous growth that changes into a
senescent phase after mean annual increment culminates, These phases

are shown diagramatically in Figure IV.1.

Figure IV,1 alsc shows that there are two alternative ways of
looking at such a model, the first aé a yield model and the second as
a growth model, If both growth and yield models are being developed
simultanecusly for use in practice then they should be compatible,
compatibility being formally defined by Clutter (1963) as:

"when the yield model can be obtained by summation of the

predicted growth through the appropriate growth periods or,

more precisely, when the algebraic form of the yield model

can be derived by mathematical integration of the growth

model,"

If the growth and yield models are not compatible according to this

definition then two different model forms are being used.

COMPARISON OF GROWTH AND YIELD MODELS

Over the years a number of models havé been developed for predicting
either growth or yield, éome simple some complex, and an initiai review
- of these models was necessary to defermine which warranted estimation.
0f all tﬁe variables affecting growth the most important variable is
undoubfedly agej indéed, in many of the models it is the only indepen=
dent variable.,  This comparison of the various models onlyvconsiders.

‘the effect of age, the other variables are considered later.

A growth or yield model,should in general possess a few simple
characteristics,
1  Yield should be zerc at age zero, or if yield is to an arbitrary
top diameter’theh yieid should be zero at some fiﬁite, ﬁositive
and smali age (AU)‘

2 Increment after AD should always be positive.
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3 Increment should have a single maximum (at age Ai) and after this
age It should decrease as age Increases-
4 Yield should approach a maximum yield (Ymax) asymptotically,

Of course if the data are inadequate or if the model is to be used over

a relatively restricted age range then even these requirements may be

relaxed,

Table 1V.1 summarises many of the models that have been developed
in equation form, including both the growth (derivative) and yield
(integral) equations to facilitate comparisons. For convenience and

consistency some of the models have been reformulated slightly.

Graphical yield models

Graphical yield models have been used in the past in many countries,
and in South Australia they have been used for many years to produce
radiata pine yield tables., The techniques are flexible and easy to
use, but do not allow an éstimate to be made of precision, and they are

clearly liable to bias.. -

The first radiata pine yield table in Scuth Australia Qaé prﬁduced
by Gray in 1931 (Leuwis, Keéves and Leech, 1976)_using the limitingicurve
method attributed by Spurr (1952) to Baur in 1877. This method uses
single or spot estimates of yield to define upper and lower bouﬁds to
yield, these being then divided anamorphically into site botential classes,
As more data became available the yield table was revised by Jolly in
1941 and later by lLewis in a series qf revisions in 1953, 1957, 1960,
1963,v1968, 1970 and 1973 (Lewis, Keeves and Leech, 1976). As trend
data‘bécame available the method changed to the directing curve trend

method attributed by Spurr (1952) to Heyer in 1846,

These carefully derived graphs have been successfully used by the

authecr in simulation studies (Lewis, Keeves and Leech, 1576), More
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Table IV,1
Growth and yield models
Name dy/dA Yield References
i=n-1 izn
polynomial by +iz1ci;\i a4+ _1biAi Mersh (Grut,1970)
Mitscherlich n=-pY (n/b){1-exp(-p(A-A0))i (1910)
1
logistic nY--pV2 (p/h){1+exp(n(A-Ai))} Grosenbaugh (1965)
. Pearl & Reed (1923)
1/m
Nelder (1) nY—pY(1+1/m) ’(p/n)[h% exp(-r;-:(A-Ai))]! {1961)
. (14m) " ‘
Nelder (2) ny=pY (p/n)}14m exp(-nm(A-Ai)) (1962), Austin, Nelder
o & Berry (1964)
' -1
Pearl Reed ) qn_1(A)[qY-bfﬂ k{1+m axp(qn(A))} (1923)
2/3 n 1 3
von Bertalanffy (1)| nY*/ “wpy o E-exp(ugp(A-Ao)ﬂ (1941, 1942)
. 1 .
n T-m
von Bertalanffy (2)| nY"=pY - ﬁ+c1exp(-p(1-m)(A-c2) (1941), Richards (1955),
(Chapman=Richards ) P Chapman (1961)
if m<? and 02=Ao then c1=-1
if m>1 and eo=hy then e1=(m-1)
von Bertalanffy (3)| nY"=py® complex A (1941)
Gompertz cY 1n(Y/b) a exp(-exp(-b(A-Ai))) (1825), winsor (1932)
d
Thomasius complex a 1-exp[rbA(1-exp(cA)ﬂ (1954)
Johnson -by / (c+A)2 a exp(=b/(c+R)) (1935)
Schumacher +bY/ A2 exp(a=b/A} (1939), Clutter (1963),
Sulliven & Cluttsr
(1972), Ferguson &
) Lesch (1976a)
Backmanty ' éxp(a+b(1nA}+c(ln2A)) complex (1943), Prodan (1988),
: Assmenn (1970)
2 28 c2a
Hugershoff a A exp{=ch) = 1-exp(-cA)E4c 3 : Prodan (1968)
c ~
Bednarz E% A(b'1)exp(-cv) %- ln(aAb+1) (1975)
. 2 nm+1
Grossnbaugh complex a+b{exp[(n =1 )u]-nu (1965)
U=exp(=b(A=c)) :
but U can be any function
there

qn(A) is a nth degrse polynomial in age A, whers n is an odd integer commonly 3
Y. is yield at a base age T

complex indicates that the model is readily fitted in the form specified but
less sasily in the other form
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importantly they have been used quite successfully for many years to
regulate the total cut in the profitable state afforestation enterprise

in South Australia to as near maximum as possible,

However, the possibility of bias and the inability to calculate
precision suggests that mathematically formulated models capable of
objectively based statistical analysis may be more appropriate, Given
adequate statistical precision, mathematical models are easier to use
ahd revise for long term yield regulgtion calculations, especially with

the computer oriented methodology now in use.

Polynomial

The polyhomial_is the simplest mathematical form for a growth or
yield model, Providing that the order of the polynomial is high encugh

any functional form can be approximated,

Y = by+b, A+b, A +b, Az;,...+bn A" C(1v.1)
UhEI‘B

Y = yield,

A = age, and,

bU’ b1, b2, bS’ coe bn are the parameters to be estimated.

Although précise unbiased estimates can be obtained for the para=~
meters of a polynomial it is unlikely to be a satisfaétory predictor,
The model is likely to behave erratically at the extremities of the
data and any extrapolation is extremeiy dangerous.b The polynomial
has been used by Marsh (Grut, 1970) and although computationally con-
venient the absence of any ‘explicit biological structure wes sufficientv
to cast doubt on its utility for ﬁhis study. It cannot, for example,

approach a maximum asymptotidally.
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Grosenbaugh

In 1865 Grosenbaugh formulated a complex growth model which included

many other model forms as special cases, The function is

: 2 » nm-+1 »
Y = a+b {exp [(n° = 1)] - nu - (1V.2)

where

[oms
il

exp(-d(Afc)) ) (1v.3)

is often a suitable form for U, but it could be replaced by either a

linear or a legarithmic function, and where,

Y = yield,
A = age, and,
a, b, ¢, d, n and m are parameters to be estimated, or are

preset before analysis,

Grosenbaugh tabulated manyvof the more fre%uently used models
specifying the form of the function U and the particular values of the
parameters which each model implies, His objective was to develop a
framework withih vhich the various special cases could be compared for
a particular data set, His challenge has not yet been taken up,
probably because it makes almost impossible demands on the data and on
analytical technigues, but the concept of defining a general model that

is the starting point of the analysis of a set of data is very appealing.

A computer program to carry out the analyses in the way that

Grosenbaugh envisaged was not available and it was considered impractical.

to develop one in the available time. This studyitherefbre evaluated

only a selected set of models,
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Bertalanffy

In 1941 Bertalanffy proposed a growth model which seems to have a
simplé but-weil founded biological basis, The model was developed over
many years (see also Bertalanffy, 1942, 1957, 1969) and encompasses many
of the models previously developed, The model was developed from a
study of fhe so-called allometric relationships in organisms (Huxley,
1932), attriButed to Snell in 1891. An allometric relationship is said
to occur when the relationship betweén two current attributes (for
example volume (X1), and height Cxi) of an erganism . can be exprressed in

the following formg
X, = aX, , - (1v.4)

This arises from the assumption that in normal individuals of a popu~
lation the specific grcwth rate of one variable has a constant proportion=

al relstionship to the specific growth rate of the other.

dX, dX,, _
ar X¥an (1v.5)

Some objectioné to this model have however been réised. In
particular Haldane pointed out (Laird, 1965% deley, 1932) that if each
part of an organism is allometriéally related to each other part, then
the growth of part of the organism is the sum of a number of exponehtial

expressions, »
 bi '
SEND IR | | (1v.6)

This sum cannot equal a single allometric expression unless the exponents
“(the allometric constants) are the same, This is analcgous to the per-

vasive problem of aggregatioh in econometrics (Theil, 1971), In practice

the problem is generally ignored and tﬁe growth model is assumed to apply

to the aggregate population under study.
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Bertalanffy (1941) based his model on the hypothesis that the

growth of an organism is the difference betwsen anabolic growth rate
(constructive metabolism) and catabolic rate (destructive metabolism),

leading to the general form:

dy m T

95 = nY - pyY - (1v.7)
uhere

Y = yield,

A = age, and,

n, my p and © are the parameters in the model,

Bertalanffy Further‘noted that if Y was expressed as weight then
the catabolic destruction rate could be takeh as being proportional to
the biomass of the organism itself, thus r=1, for many zoological genera;

His zoological research suggested three.groupings of which the first was

the most common:

1 anabolic rate‘proportional to surface area, m=2/3,
2 anabolic rate proportional to weight, wm=1, and,
3 anabolic rate intermediate between the two, 2/3<m¢1.

In spite of the fact that Bertalanffy recognised three groupings for
zoological genera many workers have accepted m=2/3 for other bioclogical

applications without critically examining the inherent assumptions,

Because the simﬁle mﬁdel with m=2/3 did not perform well in other
biological analyses the simple model was 'generalized! to the Chapman-
Richards model (Richards, 1959; Chapman, 1961j Pienaar and Turnbull,
1973) although this-is still a contraction of the general form that
Bertalanffy proposed in 1941;(1)

gy m i - '
g5 = v - pY | A - (1v.8)

(1) Eguation IV.8 is very similar to an equation Verhulst (1844) records
but did not pursue, presumably for practical reasons.,
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Y = % [1 +c, exp(-p(1-m)(A-c2))] T-j-'r’n A (1\1.9)_
where v. -' o

Y = yield,

A = age,

n, p and m are the parameters to be esﬁimated, and, 4 and c, are

the constants of integration such that if c_=A_ the age at which

20

volume growth commences then c1=-1, or, if 02=Ai the age at which

increment culminates then c1=(m—1) provided m#1.,

Three variants of Bertalanffy'!s general model were reqognised For.
this study: |
1 m and r aliowed to float, thé general model,
2 m allowedvto float, r=1, the Chapman~Richards model, and;

3 m=2/3, r=1, the simple Bertalanffy model,

It is not possible to integrate the derivative equation for the
general form except by numerical methods which were inappropriate for this
study (A.Brouwn, Eers.comm.). It could, however, be integrated for certain
values of m and r, but the integral often involves exponential and tri=-
gonometric termsband generally has age as the dependent vériablé; which
is unsatisfactory., The second level model is the most commonly used
form in forestry and can be integrated‘using Berrnoulli's equation

(Appendix 3.1).

There are a number of other models that are submodels of the general
Bertalanffy model although freguently developed independently, often

prior to Bertalanffy's work.

The simplest form is the monomolecular equation (m=0, r=1) also
called the "law of physiological dependence" (Assmann, 1970) which was
first postulated in a forestry context by Mitscherlich (1910) who suggest=

‘ed that by anmenting a growth factor which is limiting, yield does not
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increase linearly with the increased factor, but in proportion to the
difference between present and maximum yield, Parallel derivation to
éhat used by Bertalanffy suggests that for this restricted case the
catabolic rate is proportional to the yield of the organism itself and
that the anabolic rate is constant regardless of biomass or time, con=-
clusions that seem appropriate for an established forest crop with a

relatively constant source of nutrients in the soil, The equation is:

S_X = n=pY (1v.10)
v = 21 - exp(=p(a-ay))) - (1)

where the variables and parameters are as for Equations IV.8 and IV.9,

The mosticommonly used growth model.is the logistic or éuto—
catalytic which probably originated (Pearl and Reed, 19233 Grosenbaugh,
1965), from the work éf Verhulst (1844,>1846), and is a form with m=1,
r=2 (or m=2, r=1, n and p negative), This equation is generally form=
ulated in terms of Ai’ the age of culmination of iﬁcrement, and can be

stated as:

dy 2
g = PY - ny (.Iv.jz)

Y =E (1 + exp(n(a-a,))) | | (1V.13)
where the parameters and variables are as for Equations IV.8 and IV.9,
This equatioﬁ is symmetric about the pointbof inflection in the yield
equation. For this eguation anabolic rate is proportional to yield
itself and catabolic rate is proportional to the product of anabolic
rate and yield. To overcome some of the restrictions Nelder (1961, 1962)
and Austin, Nelder and Bérry (1964 ) proposed more general fﬁrms that

parallel the second level Bertalan??y equation (see Table IV.1).
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Pearl and Reed (1523) used an odd powered polynomial term to define

a model of cyclical growth,

-1
Vo= vy 4k {1 + m exp(q(r))] (IV.14)
where
Y = vyield,
iYD = yield at the commencement of the growth cycle and

for this analysis is zero,
k = the asymptotic maximum yield for that cycle,
m = a parameter to be estimated, and,

g(A) = an odd powered polynomial function of age A.

They found that a third order polynomial was génerally satisfactory,
using analytical means to fit the function to few data points. The

equation offered no advantage over the second level Bertalanffy and was

not considered further.

The allometric constant m in the second level Bertalanffy equation
provides an estimate of the fraction of the asymptotic maximum yield
that occurs at the culmination of increment (Ai)’ " The fraction is as

follows:
1

| (m)m (1v.15)

Figure IV.2 shows the way that this fraction changes with m and although

_ for m=1 the fraction is undefined, the limit as m-»1 is 1/e. This is

the same as for the Gompertz function to be discussed later, Richards

(1959) and Pienaar (1966) used a very cimilar equation to the second

level Bertalanffy and claimed that the limiting form as m-»1 is the
Gompertz equation. " Pienaar's lqgic can however be shown to be false
if the original Bertalanffy model is used instead of the Chapman-
Richards formulation (Appendix 3)? but this conclusion is supported'by

the evsluation of the fraction.
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Gompertz-Thomasius

One of the earliest of all growth models is that of Gompertz (1825)
who in a treatise on life expectancy and the calculation of annuities
developed a model of growth rate calculation later formulated by Winsor

(1932), (see Table IV.1).

dy

= ov 1n(v/a) (1v.16)
v = a{exp(-eXp(-b(A'-Ai)))} (1V.17)
where B |
Y = - yield,
A = age,
vAi = tﬁe age of culmination of increment, and,

a, b and c are the parameters to be estimated,
The equation has been widely used, apparently with success, to predict
a wide variety of growth responses (Laird, 1965)., For this equation
~increment culminates when yieldvis 1/e of the asymptotic maximum yield,
This seemed unduly restrictive when ccmpared with the more flexible
second level Bertalanffy but the model was evaluated because’it has been

widely used in biological modelling,

Thomasius (1964) combined some of the logic of Mitscherlich (1910)
and Gompertz to develop a model for forest growth which is more complicat-

ed than either and less well defined (Rawat and Franz, 1974).

ibY = a {1 - exp(=b A(1 - exp(CA)))}d ‘ (1v.18)
where o
Y = yield,
A = age, and,

a, b, ¢ and d are the parameters to be estimated,

This model offered little unless the Gompertz proved to be as satisfactory

or better than the other alternative models tried,
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Johnson-Schumacher

In 1935 Johnson proposed a simple model for growth to be used after
the culminétion of periodic annual increment, This was used in simpli-
fied form by Schumacher (1939) because it facilitated the formulation of
a simple combined model including site potential and stand dehsity as

well as age that could be estimated by multiple linear regression analysis.

-cd% = bY / (c+n)* | (1V.19)

Y = a exp(-b/(c+A§): , (1v.20a)
or 7

" .

in(Y) = 1n(a) - b/(c+AR) (1v.20b)
where

Y = vyield,

A = age, and,

a, b and c are thebparameters to be estimated, and

where for the Schumacher model c=0.

Clutter (1963) used the Schumacher form but Bailey and Clutter (1974)
raised age to a power in an effort to define a more flexible model. An
inherent assumption of the model'is that the age of culminationbof mean
annual increment is twice the age of culmination of current anhual increm-
ent. Bebause of this restriction and because the model has only a
limifed biolqgical basis it mas'considefed likely that the Johnson-
Schumache& model would be inferior to‘the second level Bertalanffy model.
However the model was evaluated because it has beeﬁ used to predict

forest growth satisfactorily.

Backmann

Backmann's formula for forest growth (Prodan, 1968) was based on the

premise that the logarithm of growth is proportional to the squaré cf the
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logarithm of time,

%% = exp(a + b 1n{A) + c (ln(A))z) (1v.21)
where . A o | |

Y = yield,

A = age, and,

a, b and ¢ are the parameters to be estimated,

Although this derivative equation leads to a complex yield eguation it
can be readily used in practice using arithmetic probability paper.
Increment culminates at 15.9% of the asymptotic maximum yield which
seemed en unnecessary restriction with little or no biological basis,
The eguation was considered unlikely to be ae satisfactory as the second

level Bertalanffy and was not evaluated,

Hugershoff-Bednarz

The Hugershoff equation‘(Prodan, 1968) assumes that the juvenile
phase of growth can be approximated by a quadratic function in age and
the senescent phase by an exponential decay model,bone phasing into the
other in an intermediate stage between the culmination of current ahd‘

mean annual increment.

-3-‘1 = a A% exp(-ch) S (1v.22)
A .
2a c?a
Y = = 31 ~ exp(=cA) [ T +ch+ =5 '2 (1v.23)
o] ' J
where |

Y = yield,
A = age, and,

a, b and ¢ are the parameters to be estimated.
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Egecbwqrz(ﬁizgﬁuggested a modification to the two components of the

derivative that makes the model more flexible as well as being a

mathematically simpler yield form, The model is

ay _ab (b=1)
T = 5 A exp(~cY) (1v.24)
1 b
Y = = in(aA” + 1) (1v.25)
where
Y = vyield,
A = age, and,

a, b and ¢ are the parameters to be eétimated, but Bednarz fitted
the equation conditioned such that at a base age r; yiéld was Yr,’
lngaAb + 1) )
y=v ! - o ‘ (1v.26)
In(ar” +1)
to feduce'the number of parameters to bé estimated, The model is one
of the few models that does not reach an aéymptotic maximum yield, yield
continuing to increase with increasing age. fhe Bednarz model was
evaluated because it has been previously'used to predict radiata piné

height growth, in spite of its lack of a coherent biological base.

Summary

Graphical models were considered an inappropriate form for this
study and only equation forms were considered. 0f these the Bertalanffy
model appeared to offer the gréatest»flexibility, satisfying all the
simple biological criteria, Unlike many of the other forms the culmina-
tion of increment is not rigidly defined in terms of either a fixed prop-
ortion of asymptotic maximum yield or of the age of culminatioﬁ of mean
annual increment, The general form was considered lesé appropriate than
the simpler second level form because it could only be integrated for
particular values of the parameters m and r, and not over the complete

range.
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Graphs of yield against age suggested that increment probably cul-

minates at a relatively young age for most plots, possibly at or even
before the first volume measurement at age 8 to 12 (Appendix 1.3b and
1.3c). Models such as the Johnson-Schumacher or Bednarz were thus
possibly satisfactory predictors within the range of the data and for
that reason were evaluated. The double exponential Gompertz form and .

the polynomial were evaluated for completeness rather than from any

sense of probable utility,

The other models in Table IV.1 were either not evaluated (Backmann,
Pearl-Reed and Hugershoff), were evaluated as part of the evaluation of
the second level Bertalanffy‘(Mitscherlich, logistic, simple Bertalanffy
and Nelder), or were reconsidered after a simpler form had been evaluated
(Thomasius). Grosenbaugh's form was not evaluated because it was>

impractical,
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v EXPLORATORY ANALYSES OF DATA FROM UNTHINNED STANDS

The exploratory analyses were carried out on data from unthinned
stands partly to reduce the number of variables to be considered and
partly because it seemed more appropriate to first investigate stands

that had not been artificially modified by thinning.

DATA

- There are a number of plots in the south-east of South Australia
which have never been thinned in order to provide a control series
against which the more numerous thinned plots can be compared. These
plots cover a representative range of age and site potential and there-
fore provide good data sets on which to evaluate the models of growth

and yield for unthinned stands.,

The data from unthinned stands were extracted from the data bése

and divided into two sets.

1 Developmental dataj comprising a minimum of nine measurements

of volume for each plot over a minimum twenty year growth periecd.

2 Test data; between five and eight measurements for volume over at

least a fifteen year growth period,

The data were»divided according to the number of measurements and
growth period because it was intended to evaluate the use of iﬁdividual
plot trends. Ltong trends with at leést nine measurements were highly
desirable for this type of analysis. There were insufficient of these
plots to allow random allccation into development and test sets, so the

plots with the shorter trends-provided the independent tesf data.

The two data sets are summarised in Appendix 1.3.  The twenty plots

in thé developmental data included 228 volume measurements with an average
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growth period of 33 years., The twenty three plots in the independent
test data had 157 volume measﬁrements with an average growth period of

20.8 yearsa

N several respects
The developmental data cover a narrower range4than the test data,

Of the test data plot EP24C was planted at 6x6 feet, EP24E at 9x9 fest,
whereas all the other plots in both data sets were planted at 7x7, B8x8
or 9x7 feet, Four plots in the test data, EP24C, EP24E, 433 and 155,
are of higher site potential than the developmental data, and three
plots, 149, 368 and 369, are poorer, The test data also cover a wider
range of forest district, but because of the way the data were allocated
there are few measurements at later ages. Because the two data sets
were not allocated at random the models develoﬁed may be open to question
if used to predict the wider range covered by the test data. This
problem was not considered critical at this stage because the objective
was to use these exploratory analyses tq narrou the number of models to

be fitted and evaluated, not to arrive at a final prediction model

per se.

SITE POTENTIAL

Conditioning based on site potential and the effect of site potential

- on yield are two aspects which warranted careful study.

Conditioning

For a number of growth and yield models it was possible to condition
the yield model so that at age 10 yield is the value of site potential
(Y1U)’ thus eliminating one or more parameters, For example the second .

level Bertalanffy model can be conditioned thuss:
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1

1~ exp(=p(1-n)(a=g)) | 17"

Y =Y, (ve1)
1 - exrs(-p(W—m)('lO—AD)) _ -

where
Y = vyield,
A = age,
Y10 = site potential, yield at age 10, and,
p, m and AD are the parameters,

_ Bailey and Clutter (1974) have argued that conditioning places too
much weight on measurement and other errors associated with site potential
(orbin their case, site index), This seemed unduly pessimistic in this
instance, Conditioning is identical to the imposition of an exact con=-
straint on the parameters of the stochastic modél. Linear theory
(Goldberger, 1964; Theil,1197l) shows ﬁhat the imposition of exact

- linear constraints and solving by OLS yields minimum variance, unbiased
estimators and thus predictors, It is nof clear whether these results
hold for nonlinear models, However to the extent that most similar

results hold asymptotically for estimators of nonlinear models, it could

be expected that these results would also hold asymptotically,

A more powerful technigque might be to treat theqobservations of
site-potentiél as unbiased estimators of constraints on the parameters,
However this would necessitate precise estimates of the variance assoc-
iated with the estimate of site potential, and far more complex techﬁiques
of parameter estimation, Given that the wvalues of,site potential are
precise, neglect of these errors seemed unlikely to be of much con=
sequence, A gross cﬁeck is feasible however, Compariscn of the con=-
ditioned and unconditioned versions of any‘one»model using the usual
tests can eliminate thé_unlikely possibility that the errors attached to

site potential are so large that conditioning results in markedly

poorer estimators,
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Model formulation

Conditicning relates to the deta and parameters for individual plots.
It may not serve to take the effects of site potential fully into account,
across the entire data set, The remaining parameters of the model may

themselves be functions of site potential,

One well known technique for taking these effects into account is
to develop an averagé yield curve and then assume that the other curves
are anamorphic, a fixed amount or fraction above or belﬁw the average
yield curve.. ~Although used by Bednarz (1975) to predict upper stand
height growth, the assumpticon of similar shape is nct valia for vo;ume
to a top diameter limit, because it takes a varying number of years (AD)

for growth to commence, with growth commencing earlier on the better

sites,

In the Bertalanffy model the relationship between culmination of
increment and the asymptotic maximum yield is dependenf on the allometric
constant m (?igure 1V.2). As increment culminates for radiata pine at
an early age, possibly at or before the first measﬁrement included in the
data, (see Appendix 1,3), it seemed unlikely that fhe effect of site
potential oﬁ the pérametervm could be estimated,  Studies by Brickell

(1968) and Beck (1971) were also unable to relate m to site potential,

Replacing m by a linear function in site potential would allow the
relationship between the age of culmination of current annual increment
and thebage of culmination of mean annual increment to vary, but it was
thought unlikely that satisfactory estimates pould be obtained ffom the

évailable data.

The parameters n and p in the second level Bertalanffy model
combine to provide an estimate of the asymptctic maximum yield that a

site can achieve, For anamorphic yield curves this asymptotic maximum
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yield is assumed to be a linear function of site potential,

1

= 1=m
Yoax = (n/p) = by +by Yig (v.2)
where
Ymax, = asymptotic maximum yield,

n and p. are the parameters of interest that together
with the‘allometric constant m combine to provide
the asymptotic maximum yield,

Y10 = site potential, and,

bU and b1 are the parameters to be estimated,

Beck (1971) used this linear form to estimate height growth of white
pine, although Brickell (1968) added a quadratic term making the yield
curves polymorphic, Thus Equafioh V.2 could be replaced by:

+n, Yo+, Y, 2 v ‘ (v.3)

n =n 1 "0 2 '10

0

P = Pg
where n, would be equal to zero for anamorphic yield curvés, but not
equal to zero for polymorphic curves, In terms of Bertalanffy's

deductions this implies that the anabolic rate is proportional to site

potential but that the catabolic rate is not.

The contradictory hypothesis that anabolic rate is independent of
site potential and that catabolic rate decreases with increasing site

potential also seemed to be biologically plausible,
P = Pg=Pq Yy N o (V.4)
n = n
For é yield model based on Equation V.4 the rate of.increase of asymptotic
maximum Yield increases with‘increasing site potential, supporting
Brickell's model form, This form was alsc supported by the wcrk of

Cilliers and van Wyk (1938). Sincé beth models seemed plausible, both



66

were evaluated.

The age at which volume growth commences (AU) was incorporated into
the models by replacing age A with (A—AD). Sitehpotential influences
A0 so that as site potential increases, AU decreases from the base age
for the yield curves but never reaches zero, This could be approximated
by a simple linear function withinAthe range of the data, or could be
fitted by a quadratic, Exponential or reciprocal forms seemed more
logical as they allow A0 to decrease as site potential increases without

in%roducing a turning point,

Ay = a, | ' | (v.52a)

Ag = ag=a; Yag ) (V.5b)

Ag = 3 +3; Vgt Y102 - (v.5c)

Ay = ag exp(-a, Y,) ' ' . | (v.5d)

Ag = ag+ay/ (ay +Y,4) (use)
where

Rg = the age at which volume growth commences,

Y10 = site potential, and,

a a, and a

85y 3, are the parameters to be estimated.

2

When site potential is ze?o then AD should be ten, HoweQer this was
outside the range of the data, and although conditioning tb this effect
seemed desirable it was not considered essential. After the models
were fitted AD was tested to determine whether this conditioning was

acceptable, If the null hypothesis was accepted then the simpler

submodel for AD was selected,

‘Similar derivations were used for parameters in models other than
those based on the Bertalanffy form. Forbmost parameters in the
equations in Table IV.1 simple polynomials were used to test the effect

of site potential.



b = b v | (v.6a)

b = .bD + by Yoo (V.6b)
2

b = by +b, Y5+ b, Y, (v.6c)

where

b represents the parameters of the equations in Table IV.1,
Y,ID = site potential, and,

bO’ b1 and b2 are the parametérs to be estimated.

For the Johnson=Schumacher model these formulations encompassed the

work of Schumacher (1939), Clutter (1963) and Ferguson and Leech

(1976a), but as the dependent variable was not yield but the logarithm

of yield, two other submodels were also evaluated.

b = by+b, /Y, | (v.6d)
b = by +b, 1n(Y,) (v.6e)
ANALYSIS

Before the models could be evaluated two further faceté of the

analytical procedure had to be considered.

1 The form that the dependent variable should takes yiéldbor
increment, and if increment, whether instantaneous (the deriva-

tive) or periodic.

2 whether the data'shduld be pocled and the model developed in a
single stage process or whether a two stage procedure should be
used, the first estimating the parameters for each plot and the

second evaluating the effect of site potential,

67
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Form of the cependent variable

There are a number of ways of specifying the dependent variable in
a gromth of yield model, Three of these were considered: yield,
instantaneous increment at a given time, and increment over a given
period, The choice of the form of the dependent variable depended in

part on the available data and in part on statistical considerations,

If yield isbto be used as the dependent variable then serial
correlation is likely to be a problém. Yield at any age is largely
dependent on yield at earlier ages, especially léte-in the rotation
when increment represents only a small proportion of current volume,
This could have been avoided by including an autoregressive disturbance
proportional to the earlier measurement as described in Chapter I1II,

but this would have made the analysis more complicated than seemed

warranted,

A simpler approach was to assume that first order serial correlation
existed between successive measurements of yield and to estimate increm-
ent rather fhan yield. If periodic increment (Pi) is the dependent
variable then an autoregressive process is implicitly built into the
model, If yield at age A is YA and yield i years later is YA+i then
fitting |

Yooi = f(A,Y1D) o ’ : (Vf7)

assumes that yield is not serially correlated, whereas,

YA+i = sV, f f(A,Y1O) | ~ (v.8)

~ assumes serial correlation, If the coefficient of serial correlation
s. eguals one then periodic' increment (Pi) can be estimated:

Pi = YF\+i-Y/-\ = f'(.‘\,Y,!D,l) {(v.9)
with the inclusion of the increment period i allowing for the data

having variable intervals between measurement, The right hand side of
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the equation is better formulated in terms of periodic annual increment
(Pai) rather than periodic increment (Pi) to make the variance of the

depehdent variable more homogeneous,
Pai = Pi/i= (YA+i - YA) /i (v.10)

I% instantaneous increment is used as the dependent variable then
the derivative form of the yield model.can be evaluated. Because the
general form of the Bertalanffy model cannot be integrated to proQidE'
a yield equation, the derivative is the only way that the general form

can be evaluated, However because the data are estimates of
periodic annual increment generally after the age of culmination of
increment the derivative models will necessarily have biased estimates
of the parameters, Unbiased estimators can be achieved if periodic
annual increment is the dependent variable by formulaﬁing the function

as the difference between two yield equations,

Of the three forms, the difference equation was preferred because
it was thought to have fewer problems with respect to serial correlation
than yield, The derivative was however evaluated to see whether the
contraction of the general Bertalaany model to the second level form

was acceptable, that is, whether r could be taken as 1.0,

'Appendix 4,1 shows that for the data sets used the variance of both
periodic annual increment and yield could. be considered hdmogeneous and

that weighting was unnecessary.

Single or two stage analysis

In a single stage analysis the data are pooled and the final model
including age and site potential is estimated from the data, In a two
stage analysis a model expressing yield (or periodic annual increment)

as a function‘of age is fitted toveaqh of the plqts in turn and then, in
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a second stage, these estimated parameters are related to site potenfial

and possibly other stand variables,

Singie stage analysis had the advantage that the data set was much
larger, but the information advantage inherent in the long term trend
series was ignored, On the other hand, the two stage analysis takeé
advantage of the long term trend nature of the data but there are
relatively few observations for each of the first stage analyses, Both
approaches were evaluated.

STRATEGY

‘In defining a strategy to be adopted for model evaluaticn five

factors had to be considered.
1 Which funetional relationship in terms of age should be used,

2 Which form of the dependent variable should be used:

yield, instantaneous increment or pericdic annual increment,
3 Whether single or two stage analysis should be used,
4 Whether the model should be conditioned or not.,

5 Which functional relationships with respect to site potential

~should be used,

As it was clearly impractical to carry out an exhaustive analysis
of all these facets, the approach adopted was to define a priori a
relatively simple model and to use this as a base for comparison.
Models allowing each factor to vary separately were then evaluated and
the results compared with thoée for the.base model, In the event of the
base model being inferior a new base model mas defined and the analytical
procedure repeated, This strategy does not guarantee that the optimélr
model was selected, but careful analysié, inclﬁding the fitting of many

models that have not been reported in this thesis ensured that most



possibilities were-tested and compared,

In defining the base model simplicity was important to provide a

starting point for comparisons, The base model was as follous,

1 The second level Bertalanffy model was preferred to the other
forms in Chapter IV because it appeared to offer the greatest

flexibility and satisfied the simple biological criteria,

2 Periodic annual increment was selected as the dependent
variable rather than yield to reduce the effects of serial

correlation,

3 A single stage analysis was preferred to the two stage analysis
because the advantages inherent in the larger number of observa-

tions seemed to outweigh the lack of recognition of the trend

nature of the data,

4 The conditioned model was preferred to the unconditioned model
for the base model becauée it had fewer pa?ameters to be
éstimatéd;

5 The relationship between the parameters and sité potential
séleéted were: for p a linear function in Y10, and for A

o
an exponential decay model.

The base model was therefore as follows:

Pai = (Ypps = Yp) / & o ' ' (v.10)
4 |
1 - exp(=p(1-m)(a=ay)) [
Yo =Yg (v.1)
1 = exp(=p(1=n)(10-9))}
P = Pg=Py Yy (v.a)
Ag = &g eXp(-a1 Y?D) (v.5d)

71
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where
Pai = the dependent variable, periodic annual increment,
YA = vyield at age A,
A = age,
i = the increment period,
Y10 = site potential, yield at age 10, and,

PD’ Pys 2gs 23y and m are the parameters to be estimated.

BERTALANFFY MODEL RESULTS

The base model selected was a variant of the second ievel
Bertalanffy model that assumes that the parameter = in the generai
form (Equation IV.7) can be taken as 1.0, = Therefore before the base
model was fitted it was necessary to investigate whether the contraction

to the second level Bertalanffy form waé satisfactory.

The evaluation of the general model

The general model could not be integrated and the.only way that the
allometric constant r could be evaluated was using the derivative form.
Because the data were measurements of periodic increment and not instan-
taneous increment any parameter estimates were neceséarily biased, the

extent of the bias depending on the length of the increment period,

This bias could be avoided for the simple Mitscherlich form
(m=0.0, r=1.0) by using a Taylor's series expaﬁsion to be described later,
but this was inapprbpriéte for the general form, Because the analysis
aimed»only to evaluate whether r could bé taken as 1.0, and did nct
aim to develop efficient estimators and predictors, it was desirable only
that the bias be consistent, The bias did not need to be eliminated.
To achieve this the data for this analysis were cuiled to 103 increment

periods of either one or tuwo years,



73

The general form of the Bertalanffy model was then fitted to the
data,.together with reduced férms with specific values of m and T,

Three cecondary models including site potential were evaluated,

n=ng p =‘pD + P, Yo (ve11a)

n=ng+n, Y, P =rpg (ve11b)

n=ny+n, Y, P =P+ Py Vg 4 (v.11c)
where

n and p are the parameters in the general Bertalanffy model,
Y10 = site potential, and,

Ngs Nqs Py and p, are the parameters to be estimated,

0f these three submodels Equation V.11b explained slightly more of
the variation than Equation V.11a. Although Equation V,11c had an even
lowér residual‘sum squares, the estimated parameters had inflated standard
errors and were not significantly different from zero, The following
results are based on Equation V.11b, but the trend was consistent for all
three equations and similar conclusions would have been drawn if they had

been used,

The simple Mitscherlich form (m=0, r=1) proved to be a satisfactory
form with residual sum squéres of 5830;7 compared with 5819.8 if both " m
and r were allowed to float. The reduction ih‘residual sum squafes
by allowing eifﬁer' m or T to float was not significant. Models with
m=0,0 and r=0,5 and 0.667 respectively were slightly more efficient than
the Mitscherlich‘form but the reduction in residual sum sguares uwas small
and Qas considered insufficient to offset the more COmplicéted form of the
~ yield model, For the secoqd level Bertalanffy (residual sum sguares
5823.3) the parameter m was not significantly different from zero,
Thislprobably reflects the lack of early age déta rather than any inherenﬁ
structural Qeakness'in the model, However, although the results indicat-

ed that the paraméterv m could be taken as zero the parameter was includ-
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ed in the base model as this inference was of necessity based on a
reduced data set. Appendix 4,2 details the residual sum squares for
all the models fitted using Equation IU.11b, in both graphical and

tabular form.

Periodic annual increment, conditioned

The base model was then fitted to the 208 increment periods of the
developmental data (Model 1, Table V.1), together with a number of other

models with various structures for the parameters m, p and AD'

O0f the various submodels for AD evaluated (Models 2-7, Table V.1)
the bése model with two parameters (Model 1) was not significantly better
than the base hodel with ag set £o 10.0 (Model 2), This was sensible
as at Y10 = 0 then AD'should>equal ten.' The addition of a constant to
the base model (Model 7) was not significant. Neither the polynomial

form (Models 3 and 4) nor the reciprocal (Models 5 and 6) were as good

as the base model,

For the paraﬁeter Py Models 8 and 9 show that the addition of the
linear term in Y10 was not significant‘if the two parémetef model for
AD was used, but was significant if the single parameter conditioned
model for A0 was used, Modql 2 had a lower residual sum squares than
Model 8 for the same number of parameters and was preferred. Models

10 and 11 replacing the linear function by a quadratic were not signif-

icantly better than Models 1 and 2.

The allometric constant m was not significantly different from
zero for either Model 1 or 2 using a t test, and Gallant's test also

showed that Models 12-15 were not significantly better than Models 8, 9,

_1'and 2 respectively, Replacing m by a linear function in Y1D’

Models 16 and 17 also showed no significant improvement,
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The base model was therefore rejected in favour of the simpler
form with two fewer parameters, Equation V.12. For the equation the
standard error of each parameter estimate is show5 immediately below the

-

estimated parameter,

m = 0.0 (Ve12)
p = 0.,02587 - 0,4627 10‘4ym

(0.00108) (0.0503 10‘4)
Ag = 10.0 exp(=0.003716 Y,m)»

(0.000052)
This model confirmed the conclusion of the exploratory ahalysis using ths
derivative that the simple Mitscherlich form with m=0.0 was satisfactory.
Also, the simpler submodel for A0 was biologically sensible, in part

validating the statistical analysis,

The underlying assumptions of the analyéis were then tested using
the 23 plots in the indepehdént test data, Bartlett's test for homo-
geneity showed no significant heterogeneity when partitioned either by
plots, the expected value of the dependent variable, or into age/site
potential cells, The deviates were normally distributed, nesither the
moment statistics of skewnessner kurtosis being significant. However
the Durbin-Watson d statistic was 0,998, indicating sighificant serial
correlation,. This wasvsurprising as it had been hoped that by using

periodic annual increment serial correlation would be avoided,

The Durbin-Watson d statistié for the developmental data was
howeuér not significant, indicating that perhaps some difference between
the two data sets may be responsible, The developmental data are
generally'from pre~1940 plantations whereas the test data from post-1340
piantations; the twe sets.may therefore reflect changes in the pattern
cf soil typelor other geographical variation, The results of the tests
are summarised in Table V.2. Regressing the devia£eé against linear

-and guadratic models in age and site potentisl showed the deviates to be
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independent of both, Replacing the parameters in the linear model by
dummy variables for each plot showed that the deviates were related to

age for each plot (F45/1D1 =5,78), suggesting misspecification,

The model was then evaluated as a yield predictor using the
independent test data. Of the 23 plots 6 had mean deviates significant-
ly different from zero, not unexpected in view of the earlier tests;k as
did 1 of tﬁe 13 age/site potential cells, Excluding from the test
data the one plot planted at 6x6 feet overcame the latter problem.

This stocking was outside the range of the developmental databand it
was concluded that the problem was one of misspecification’that could
possibly be avoided in later analyses using the wider ranging thinned

stand data, The deviates for thé test data had a standard deviation

of 51.51.

The simplified base model was a satisfactory predictor, Although
the estimators were inefficient because the serial correlation assumption

had been violated, they were unbiased,

Periodic annual increment, unconditicned

For the evaluation of the unconditioned periedic annual increment
models the allometric constant m was set initially to zero and the

simple single parameter submodel for A_ was used, Various linear and

o
guadratic submodels for n and p were evaluated, but the best was
Equation V.13 shown below with the standard errors of each parameter
estimate immediately below the estimate, Appendix 4,3 summarises some

of the models fitted including other submodels~f0r the parameters p

and AU.
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m = 0.0 (v.13)
p = 0.01895
(0.00052)

n = 20,59 + 0,1003 Y

(0.62) (0.0200) '°

h=
il

10.0 exp (~0.002084 Y

)
(0.000370) 10

Testing- the model against independent test data gave slightly
poorer results as can be seen in Table V.2. The deviates were again
serially correlated énd, unlike the conditioned model, the deviates
were heterogeneous by plots. The model was a poorer predictor as the
standard deviation of the deviates was 57,53 compared with 51,51, and

more cells were significantly different from zero.

There were tuwo possible explanations for the relative inefficiency
of the unconditioned model. Firstly, it was possible that the increase
in efficiency through the addition of the extra parameter was offset by
the decrease in asymptotic efficiency of Bard's program because there
were more parameters to be estimated. Secondly, although for linear
models the residual sums of squares‘fo¥ an unconditioned model is lower
than for a parallel conditioned model (Theii, 19713 Gﬁldberger, 1964),
this does not necessarily hold for nonlinear models but depends on the
model structure. If the secondary structures for p and AUFfrom
Equation V.12 are substituted in Equation IV.11 and this equation is
reformulated in terms of n rather than Y; then a complex structure
relating n to Y10 results, The simple linear structure iQ_Equation
V13 is only a crude proxy for this complex structure. If all modelé
had been linear then the sﬁructure implied Ey the unconditioned model
would have been a superset of the conditioned model and not a'crude

PLOXY .

As the conditioned model was simpler, was a better predictor, and

satisfied the assumptions of the analysis as well or better, it was
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preferred to the unconditioned model,

- Derivative

The earlier analysis of the allometric constant r© in the general
model had shown that r could be taken as 1.0. That analysis and cthers
had shown that the simple Mitscherlich form with m=0.0 was also accept-
able, However in the earlier analysis of the derivative the estimates
for n and p were biased because the way the data were used assumed
that the periodic annual increment and instantaneous increment‘wgre the

same, Also, the data used were restricted,

Unbiased estimates of the parameters of the simple Mitscherlich
form (m=0.0, r=1.0), but not the general form, could be obtainedvfrom
the full data set by using a Taylor's series expansion of the function
(Ferguson and Miles pErs.Comm, ). If yield at age A is YA and yield i

years later at age (A+i) lS‘YA+i’ and if

an = 0 o= oY (v.14)

the simple Mitscherlich form, then using a Taylor's series expansion

v, . =v, + 52 —-—d2Y + 53 —gdSY + -i-i—-z-day-x- (v»15)
pmi = AT 9 Y2 Ga & dA 24 dpF T e .

which can be reformulated in terms of periodic annual increment (Pai)

Y, =Y . 2 .2 3 .3 4
. Ati A _ dY i dy i~dy i dy
‘Pal = T =38 * 5 G2 t & anS tor aaF teer (ve16)
or
' 2 3
. gy i if2 i 3
Pai = 7 1T=3P+5P =57 P + oo (ve17)
and therefore ‘
Pal 1p . _ , _ pv | C (va18)
(1-exp(-1i p)) :

Ordinary least squares linear regression theory cannot be used to
estimate Equation V.18 even though the right hand side of the equatioh is

linear, because the dependent variable is itself a function of the
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parameter p, Bard's (1967) program was modified to fit the model
iteratively, suéceséive itefations using for the dependent variable the
estimate of p from the preceding iteration, each iteration itself
iteratively fitting the linear right hand side of the equation, The
initial starting values were from the bése model, The convergence
criteria were those of Marquardt (1963) also used to determine the
convergence of each iteration. The technique was in sssence an iter-

ative, iterative fit of an apparently linear model.

Equation V.18 was then fitted to the 208 observations using the
various secpndary modél forms suggested earlier,'Equationg Ve2 and V,3,
Gallant's test could not be used to compare models as the dependent
variable varied with the estimate of p. If Equation V.2 was used then
the quadratic term in Y10 in the submodel for n was nat significantly
different from zero using a t test, and the reduced model below with

all parameters significantly different from zero was accepted,

n = 21,55 + 0,09545 Y, 4 (ve19)
(17.19) (o0.00803)
= 0,01794 '
(0.00153)

If equation V.3 was used then the addition of the quadratic term in the
‘submodel for p was not significant, in that the estimated parameter

was not significantly different from zero using a t test,

n = 34,73 o (v.20)
(0.92) :

0.,03762 = 0,0001354 Y

(0.00312)  (0.0000142) '°

The only way that Equations V.19 and V.20 could be compared was as
predictors of the test data because the dependent variables were differ-
ente. For Equation V.19 the devistes had a standard deviation 6? 60,06,
considerably lo@er than the 83,76 for Eguation V.20 which was then

rejected, Table V.2 shouws that Equation V.19 was poorer than the
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conditioned periodic annual increment model even though it satisfied the

assumpticns of the analysis nearly as well,

The derivative model was therefore rejected and the conditioned

periodic annual increment model was preferred,

Yield, conditioned

Varibus submedels for the parameters m, p énd AD were then
evaluated for the conditioned yield model using the 228 observations,
The submodels were variants of the original base ﬁodel and &gain
reduced in comp;exity. The allometric constant m was again not sig-
nificantly different from zero, but in this case the parameter p red-
uced to a conétant rather than a liqear function of YiU‘ The submodel
for AD remained the two parameter exponential form, Appendix 4.4
summariseg the analyses, For Equation V.21 the standard error of each

parameter estimate is shown below the estimate,

(0.00154)
Ag = 9.384 exp(~0,003334 Y1D)

(0.095)  (0.000146)

when‘the estimates of the parameters for this model were compared
with the comparable conditioned periodic annual increment model (Model 8,
Table V.1), the standard errors of the parameter estimates were con-
sistently larger for the yield model (0,00154 cf, 0,00052,
0.095 cf, 0,081, 0,000146 cf, 0,000085)., Periodic annual increment
therefore prduided more efficient eatimatérs than the equivalent yield

model,

As can be seen from Table V.2 the conditioned. yield model was as
good a predictor, paralleling the conditioned periodic annual increment

model, However the assumptions of the analysis were consistently
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violated, the deviates being heterogeneous, leptokurtic and serially
correlated. The heterogeneity was probably associated with the
leptokurtosis as Acton (1959) has pointed out that Bartlett's test
(like the other tests of homogeneity) is sensitive to nonnofmality.

This cast doubt on the use of Gallant's test to differentiate between
models and Equation V.21 may not in fact be the best conditioned yield
model, The Durbin-lWatson d statistic was significant and considerably
lower than for the conditioned periodic annual increment model, and

unlike Equation V.12 the d statistic for the developmental data was

both lower and significant.

The conditioned yield model was not preferred to the conditioned
periocdic annual increment model because the aséumptions of the analysis
had been violated consistently and because the estimates of the parameters

were less efficient, even though the model was as satisfactory as a

predictor,.’

Yield, two stage

For the two stage analysis the model was fitted to each of the plots
in turn and then, in a second stage, the parameters from the first stage
were estimated as functions of site potential, The technique has the
_ advantage of making ‘full use of the long term trend data avaiiable but
there were practical limitations because there were relatively few
observations for the first stage analysis., Both conditioned and un-
conditioned‘models wefe evaiuated for completeness, but because of the
paucity of obse:vations for the first stage analysis the conditioned

model with one fewer parameter was thought likely to be superior.

When the conditioned model, Equation V.1, was fitted to the data
the standard érrprs of- the parameter estimates were all high and for

each plot ngne of the estimates of p, A, or m were sighificantly

a
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different from zero when a t test was used. This indicated a large
aegree of overfitting that could only be avoided.by increasing the data,
which was impossible, or by reducing the number of parameters to be
estimated. Setting either p or AD to zero was biologically unsound
and there was no a2 priori reason for setting them to particular values.
The only way that the model could be simplified was to set m to zero,
the Mitscherlich form used earlier. When this reduced model was fitted

to the data all parameter estimates were significantly different from

zero showing that the simpler model was more satisfactory.

When the unconditioned model waé %itted to the data (tquation IV.9
with c, = -1 and c, = AU)’ reduction to the simple Mitscherlich form
was again necésséry to reduce the standard errors of the parameter
estimates so that the parameter estimates were significantly different

from zero.

The second stage models wére then developed using both linear and
nonlinear model structures, the regressions being weighted by the
estimated variance of each parameter estimate. For AD the conditioned
exponential decay model proved to be the superior estimator, consistently
better than any of the other forms in’Equation V.5, Ffor p the simple
lineaf form uas-the best for both conditioned and unconditioned models
and for n the constant could not be improved upon, Equations V.22
and V.23 were the best models for the conditioned and unconditioned

models respectively. For the conditioned model the model and data are

graphed in Figure V.1.

p = 0.03334 - 0.9070 10:2 Yoo (v.22)
(0.00410) - (0.2677 10 ') :
Ag = 10.0 exp(-0.003823 v, )

(0.000327)

and
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n o= 37.36 (V.23)

(5.34)
, 3
p = 0.03710 ~ 0.1042 10 _; VY o
(0.06431) (0.0281 10 )
Ag = 10.0 exp(-0.,003508 Y10)

(0.000313)

The two models were then fitted to the indEpéndent test data as yield
predictors (Table V.2). The conditioned model was inferior to the
conditioned periodic annual increment model fitted to the pooled data
(standard deviation of the deviates 66.10 cf.51.51, and more age/site
potential cells significantly different from zero). The unconditioned
hodel, Fquation V.23, was a very poor model (standard deviation of the
deviates of 113,72) parallelling the earlier analysis of the pooled data.
The marked reduction in efficiency of even Equation V.22 was attributed
to attempting to estimate too many paraﬁeters from too few data in the
first stage analysis, The two'stage OLS analysis was rejected as it
was inferior to the conditioned periodic annual increment model developed

on the pooled data.

Summary

1 The allometric constant r could be set to 1.0.
2 The allometric constant m could be taken as 0.0,

3 The conditioned model was a superior predictor to the unconditioned
model, ‘in part because the gain in asymptotic efficiency of
paraméter estimation by the simplification in the model structure:
offset the decrease in efficiency implied by the conditioning,
but also because the 5onditioned structure was not a simple linear

contraction of the unconditioned structure,
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4 Periodic annual increment was more satisfactory than yield as
the dependent variable because it better satisfied the assumptions

of the analysis and was as satisfactory as a predictor,

5 Single stage analysis on the pooled data was superior to the

two stage analysis using the individual plot trends.

JOHNSON=SCHUMACHER

Linear models

The Johnson-Schumacher model is one of the few models considered
that can readily be fitted, albeit in modified form, by multiple
linear regression analysis. This form was used’by a nuhber of workers
including Schumacher (1939) and Clutter (1963)., The equation can be

formulated as

In(Y) = by 4 F(A) + (V) (V.24)
where. |

F(R) = b, /A ) (v.25)

F(Y,q) = by Yig - (v.26)
and where

Y = yield,

Y1U=' site potential, yield at age 10,

A = vage, and, |

bD, b1 and b2 are the parameters to be estimated.

Equation V.24 was formulated in this'way because the submodels,
Equations V.25 and V.26 as used by Schumacher and Clutter, are not
wholly satisfactory. For practical reasons the estimated yield at
age ten should be within the confidence limits‘of the estimate of site
potential and this is clearly unlikely if Equation V.26 is used. Of the
alternatives suggested earlier, Equations V.6a-V.be, the logarithmic form

was logically superior to the polynocmial or reciprocal forms with the
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coefficient of (ln(Y1D)) theoretically equal to 1.0; however all were
evaluated, Bailey and Cluttér (1974) suggested replacing age by a
power functioh which was unsuitable fér multiple linear regression
analysis. As a simple linear approximation, Equation V.25 was also

formulated as a polynomial and as a logarithmic function of age.

Analysis of these linear models showed that the reciprocal of age
was considerably superior to the polynomial or logarithmic forms, and
that the logarithm of site potential was superior to the other forms,

a not unexpected result, The results are summarised in Appendix 4.5a.

In(Y) = 4,740 -~ 25.64/A + 0.5400 1n(Y

_ {(v.27)
(0,095)  (0.30) (0.0189)

10)
The addition of an interaction term was significant:

1n(Y) = 6.509 - 61.26/A + 0.1793 ln(Y1U) + 7.270 ln(Y1D)/A
(0.127) (3.12) (0.0349) : (0.270)

A (v.28)
but this simple addition to the linear model changed a relatively simple

yield model into a considerably more complex one:

b

: 2
Y = by exp(-b1/A) (Y10) exp(b3 ln(Y1U)/A) (v.29)
compared with
. b
2
Y = by exp(-b1/A) (Y10) | | (v.30)

Table V,2 summarises the results whenquuation V.27 and V.28 were
fitted to the test data. The models were poor predictors and consistent—
ly violated the assumptions of the analysis. This was surprising as
Clutter (1963) had claimed that the use of the logarithmic transformation
uould "generally be more compatible with the statistical‘assumptions
customarily made in regress;on analysis", althdugh‘he'did not show this

to be so in practice,

The linear lcgarithmic model was therefore rejected and the remaining
analyses of the Johnson-Schumacher model were on nonlinear forms where the

error terms were considered additive rather than multiplicative.
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Nonlinear models, uUnconditioned

When Equations V.27 and V.28 were fitted as a nonlinear yield model
(Equations V.29 and V.30) the sum of the squared residuals was lowered
by some 18%, reflecting the avoidance of the logarithmic bias., The
estimated parameters in Equation V.31 were all significantly different
from those in Equation V,27 using a t test, confirming the belief that
the assumption of additivity in the error term had a markedly different

effect to the assumption of multiplicativity in the linear logarithmic

form,

0.4595
Y = exp(5.200) exp (=27.23/R) Y

(v.31)
(0.078) (0.43)

19(0.0150)

For all models evaluated yield approaches zero as agé approaches
zero, that is AD approaches zero. This seemea unduly restrictive as .
the analysis of the Bertalanffy model had indicated that AU was site
dependent; The addition of the interaction term in Equation V.28 was

thought to be a proxy for AU so a number of alternative models were

evaluated with différent nonlinear structures,

Table V.3 shows the results for some of the models fitted, the
complete set being summarised in Appendix 4.5b.,  Model 2d in Table V.3,
the nonlinear équivalent te Equation V.28, was surprisingly not sig-
nificantly better than Model 5, the nonlinear equivaient of Equation V.27,
and this could only be attributed to the change in error structure.
ModélZA, Equation V.32, where age was replaced by a linear function in
Y10 plus age, was the best»model, being considerably better than the
form (Model 26) where the addition of parameters resulted in the residual
sum squares inflating as misspecification affected the asymptotic
efficiency of the program. The guadratic term used by Ferguson and
Leech (1976b), Model 36 Table V.3, was also not significantly better;
Replécing A

0 by a power function (Model 33, Equation V.33) provided an

efficient model, but the model could not be compared with Model 23 because
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Table V.3
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the extra parameter.in Model 23 was not a simple additive increase in

structural complexity. -

0.3867
Y = exp(5.706) exp(=35.16/(A + 0.7253 + 0.01556 Y1D)) Yio
(0.106) (1.21) (0.,2478) (0.00231) _ (0.0139)
(v.32)
0.6392 0.4580
Y = exp(5.795) exp(-=13.33/A ) Yio ' (v.33)
(0.152) (1.12)(0.0499) (0.0141)

Equation V.32 was not favoured because the estimated pafameters
are»such that estimated value of A0 was negative, which ;s biologically
unsound, The age scaling implicit in Equation V.33 provided approx-
imately equally efficient estimators with the more satisfactory biological
inference that AD is zero, and as well the age of culmination of current
annual increment is not fixed at half the age of culmination of mean -
annual increment, However as the model will generally be used only from

age 10 both eqﬁations could have been satisfactory in practice, sc both

were tested using'the independent test data.

Both equations were less satisfactory than the Bertalanffy yield
model as predictors and both violated the assumptions of the analysis,
although the nonlinear form was better than the transformed linear form

in this regard as can be seen in Table V.2.

Nonlinear models, conditioned

These unconditioned models could hardly be expected to be satisfactory
predictors as the estimated yield at age 10 was proportidnal to a power

function in Y Within the range of the data the error in estimated

10° ,
yield at age 10 for Equationm V.31 varied from 72% to -23%, in a consistent
manner, with the error being zero near the mean of the data, This was

‘hardly satisféctory for practical use,
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Conditioning the model reduced by two the number of parameters to be

estimated; thus equations V.32 and V.33 became

- 22 - 22
Y = Y10 exp bD{:1/(A-Z1) - 1/(10-21) ] (v.34)
where for Equation V.32
Z1 = b,| + b2 Y10 (v.35)
22 = 1AD

and for Equation V.33

z, = 0.0 , (v.36)

z = b,"

Other alternative structures for Z1 evaluated included the quadratic and

cubic terms, When these models were evaluated the best model was

by = =37.73 : (v.37)
(1.64)

Z, = 0.8826 - 0,04339 Y, ~ 0.6479 107 v, *
(0.3568) (0.00313) (0.0922 107°%)

22 = 1,0

Allowing 22 to float was not significantly better than fixing the
parameter at 1,0, regardless of whether a linear or quadratic structure
for Z, was used,  This model was still unsatisfactory, as Zys which in

reality is an estimate of AO, was still negative for the range of the

data.

When evaluated as a predictor, Table V.2, Equation V.37 proved to be
the best of the Johnson-Schumacher forms, marginally pooref than the
Bertalanffy model, The equation violated the assumptions of the analysis

and was less satisfactory than the Bertalanffy conditioned yield model.



summary

The analysis of the Johnson-~Schumacher model form was in general
unsatisfactory. The advéntage that Clugter (1963) claimed for the
logarithm of yield over yield as the dependent variable, that it would
better satisfy the assumptions of the analysis, was not borne out in
practice, Indeed neither dependent variable was satisfactory, The
linear model was an unsatisfactory predictor being consisﬁently poorer
than the conditioned Bertalanffy yield model. When the model was
fitted nonlinearly both the Johnson (1935) form and the power form used
by Bailey and Clutter (1974) were equally efficient estimators, but the
power form was preferred for biological reasons, This nonlinear model
was no better a predictor than the linear model, and was unsatisfactory
as the estimated yieid at age 10 was in error by more than the likely
confidence limits of the estimate of-site potential at both high and
low site potential levels, wﬁen fhe‘model was conditioned through Y10
at age 10 the exponential power reverted to 1.0 and the best model was
the Johnson form. This was the best prediétor of the models tested but

was still poorer than the conditioned Bertalanffy model.

The Johnson~Schumacher form was rejected for further analysis
because it was an inferior predictor, violated the assumptions of the

analysis, and, as developed, was biologically untenable at early ages.,



94

BEDNARZ

For the evaluation of the Bednarz model, Equation IV.26 was re-—

formulated to include AD and to pass through age 10 valués.

ln(a(A—AD)b+1) I

Y = Yoo

V.38
1n(a(10—AD)b+1) g ( )

Y = yield,
T Y10= site potential, yield at age 10,
A = agse,
AD = the age at which volume growth commences, and,

a and b are the two parameters to be estimated.

Various submodels for AO’ a and b were evaluated and the most
satisfactory model was Equation V.39 below. The other models are

summarised in Appendix 4,6a.

a = 0.02714 : (v.39)
(0.00514)

b = 1.219
(0.202)

AQ = 8.938 exp(~0.004152 Y, )

(0.433) (0.001028)

The equation was as satisfactory a predictor as the conditioned

Bertalanffy yield model (Table V.2) as were the estimates.

Because the yield model was an efficient predictor the Bednarz model
was also evaluated as a periodic annual increment model using the difference
equation (Equation V.10). The results are summarised in Appendixvd.ﬁb

where it can be seen that Equation V.40 was the best model.



a = 0,03007 (v.40)
(0.00144)

b = 1.1436
(0.0536)

Ay = 8.914 exp(-0.003473 Y, )

(0.162) (0.000246)

This structure was the same as the structure of‘the yield model, The
parameters a and b were independent of site potential confirming
Bednarzsresults for height. The exponential decay model for AD provid-
ed. the best estimators but the submodel was not conditioned so that at
age ten AD was 10.0. When Ehe periodic annual increment model was
evaluated (Table V.2) the results paralleled the Bertalanffy results

very closely.,

The analysis showed that the Bednarz model provided a satisfactory
prediction model, as good'as the Bertalanffy but not better. The model
could have been used for subsequent analyses but was not preferred for

five relatively minor reasons.

1 To achieve a satisfactory prediction model four parameters

were needed compared with three for the Bertalanffy model,

2 The submodel for AU was inadequate at extremely low values of

site potential as Y10 approaches zero.

-3 The Bertalanffy model has a more coherent biological basis to
its structure and it was felt that extrapolation of the Bertalanffy

model might be marginally less hazardous.

4 Although for the Bertalanffy model the allometric constant m was

zero, inferring that increment culminates at age A_, the addition

G’
of this parameter in future analyses with better data could approx-
imate the more biologically acceptable sigmoidal form. The

Bednarz model cannot readily be extended tQ allow this sigmoidal

formo



5 The Bednarz model does not reach an asymptotic maximum yield.

OTHER MODEL FORMS

GomEertz

The evaluation of the Bertalanffy models indicated that the
allometric constant could be taken as zero. - This cast doubt on the
usefulness of the Gohpertz model, which is claimed as the limiting
form of the Chapman-Richards equation (similar to the second level

Bertalanffy) as m approaches 1.0 (Richards, 1959; Pienaar, 1966).

The Gompertz model was fitted as a conditioned yield model with

various polynomial forms for the parameters Ai (the age at which

0
o

increment culminates) and b, the parameter a in Equation IV,17 being

conditioned out of the model. The models fitted are summarised in

Appendix 4,7, the best of them being.

exp(exp(-b(A=A;)))
Y = Y1 ' : (v.a1)
exp(exp(=b(10-A,)))
where
Ai = 19,47
‘ (0.30)
b = 0.1161 - 0.0003779 Y, + 0.6817 10:2 a0
(0.0035)  (0.0000257) (0.0705 10 )
and where
Y = yield,
Y1O= site potential, yield at age 10,
A = age,
A; = age at culmination of volume growth, and with

b were the two parameters estimated. '
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When this equation was fitted to the independent test data
(Table V.2) it was inferior to the Bertalanffy model as a predictor,
and the éssumptions of the analysis.were still violated. Because it
was so inferior the Thomasius (1964) model derived from the Gompertz

was not evaluated and the line of development was rejected.

Polynomial

The polynomial model form was rejected in Chapter IV (Equation IV.1)
because it lacks any biological basis to its structure and because, if

used, it was likely to behave erratically as avpredictor at the extrem-

ities of the data.

The polynbmial was evaluated for completeness and to try to provide
further guantitative just;fication for its rejection. Stepwise regres—
sion (Draper and Smith, 19663 Efroymson, 1962) was used initially rather
than combinatorial screening (Grﬁsenbaugh, 1967), or regression by leaps
and bounds (Furnival and Wilson, 1974), because it was simpler and less

wasteful of computing resources.,

An unconditioned yield model was fitted to.a sixth order polynomial
in age. interacting with a fourth order polynomial in site potential. A
second simpler model used a fourth order in age interacting with a second
order in site potential, Both reduced to seven pérameters but the reduc~
ed model with the lower range of powers explained slightly more (0.013%)
of the variation than the more cbmplex model, emphasizing the warnings of
Draper and Smith (1966) and Grosenbaugh (1967) concerning the disadvantages

of stepwise regression. The model with the lower powers was accepted.
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Y = =212.26 + 22,44 A - 0,003895 A° + 0,01083 A Y10
(1.74) (0.001062) (0.,00139)
o
~0.001914 A™ ¥, + 0.00003694 A Yio
(0.000772) (0.00001533)
-7 .3 2 ~
-0.4346 10_, A .0 (Vaaz)

(0.1876 10"

)

When fitted to the independent.test data (Table V.2) the equation
proved fo‘be one of fhe poorest models evaluated in spite of its héving
more terms (seven, compared with three for the second levei Bertalanffy
pe;iodic annual increment model). Equation V.42 has a maximum yield
for SQ VII at age 45, outside the range of the data but within the region
of interest, other site qualities having maxima soon after age 50, These"
maxima are biologically unsatisfactory as yield is expected to increase
with age, approaching a maximum asymptotically, but never reaching‘it;
Evaluation using either combinatorial screening or leaps and bounds was

not carried out because it was unlikely to provide the marked improvement

necessary for the polynomial to be useful as a predictor. The polynomial

was re jected,

Lewis's yield table

The growth ppediction technique currently used in South_Australia;
embodied in the Woods ana Forests Department Yield Regulation system, is
the latest version of the graphical yield table developed by Lewis
(Lewis, Keeves aﬁd Leech, 1976). At the time it was deQeloped it was
believed to fit thinned stands of all ages up to age 50, but was believed
‘to overestimate for unthinned stands past’age 35, In practice this
restriction in its applicabiiity is of little significance as very feuw
stands are léft unthinned after age 30, It was of interest to compare
the fit of this subjectively defined model with the cher models -developed

in this chapter,
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The test data used in this chapter are not truly independent for
nis énalysis as they were included in the data Lewis used, but their
effect would have been smamped by the other ploté as lLewis used all 313
plots available. Table V.2 shous that the graphical yield table was
nearly as good a predictor as the cconditioned Bertalanffy‘periodic annual
increment model (standard deviation of the deviates 52,25 compared with

51.51) and better than the Jchnson-Schumacher model or the polynomial.

Careful development of a graphicél yield table by the directing |
cu}ve technique as used by Lewis, ahd as used before cBmputers made the
current statistical analyses possible,.provides an efficient predictor |
nearly as good as the best model developed and better than most of the
other models, Although open to bias and although confidence limits

cannot be calculated, the technique obviously can provide efficient

prediction models. Analyses of growth using modern statistical and
computational technigues must be very carefully carried out if they are
to improve on the techniques used by earlier generations of forest

s

managers.

SUMMARY

fhe explorafory analyses of the unthinned déta confirmed the con-
clusion of Chabter IV that the second level Bertalanffy model was the
best model faém.’ The structure is simple, although nonlinear, and the
parameters were'more readily intefpreted biologically than fhe other
models, The allometric constant m was not significantly different
from 0.0, the Mitscherlich form, probably because there were insufficient
data at early ages rather than from biological correctness., Despite this
limitation the model is satisfactory past age 10, the age that will in
préctice be used a3z a minimum, Aé further data become available perhaps

the Mitscherlich form may be replaced by the second level form.
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The model was-best fitted as a conditioned periodic annual increment
model'in spite of the theoretical disadvantages induced by the condition-
ing. This was attributed to the trade off between the statistical dis-
advantages of the conditioning and the analytical advantages in asymp-
totic efficiency for the simpler model, and to the nonlinear structure,
As foreshadowed, periodic annual increment was better than yield in
satisfying the assumptions of the analysis, but even so was unsatis—
factory. It was hoped that better model specification including

thinning parameters would reduce the serial correlation to an acceptable

level,

The Johnson-Schumacher model in linear form was unsatisfactory and,
although a nonlinear form was developed that was a relatively satis-
factory predictor, it was unsatisfactory as a predictor of early age
grouwth, The Bednarz model was developed easily and was a relatively
godd predictor, but was rejected because it lacked a coherent biological
basis and could not be used at early ages., The Gompertz model was con-
siderably poorer than the Bertalanffy., The polynomial was an inefficient

predictor and as it lacked any biological structure it was rejected.

Lewis's yield table was interesting in that'it_uas a marginally
poorer predictor than the best models developed, but was better than
many of the other models that have been used in previous yield predic-
tion work. Although it is impossible to compute confidence limité for
a subjectively defined graphical yield table it clearly demonstrated that

careful subjective analysis can provide a good prediction model,

The conditioned Bertalanffy periodic annual increment model was
accepted as a suitable model for further analysis on the combined data

from thinned and unthinned stands.,
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VI MODELS BASED ON DATA rROM ALL STANDS

In Chapter V the conditioned Bertalanffy periodic annual increment
model, developed on the pooled data as a difference eguation using the
yield model, was shown to be the most satisfactory estimator for un-
thinned stands and one of the best predictors, The objective of this
chapter was to extend the model to investigate the effect of thinning
and other stand variables such as form and soil type. This model was
developed using data from the lower south-east of the state. Its
extension to other areas in South Australia and its'applicability to

second rotation stands were then investigated.

THINNING

In Chapter III three factors which describe a thinning were
defined: thinning type, thinning grade and thinning interval.  However

these variables are not conveniently incorporated in the yield model.

Thinning changes the level of competition in the stand and it was
believed that a thinning affects increment some years after that thinn-
ing. - The use of competition level as a variable does not take into
‘account how the stand reached that level. Buckman (1962) preferred
to use a relative meésure, the proportion of the forest cut, rather than
the absoiute level of COmpetitiqn. " The proportion is a measure of the
effect on the proportion of the site that is occupied immediately follow-

ing a thinning and therefore represents thinning shock.

Thinning type was ignored in this study as it varied little in the
data base, all thinnings being predominantly from below. Thinning inter-
val as such was irrelevant to this study as it is embodied in the change

in competition level with age.



Thinning was therefore investigated in terms of two variables:
1 competition level, and,

2 thinning shock,

Cempetition level

The effect on'increment of changing the level of competition was
considered by Langsaeter (1941) and Moller (1954a, 1954b) in a qualit-

ative manner, Langsaeter's model, Figure V1.1, can be interpreted in

the following way.

Stage I The free growth stage where the individual trees have no
influence on their neighbours, volume increment is there-

fore proportional to the volume of trees standing.

Stage II In this transitional stage the trees are beginning to
crowd one another increasingly, but the site is still

not fully occupied.

Stage III This broad band denotes the level of full site occupancy
in which growth is almost independent of stand density,

provided all the trees are healthy.

Stage IV As stand density increases the trees stagnate and growth

rate decreases,

Stage V  Competition between trees is so intense that trees become

moribund and eventually die.

The most important part of this.model fof forest management is the
shape of stage II and the width of stage III, for South Australian
experience suggests that the most economic regime will keeb the sténd
at or about fhe stage I1I- stage II1 boundary, Stage‘IU is only reached‘
by severe%j ocverstocked étands such as those still unthinned at age Z30.

Moller (1954a, 1954b) used basal area as the competition index and his
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Figure VI,1
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work suggests that Langsaeter's stage 111 may be quite broad, Moller's
work (Figure VI.1) is equivalént to Langéaeter's stages I-1II and has
been widely cifed in the literature.- The impiication of Moller's model
is that increment does not decline as the competition level appréaches
the maximum the site can sustain but remains near constant, Limited
evidence from permanent sample plot trends, notably evidence from
adjacent plots X, Y, 304 and 305 reported by Leﬁis (1962), indicated
that Langsaeter's model vas more likely fo be correct under South

Australian conditions.

- Two different approaches taking tﬁe effecf of competition level
into account were evaluated.r, In the first the parameters in the model
were reformulated in terms of competition level, and in the second
periodic annual increment was corrected by a multiplicatiQe competition

level function.

The parameter ,p‘ in Equation U;1 was-the onlyvparameter that ecould
logically be related to the level of competition, for the allometric
constant m had already been shomn-to be close to zero (Chapter V).
Moregver AO shouldvﬁe independent of changes in the level of éompetition,

because commerical thinning takes place after age A Various models -

0°
were formulated about the effect of the level of competition on the

catabolic destruction rate p.

= . ' VI.1
P Pg + Py D , (V1.1b)
2 .
- VI.1
p p0+pp10+920 | -~ (v1.e)
p = Py D 1 ' - : ; (v1i.1d)
p o '
2 .
= . : VI)1e
p Pg + Py D | » ( 1e)
= p, + ———— AF
p Po ¥ T30 (VI.1F)
2
Pg
= —— VI
P 1= P, D ; ( )

where
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D = competition level or stand density,
p = the catabolic destruction rate in Equation V.1, and,

Pgs Pq and p, are the parameteré to be estimated.

Of the forms the power function (Equation VI.1d) was thought to be
biclogically the best, but as the others may have been statisticalily

better estimators and predictors they were also evaluated,

Reformulating Equation V.10 as

Pai = {(YA+i -v)/ i} '21 (vi.2)
where |

Pai = periodic annual incfement,

YA = yield at age A, and,

i = increment period,

enables Z,I to be a function of competition level such that it approx-
imates the three middle stages of the Langsaeter mo&él, the likely range
of the daté. A large number of formulations were pqssible but considera-
tion of the work of Buckman (1962), Kira et al. (1953), Clutter (1963),
Sullivan and Clutter (1972) and Bevege (1972) suggested the following

-

forms would be worthy of evaluation,

z, = 1.0 ' (VI.3a)

z{ = by + b, D - (V1.3b)

Z, = by +b D+b, 0? | (VI.3c)
'z, = b0’+ b, / D . ’ o (VI.3d)

Z, = by +b, 1n(D) o - (v1.3e)

z, = by +b, exp(1 /D) I | (VI.3F)

b, '
Z, = by+b, 0 . (vi.3g)
where
Z1 = the function in Equation VI.2,
D = the level of competition or stand density, and,

bys by and b, are the parameters to be estimated.
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The following ftorms were also evaluated as they exhibit under certain

conditions the form of stages 1I, III and IV in Langsaeter'‘'s model.

(D -b,)
z, = by b, (V1.3h)
2y = by + by /D+b2 D (Vi.3i)
Z, =b_+b, D+b, D°+b, D 4 b D" (VI.3])
17 % T 2 3 cre v 0 =

If p 1is replaced by a function in stand density then the maximum
asymptotic yield varies with stand density whereas if the f‘unction‘Z1 is
used then the asymptotic maximum yield is independent of stand density.

The latter seemed biologically more plausible.

Both nqmber of trees per unit area and standing volume were consid=—
ered in Chapter II to be satisfactory indices of stand density. Both
were evaluated, the models initially using volume because this seemed

the better index for this application.

Thinning shock

Immediately after a thinning the site will be less than fully
occupied and in this regard less increment will be put onto the standing
trees than a stand of the same competition level that was thinned some

years earlier.

The effect of thinning shock must be to reduce increment so it was
logical to formulate thinning shock models as in Equation VI.2 witthq

being a function of thinning shobk. The eight measures of thinning

shock considered were various combinations of three alternatives:

1 uhethér the measure should bekased on volume cr number of trees

per unit area,

2 whether the absolute or relative measure should be used, and,
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3 whether the effect should be considered to last one year only or

whether the effect should last throughout the increment period.

The eight measures of thinning shock were:

where

Nt

Nb

il

Vvt =

Vb

Nt

Nt /i

Nt / Nb

Nt / (Nb i)
vt |
vt /i

vt / vb

vt / (ub i)

thinning shock,

increment period,

number of trees per hectare removed in thinning,

(VI.4a)

(VI.4b)

(VI.4c)

(v1.4d)
(VI.4e)
(v1.4f)
(Vi.ag)

(VI.4h)

number of trees per hectare standing before thinning,

volume removed in thinning, and,

standing volume before thinning.

As thinning shock was likely to be masked by the effect of varying

competition level it was decided to analyse competition level first.

_ The exact structure to be analysed could then be additive or multi=-

plicative, for example, if competition level was not included in the

model then

N
Il

w
i

for Equation VI.2.

the function in Equation VI.2,
thinning shock, and,

the parameter te be estimated.

(V1.5)
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This formulation could also apply if p was a function of competition
level, On the other hand if the competition level model was one of the

forms in Equation VI.3 such as Equatiﬁn VI.3c then

2

Z, =bg + b, D+ b, D" + b, S (vi.6a)
2

Z, =bg+ by D+b, D" +b,S+b, DS ~ (vi.6b)
2 2 .

Z1 = bU + b1 D + b2 D" + by S + b, DS+ b, D" S (vi.6c)

were all possible forms, or even

2
z, = (bD +b, D+b,D ) (1 + by ) (vi.6d)

Z1 = the function Z, in Equation VI.2,

1
D = the level of competition,
S = thinning shock, and,

bU’ b1, b2,... b5 are the parameters to be estimated,

All these uwere possible’models, although the multiplicative model,

Equation VI.6d, was thought likely to be poorer than the other structures,

Data

The.data used in Chapter V were inappropriate for the development of
periodic annual increment models incorpofating the effectbof thinning. -
All the available thinned and unthinned data from the lower southe~east
of South Australia were pooled and randomly allccated by plots such that
approximatelyvﬁﬂ% were used as developmental data, 40% as independent
test data. Appendix 1.4 summarises the two data sets and the selection

technique.

There were 969 observations in the developmentai data and 669 in the

independent test data.



Analysis of competition level

The various models incorporating.the level of competition were
fitted to the data using standing volume as the stand density index.
Models 1-14, Appendix 5.1a, summarises the results for Equation VI.1
where the competition level was included in the formulation of p.

Models 20-30, Appendix 5.,1b, summarises the models for the othef develop—
mental line where competition level was included in a correction factor

to periodic annual increment.

Of the models where p was reformulated in terms of competition
level, Model 4, Table VI.1 and Appendix 5.1a, proved to be the best model,
This structure implies that there is no intefaction between the level of
competition and site potential, for Modei 5 with two extra interaction
parameters waé not significantly better.- On the other hand Model 21,
Table VI.1 and Appendix S.1b, proved to be the best of the models where
the competition level was included in a.correction factor to periodic
increment. The implication of this structure is that the gualitative
structure of Langsaeter is best fitted by a simple quadratic.model, better
than Equation VI.3h, Model 27, which was thought to be more logical as it
allous curves to closely approximate Langsaeter's stages II, III and 1Vj

very flat at the peak ahd tapéring rapidly at the extremes,

The correction factor approach Consistehtly explained more of the
variation than the models where p was reformulated in terms of compet-
ition level, The relatively flat response curve was in part 2 reflec-

tion of the paucity of data from extremely heavily thinned stands,

The flat natu;e of the curve was confirmed by calculating the mean
deviate of a subjéctively selected subset of the mcst heavily thinned
plaots, The mean deviate for these 39 observations was not significantly
different from zero. It was inferred that the model was satisfactory

within the range of the data,
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Table VI.1
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The superiority of the correction factor supported the contention
that the asymptotic maximum yield is independent of the lesvel of

competition.

For completeness the allometric constant m was evaluated again,
but Models 15-17, Appendix 5.%1a, and Models 31-33, Appendix 5.1b,

showed that the Mitscherlich form with m=0.0 was still satisfactory,

Both p and AD were reformulated to include stocking at age
10 (N1O) so that initial plantation espacement could be evaluated.

A number of modelsvwere fitted {(including Models 18 and ig, Appendix
5.17a, and Models 34 and 35, Appendix 5.1b) but in no case was the
addition of N10 significant. Although the inspection of tﬁe independent
test data in Chaptervv had suggested that this variable might be sig-

nificant, the range of the data was probably still too narrow to énable

"the variable to be included in the model.

If stand density was not standing volume but number of trees per
~unit area, the other index suggested in Chapter II, then slightly
inferior estimators resulted (Table VI.1). Volume was accepted as the

best index of the level of competition,

Equations VI.2, VI.7 and VI.8 provided the best model including

competition level,

Pai = | {(YA+i'+ Y,/ i} Z, _ _ (v1.2)v

Yo = Y10

1 = exp(~p(A-Ay)) { | |
(v1.7)
1

1 = exp(-p(10-A;))
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p = 0.009890 + 0.4837 10:2 Yio (v1.8)
(0.002694)  (0.1232 107 )
AO = 10.0 exp(-~0.007668 Y1U)
(0.000769)
' -5 2
Z1 = 1,405 + 0.001168 D - G.1174 10 5 D
(0.109) (0.000273)  (0.0272 107 ")
and uwhere
YA = yield at age A,
A = age,
nu:z site potential,
i = increment period,
Pai = periodic annual increment,
D = the level of competition or stand density (volume),

p and AD are the same parameters as in Equatien V.10, and,

Z1 = the correction factor to periodic annual increment,

When Equation VI.8 was fitted to the independent test data the mean
deviate was D.1d and the standard deviation of the deviates was 5,58,
The deviates were homogeneous regardlessvof how they were partitioned
and were normally distributed, The Durbin-Watson d statistic was
1.33 and significant, indicating that misspecification was still a problem.
0f the 23 plots with more than 10 observations 3 plots had mean deviates
significantly different from zero. Two of these plets are on volcanic
soils that have always been thought to have different growth trends
compared with the other predominantly sandy soils. It was thought that
the inclusion of éoil variables would possibly cvercome this misspecificé-
tion,. Uf-the 13 age/site potential cells two had mean deviates signif=
icantly different from zero, but these two cells were adjacent and had
opposite signs for the mean deviate, As the estimated t valpes were
only Jjust greater fhan fhe significance level, the results were considered

reasonably satisfactory.
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Analysis of thinnihg shock

Thinning shock was ﬁhen investigated. Because volume proved to be
margihally suﬁerior to number of trees as thevindex of competition level,
only the four volume based forms of thinning shock, Equaticns VI.4e-
VI.4h, are repofted. Some 17 different models were fitted, Appendix
5.2, using both forms of the competition models. If competition level
was included in the.function for p then, although the addition of
thinning shock was significant for any of the forms tried, the réduction
in the residual sums of squares was at most 1.5%; considerably lower
than the reduction of 3.5% if the competition level was the multiﬁlica-
tive correction factor, The best of the four measures of-thinnihg
shock was Equation VI.4h, a relative meaéure that assumes thinning
shock only lasts one year. Surprisingly Equation VI.6d was éuperior
to the additive structures of Equation UI.ﬁa,'UI.Gb and VI.6c resulting
in the multiplicative model, Equation VI.O bélom. It could only be
inferred that competition level and thinning shock are best considered
as acting separately and independently in correcting the periodic annual
increment. The structure of Equation VI.9 was clumsy and inelegant but
was logical, as well as being statistically the most efficient estimator.

4

p = 0.005075 + 0.5855 10:4 .0 (vi.9)
- (0.002623)  (0.1164 107 ) '
Ag = 10.0 exp(=0.009172 VY, )

(0.000841)

3.
3

D - 0.7380 1070 0%) (1.0 - 0.4287 3)

Z, = (1.700 + 0.4426 10_ &
) (0.3050 1077) (0.0731)

(0.114)  (0.2335 10"

where

P, AD and Z, are as for Equation VI.7,

1
{10 = site potential,
D = competition level (velume), and,

N

S = thinning sheck, (Vt/(vb i)), relative volume, the effect

lasting ohe year only.



\

\

115

Equation VI.9 was then fitted to the independent test data and the
results closely'resembled those for Equation VI.8. The deviates had a
standard deviation of 5.54 about the‘mean of ﬁ;10, wefe homogeneous and
were normally distributed, The Durbin-Watson d statistic was'again
sigﬁificant at 1.33, indicating misspecification. Of the 23 plots 3
had mean deviates significantly different from zero, but only one
age/site potential cell was significantly different from Zero. When
the equation was evaluated as a yield predictor 5 of the 23 plots and
one of the 13 aée/site potential cells had mean deviates significantly
differént from zero, again ihdicating that there was a correlaticn with
soil type, The mean deviate for all observations was not siénificantly
different from zero. | The anaiysis was still unsatisfactory bgt was the
best to daté and there was some hbpe that the incorporation of soil and

form variables would provide an even more satisfactory model.

SOIL AND FORM

There was limited evidence from the data that different soil types
had different volume-age trends, The shallower terra rossa scils
appeared to have a consistently lower increment at later ages than‘séndy
soils of the same site potential, which in turn appéared tb have a lerr

increment than volcanic soils,

As sgil type was defined qualitatiuelyvrather than quanfitatively.
it was difficult to formulate testable hypotheses concerning the effect
on yield, The soil types could only be grﬁuped arbitrarily into a small
number of groups and dummy variables (Johnston, 1963; Cunia, 1973) used
to determine whether the afbitrary groupings were significantly different
or ﬁat. This required only that soil variant parameters be recognised,
not that any relationship between soil groups be formulated. Hypothesis

tests were then used to test different angregations of soil types.
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Of the parameters in the model the parameter p was the one con-
sidered most likely to vary between soil types. Equation VI.10 shows
the various alternative formulations ‘possible, where Equation VI.10a is

the base model and soil invariant.

P = Pg+ P, Y1D (vi.10a)

p = dg+p, .o : (vi.10b)

P = Pg+dy Y ' (vi.10c)

P o= dy+d; Vg ’ , (vi.10d)

p = dj (pD + Py Y1U) - (vi.10e)
where | |

p = the parameter in Equation UI.f,

Y1U= site potential,

Py and P are the parameters independent of soil types,
and

dO and d1 are parameters, dummy variables,bone for each

soil type.

In Chapter II six form measures were defined based on alternative
concepts of formwiz.stand form factor and average stand taper. As a
form measure could conceivably affect each of tﬁe paraheters in the
model, it was decided to evaluate form by replacing each of the
parameters in turn with a linear function of each of the stand form

-indices in turn,

b = bD + b1 F : (vi.11)
where
b = the parameter in the model,
F = one of the six'alternative stand form indices, and,

b0 and-b1 are the parameters to be estimated.
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Form is a continuous variable, that was thought might vary betuween
soil types, As it was possible that a form index could be a continuous

variable proxy for soil type, the two variables were analysed separately

and together,

Data

There are a wide range of soils in the south-east of South Australia
ranging from deep aeolian sands to shallow heavy soils over iimestone.
The soil typeg for each plot are tabulatedbin Appendix 1.1 and summarised
in Appendix 1.2, Because there were 34 different soil pfofiles recognis-
ed, the developmental and test data were combined to give 1638 observa-
tions (Appendix 1.4e)., Even then eabh soil type could not be analysed
separately as some>had too few observations to allow all parameters to
be estimated, so the data were subjectively aggregated into tueive
morphological groups togsther uith_a miscellaneoﬁs group with widely
divergent, but poorly represented, soil types. These groups are defined

‘in Table VI.2.

The stand form indices used required an estimate of .upper‘stand
height at age 10, This was not available for all the 969 observations
in the developmental data used in the competiﬁion analyses, as many of
the older plots were first measured for basal area, volume andkmean
dominant height, but not predominant height. Tﬁe 969 observations were
culled to 723 that had estimates of predominant heightAwithin three yeérs
of age 10, thus enabling estimates of stand formvfactor and averéée stand

taper at age 10 to be used.

- For the analyses evaluating form and soil types together, the 1638

observations were culled in the same way to 1271 observaticns.
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Results

When each parameter in Equation VI.8 was allowed to vary between
the different groups of soil types, thét is the 7x13 paramefer model was
fitted to the 1638 observations, Bard's (1967) program failed to converge.
After considerable effort it was concluded that it was the program and
not the use of the program that was at fault and that it could not be

used for dummy variables, No suitable alternative program was available.

The procedure Finallyvadopted was é‘variant of stagewise regression
(Draper and Smith, 1966) and although the best technique évailabie it was
repognised that the estimators were not tfue minimum‘variance estimators
and that the parameter estimates may be biaséd. Sténdard statistical

tests were not necessarily valid and the model evaluation was somewhat

arbitrary,

The 1638 observations were divided by soil group and to each of the
13 data subsets three levels of models were fitted based on Equations

VI.2, VI.7 and VI.9:

1 Where 6 of the 7 parameters were fixed at the Equation VI.9

estimates, the other being allowed to float.

2 Similar to 1 above, but where Py and one other parameter were

allowed to float,

3 Where all 7 parameters were allowed to float,

Level 3 was therefore a true minimum variance estimate. The

residual sum squares were then aggregated across all 13 subsets.

For_lguél1 the residual sum squares when'pD was allowed to float
was 44112.7, lower than when p, was allowed to float (44227.6) and lower
than the other five models (lowest of these 44541,6), compared with

allouing‘no parameters to float (47628.6). For each individual data
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subset the model ailcuing Py to float was compared with the fit of the
combined model and for 6 of the 13 groups the improvement in fit was
considerable and would have been sigéificant if Gallant's test was
appropriate, The inference was that Equation VI.10b wés better than
Equation VI.10d and also better than Equation VI.10a; soil seemed to be
a significant variable in the model. The best of the level 2 models
was when both Py and p, were allowed to float (residual sum squares
43646,3) but the gain was minimal compared with allowing just Py to
float. tevel 3, allowing all seven parameters to float, had a combined
residual sum squares of 42307.3, a marginal reduction over allowing Py
alone to float, considering it had 91 parameters rather than 19.

Fitting Equation VI.10e provided a residual sum squares of 44207.3,
poorer than Equation VI.10b. The analysis was unsatisfactory as
Gallant'g test was possibly inappropriafe, but it was concluded that

only the parameter Py varied between the 13 soil groups.

The 12 estimates of Py (excluding the miscellaneous group) were
then compared and ordered, as shown in Table VI.2. For a constant site
potential, as Po decreases the asymptotic maximum yield increases; thus
Teble VI.2 infers that for a constant site potential (Y10) a volcanic
soil will grow at a faster rate touafds a higher aéymptotic maximum

yield than either a terra rossa soil or a brown scil from Comaum.

fhese twelve groups were then combined into five groups Eased on
the estimates of Py and the standard error of these estimates, and also
based on morphological and geographical considerations. Because only
one parameter was estimated for each soil-group it was possible to
estimate Pg for each df thé six sbil types in the miscellaneous group
and to allocate four of these to the other groups so that a total of
seven’grodps were recognised. Further ahalyses of individual soil
types and of other groupings (for example by dep#h phase and by Forest

Reserve) indicated that these seven groups ought not be divided further.
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The groups and the estimated Pg values are shown in Table VI.3.
Becauée all the data were included in the analysis it was'not pbésible
to test the resultant models against independent test data. The
residuals were regressed in turn against second order polynomiéls in
age, site potential, competition level and thinning shock, and the re-
gressions uwere not significant. The residuals were normally distrib-
uted and homogeneous but were still serially correlated at d=1.59,

For the plots with more than 10 observations for volumé the Durbin-
Watson d statistic was tested against the extrapblated approximation
of the upper and lower bounds, Of the plots 41% were not significant,
26% were inconclusive (5% for positive and 21% for negative serial
correlation) and 33% were significant (2% pésitive, 31% negative).

This supportea the inference from the pooled estimate that serial
correlation was still a problem, buf investigation of these»plots with

significant negative serial correlation gave no insight into the possible

cause.

At this stage, fo?m was evaluated using the conditioned periodic
annual increment model with competition and thinning shock included but
not soil type. This base model was then Fitted to the reduced data
set of 723 observatioﬁs. Seven models were fitted for each of the
siX stand based form indices, replécing each parameter in Equation VI.9
with a linear function in form index. The results are summarised in

Appendix 5.3.

‘Moét of the models were not significantly better than the base
model and generélly the'only significant ones were those including
sub-parameters of p. The best estimator was the model'inclﬁding pD
as a function of average stand taper at aée 10, although this was only
marginally superior to the rélative stand tapef or the average stgnd
taper at the start of the increment period. Average stand taper at

age 10 was preferred because it is age invariant and was thought to
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better‘reflect soil differences tharn the other indices which vary with

age. Even though significantly better, the
only marginally below the critical level for
reduction in residual sum squares due to the
was only 1%. The estimated parametérs were
from zero using a t test, élthough three,

of form, were only slightly greater than the

residual sum squares was
Gallant's test, and the
additioﬁ of the parameter
all significantly different
including the‘coefficient

critical t wvalue,

The reduction in residual sum squares due to the addition of the

stand form parameter seemed low (1%) compared with the reduction by the

inclusion of dummy variables for soil type (7%) so the combined effect

of soil type and form was then investigated.,

To the 1271 observations four models were then fitted:

1 A seven parameter model without form or

soil variables,

paralleling the thipnning shock model Equation VI.9 -

residual sum squares 36753.3.

2 An eight parameter model including average stand taper at

age 10 in the submodel for Pg - residual sum squares 36404.4.

3 A thirteen parameter mcdel excluding average stand.taper at

age 10, but allowing Py to float for the seven different soil

groups developed previously — residual sum squares 33951.2.

4 A;fourteen parameter model developed along-parallel lines to

the thirteen parametef model but including averége stand taper

‘at age 10 in the function of Pg ~ residual sum squares 33778,3,

Analysis showed that whether average stand taper at age 10 was

included or not the addition of soil varying parameters was significant

(assuming linear model theory holds for this

stagewise analysis). The

addition of average stand taper at age 10 was significant if there were

no soil parametersAbut was just below the critical f value if soil
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parameters were included. The stand based proxies for the trse

variables, form factor and taper, were not included in the model,

The thirteen parameter model with Py varying for the seven soil
groups was the best model, taper at age 10 being but a weak and un-
satisfactory proxy for soil type. The estimated value of Pg for the
volcanic soils was not significantly different from zero but was never-—
theless included td avoid reestimating the other parameters for the one

soil type, and for consistency.

The model based on the 1638 observations was accepted as the best

0OLS model.
Pai = '{(YA+iv +. YA) / 1} Z1 ‘ (vi.2)
1 = exp(=p(A=Ag)) . '
YA" = Y10 (VI.7)

1 - exp(_p(1D-AD))

where
_ ~4
P = pg + 0.585510_, Y, (V1.12)
(0.1164 10 ) -
Pg = 0.00030 for volcanic soils
. (0.00093)
Py = 0.00302 for Caroline, Wandilo and Myora sands
~ (0.00052)
Pg = 0.00539 for other yellow and white sands
(0.00036) : ‘ '
Pg = 0.01119 for Tantanocola flinty sands
» (0.00131) -
Pg = 0.01759 for terra rossa soils and brouwn soils
(0.00201) from Comaum
Pg = 0.01172 for yellow sands from Comaum
’ (0.00225) '
Pg = 0.00534 for rendzinas
(0.00175)
Pg = 0.005075 for all scil types combined

(0.002623)
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Ay = 10.0 exp(-0.009172 Vo)
(0.000841)
=3 - -6 2
Z, = (1.700 + 0.4426 10 D~ 0.7380 10__ D°) (1.0 - 0.4287 5)
(0.114)  (0.2335 10 °) . (0.3050 10 ). (0.0731)
and where
Pai = periodic annual increment,
YA = yield at age A,
A = age,
i = increment period,
P,y AU and Z1 are as for Eguation VI.7,
Y10 = site potential,
D = competition level (volume), and,
S = thinning shock, (Vt/(Vb i)), relative volume, the

effect laéting one year only,

EXTENSION TO OTHER REGIONS

Equatipn VI.12 was developed using data from the lower south-east
region of South Australia and is a satisfactory predictor for that
region, 7 Of the 68 900 ha of radiata pine plantations administered
by the Woods and Forests Department of South Auétralia, some 16 500 ha
are outside that region and”data from these areas were used to determine
whether the model could be extended to other regions in'SOuth Australia
and to provide an indication as to whether or not an Australia-wide model
is feasible, The available data are relatively sparse (Appendices 1.1

and 1.,5) but represent the total available data from these other areas.

‘The seven parameter model Equation VI.9 was then fitted to each
data set in turn. The mean error in perigcdic annual increment was
calculated and a t test used to determine whether this mean deviate
was significantly different from zero. The results are summarised in

Table VI.4.
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Upper éouthneast

For both Noolook and Cave Range Forest Reserves in the upper part
of the south-east region of South Australia (Figure i.1), the mean
deviate was significantly different from zero, the lower south-east model

overestimating considerably,

0f the parameters in the model Py was considered the most likely to
vary between regions, paralleling the socil type analysis. A number of
models were fitted to the data based on the lower south-east model,

Equation VI.9:

1 Allowing one parameter to float,
2 Allowing Py and one other parameter to float.
3 Allowing periodic annual increment to be corrected by a simple

correction factor (C) applied to the lower south-sast model.,

This analysis provided biased estimators but was the best technigue
available as the data were too sparse to allow all seven parameters to

be estimated, The results are summarised in Table VI.S.

The results were confusing. Allowing Py to float was inferior to
the simple correction factor, which for Noolook provided the lowest
variance estimator; | For Cave Range the louest variance‘estimator was
the model allowing dq ﬁo float. Allowing d, to float was partly a proxy
for the correction factor as the terms d,I and d2 have relatively little
effect on incrementf The two models (allo@ing Pg to float and the
correction factor C) were then fitted to the data and the deviates
regressed against age and site potential to determine whether either
or both models were satisfactory. A seéond order polynomial was used

for Noolook where there were more data available, a simple linear model

- for Cave Range.
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Table VI.S
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Thne deviates were not significantly related to site potential but
were felated to age for both alternative models for Noolook, and for the
Py model for Cave Range. Although the correction factor provided
deviates that were not significantly related to age for Cave Range the
estimated F value was only just below the critical level. These results
were disturbing as it had been hoped that these models would not be sig=-
'nificant. Inspection of the data showed that the overestimates were
generally associated with the 1967/68 growing season which throughout
the state héd the lowest rainfall recorded, and these observations had
a relatively greater effect on the regressions because of the narrow

" range of plantation years in the data,

For both forests the data were inadequate and it was concluded that
further analysis was not warranted until more data are available, fop
" beth Foresté the correction factor was slightly bettér than the Py model
in that the significance levels were slightly lower, Until more data
are available the correction factor épprdach is preferred because it is,
and can feadily be seen to be, a simple appfoximation that should be
revised as soon as practicable. The correction factor for Noolook

Foreét Reserve is 0.743 and for Cave Range forest Reserve 0.771.

Adelaide Hills region

For the three forests in the Adelaide Hills region, Mount Crawford,
Kuitpo and Second Valley Forest Reserves, the mean. deviates that were
obtained when Equation VI.9 was fitted to the data were not significantly
diffefent from zero, (Tabie VIi.4). The deviates were regressed-against
age and site potential (a second order polynomial) and none of the
regressions were significant, The lower south-—east model is therefore
a. satisfactory predictor for eachAoF the Forest Reserves in the Adeléide

‘Hills region. _ ) ;



Northern region

For the Forest Reserves of the Northern region, Wirrabara and
Bundaleer, there were relatively few data available and for both these

forests the mean deviate was significantly different from zero, Table VI.4.

Carrying out analysis similar to that for the other significantly
different forests again produced confusing results, Table VI.S. For
Wirrabara the lowest total deviates squared was when a, was allowed to

float, and allowing Py to float was superior to the use of the correction

factor to increment. For Bundaleer allowing a, to float again had the

1
lowest total deviates squared but the correction factor was superior to
allowihg Py to float. Allowing a, to float‘provided an unsatisfactory
model for if Y1D=1DU then A0=2.D and 1.7 for the two forests respectively
compared with 4,0 for the south-eést model. This was biologically un—

souhd as at age AD some trees must be 10.5 cm in diameter. It was better

to use either the correction factor or Pg*

Fitting these tuo‘models to each of the data sets and regressing
the deviates against agé and site potential showed that the deviates
were significantly related to age for Bundaleer but not Wirrabara, and
- that the deviates were not related to site botential for either Foreét.‘
Bundaleer provides an even worse example of badly distributed data
affected by the 1967/68 drought than Noolook and Cave Rahge Fofest
Reserves, The Bundaleer data were from only fouf plantations, and the:
youngest of these was the most severely affected by drought with many
trees having dead tbps and as well there were a number of deaths, As
these data were also for a one year increment period the drough£ effect

was accentuated greatly.

‘The analysié was unsatisféctory because the data were inadequate,
but until further data are available it is probably better to use the

carrection factors of 0.690 for Wirrabara forest Reserve and 0.644 for
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Bundaleer Forest Reserve for two reasons. Firstly the use of the
correction factor continually reminds users ﬁhat it is nominal adjust-
ment, and sécondly the improvement in efficiency of the correction factor
over pg for Bundaleer was greater than the improvement in efficiency of

Py over the correction factor for Wirrabara.

Summarz

The analysis indicated that the lower south-east model can be
extended to other areas, although the success of the extension depénds
cn having suitéble, sufficient, accurate data évailable. Theré‘was an
indication that even when the available data were pobr a relatively
simple correction factor to the increment may ﬁrovide a model that can
be used‘ﬁntil further data beﬁome aQailable. No changes were necessary
‘to enable the model to be used for the three Adelaide Hills forests some

400 km from the south-east,

The conclusion was that the same»model,structure may prove .to be
satisfactory for other radiata pine areas of Australia, If good data
are not available then a relatively simple analysis, estimating Py for
that area or even estimating the simple correction factor, may.hrbﬁide
a satisfabtory model until more data are available and all parameters

can be re-estimated.

SECOND ROTATION STANDS

There is a considerable area of second rotation plantations of
radiata pine in South Australia and these plantations are generally of
lower préductivity than the first rotation on the sémensite (Keeves,
1966). it is of consiaerable practical managemeht importance to knouw
whether, apart from being of different site potential, the yield function

is different for second rotation stands compared with first rotation
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stands., Appendix 1.4f lists the available plots and their plantation
year, and although they do not appear to be very well balanced by ags,
site potential or forest they were the best available and probably
represent the current distribution of second rotation stands over age

10 fairly well, There were 33 plots with 157 increment periods.

When Equation VI.9 was fitted to the second rotaticn data the mean
deviate of 0;003, not significantly different from zero, for the mean
deviate had a standard error of 0.42. When the deviates were regressed
against a second order polynomial in age and site ﬁgtential the result-
ant regressions were not significant. . Although 73 of the 157 observa-
tions were included in the data used to develop Equation VI.1% (7.5% of
that data set) thesé results indicated that second rotation stands have
the same yield function as first rotation stands. The pooling implied

in the data used to develop the south-east model was justified,

The investigation by Keeves (1966) into the second rotation decline
in productivity cites some evidence that yield trends were similar
between rotaticns but that the absolute level was louwer. This analysis

confirmed that the yield trend is independent of rotation.

SUMMARY

The conditioned Bertalanffy periodic annual increment model was
successfully extended for use in fhinned stands. Thinning was included
in two ways. Fifstly, the level of competition was incorporated in a
simple quadratic borrection to periodic annual increment thét approximated
Langsaster's (1941) qualitative model. The very flat response surface
was influenced by lack of sufficient heavily thinned plots in the data
base and cafe should be taken not to extrapolate outside the range of the
data. Standing volume was better than number qf trees as the index of

the competition. The second way thinning was inccrporated into the model
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was as thinning shock, the best measure of which was the relative change

in volume, with the effect assumed to last only one year.

Investigation of soil type was hampered by the lack of a suitableb
nonlinear parameter est;metion program that could handle dummy variables.,
The analyses Carried out prquide biased estimators‘and although the
extent of the bias is unknowh it was thought to be relatively small.,

Form indices were not an adeduate continuous variable proxy for sﬁil
type. Seven soii groups were recognised, five of practical significance;

The resultant model could be used in practice in the south-east if inven=-

tory is modified to include the recording of soil type.
. Both Equations VI.9 and VI.12 were satisfactory predictors.

Evaluating the model on éreas other than the lower south-—-east of
South Auétralia showed that for the Adelaide Hills region where more
data were available, the soutﬁ-east model (Equation VI.9) was an unbiased
predictor. For Wirrabara and Bundaléér Forest Reserves in the Northern
region, and Noolook and Cave Range Forest Reserves in the upper part of
the south~east,; the lower south-east model was biased butthe data were
inadequate for a detailed analysis, It Qas concluded that éxtension of
the study to these areas of radiata pine plantation is pfobably feasible,
the level of successvdepending on the quality and quantity of the data

available,

Second rotation stands were shown to be satisfactorily predicted by
the lower south-east mcdel. This supported Keeves' (1966) contention
that, although the absolute level of site potential changes between
rotations, the same yield 6odel can be used for both first and second

rotations.



" PART 2

GENERALIZED LEAST SQUARES ESTIMATION
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YI1 MODELS FOR UNTHINNED STANDS

GENERALIZED LEAST SQUARES ANALYSIS

MODEL FORMULATIUN
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MODEL DEVELOPMENT

First stage models

Second stage models

Alternative error structures

Testing the model
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SUMMARY
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VII MODELS FOR UNTHINNED STANDS

GENERALIZED LEAST SQUARES ANALYSIS

In the precediné chapters Ordinary Least Squares (0OLS) was used to
‘estimate a yield prediction model. The analysis used to produce the
final model did not take explicit advantage of the trend series available
within each hlot, the data within each plot being treated as if they

were random and independent observations. Intuitively it would seem
more sensible to utilise the time series ﬁature of the available data by
using a two stage approach, analysing éach plot in éurn and then analyé—

ing the coefficients of these plots.

A two stage approach was tried in Chapter V but failed to.produce
a satisfactory prediction model., In estiméting the second stage para-
meters using OLS it was necessary to treat each of the first stage para-
ﬁeters as if_théy were independent when in fact they are likely to be

highly correlated.

Consideratioﬁ of this problem led Dr I.S. Ferguson to suggest the
pﬁssibility of using Generalized Least Squares (GLS) rather than OLS in
developing the second stage models, so that the corpelation between the
parameters_in the first stage model would explicitly be taken into
account in tHe development of the second stage models. Dr Fergﬁson
then developed the technique which was programmed in.ALGDL by Mr. J.A.
Miles of the Departﬁent of Forestry, Australian National University.

Thié was then used empirically to determine whether the technique offered

significant advantages over OLS in the develepment of a growth model._

Details of that study (Ferguson and Leech, 1976b) are described in
Appendix 6. The study showed that there was a slight improvement in .
relative efficiency if the structure of the error term was considered to

be heterocgenecus across plots and a marked increase in relative efficiency
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(Appendix 6, Table 5) if the error terms relating to the individual

coefficients were assumed to be correlated.

The results of Chapter V, where the difference equation estimating
periodic annual increment from the pooled data was found to be superior
to the two stage yield model, were reinterpréted in the light of this
GLS stﬁdy. _The pdoled data approach takes the correlation betuéen the
first stage-parametérs into account but does not utilise the time series
to the full, on fhe other hand, the two stage OLS approach does not
take account of the correlation between the parameters but does utilise
the trend information inherent in the time series for each.plot. | GLS

enables both to be included in the analysis.

Furthermore, in the OLS analysis, the pooled observations wefe
derived from time series for each plot énd were not truly indepéndent.
The standard errors of the parameter estimates were therefore under-
estimated by an unknown amount that could not be esfimated, and it is
possible that some parameters‘wére ihéluded when they should not have

been, GLS analysis avoids this problem.

The GLS study (Appendix 6) dealt only with the Johnson—Schumacher
or Clutter model. In the light of the 0OLS results which showed the
second level Bertalanffy model to be superior to that model, further

trials of the GLS approach were made using the Bertalanffy model.

MODEL FORMULATION

When the second level Bertalanffy model was developed in a two
stage process, the first stage models were clearly nonlinear in the

parameters for both the conditioned and the unconditioned model forms.
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' 1
Y = {(n/p) [1 - exp(—p(1—m)(A-AD)il€ 1-m (V11.1)
) 1
and Fy.
1~ exp(=p(1-m)(5=1)))
Y = Y1D (Vil.2)

1 - exp(—p(1—m)(1O—A0))

¥

The second stage structure used in Chapters V and VI was linear for the

parameter p, but nonlinear for the parameter A

00
Ag =10 exp(—a,I Y10)
where
Y = vyield,
A = age,

Y1D= site potential, yield at age 10,

‘AD = the age at which volume growth commences,
n and p are the parameters in the second level Bertalanffy
model, and,

Pgs Pq and a, are the parameters to be estimated.

This formulation was unsuitable for GLS analysis because the algorithm
was designed for linear second stage models only. However by substit-

uting (10 exp(-a1)) for A. in the firstbstage the model has a more complex

o
first stage, but a simple linear second stage. This enables the GLS

program to be used without the development of a nonlinearvversion.

Apart from Equation VII.3, other Formulatiohs including site poten-
tial were possible such as those in Equation V.6. Stocking at age ten
(N10) is the best measure of.initial spaﬁing and was also evaluated.,
Différences between forests or groups of soil types were investigated

by the use of dummy variables (Johnston, 19633 Cunia, 1573).
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ESTIMATION GF VARIANCE-COVARIANCE MATRIX

Extending the GLS treatment to embrace a nonlinear first stage
using Bard's (1967 )program (see Chapter IIT) assumes that the estimate

of the variance-covariance matrix is unbiased and relatively precise,

Although the estimates derived from Bard's program appeared to be
sensible estimates it was impossible to confirm analytically that they
were unbiased and efficient. Monte Carlo simulation was therefore used

to investigate the problem further.

For each of the twenty plots in the developmental data used in
Chapter V, Bard's preogram was used to estimate the parameters n, p and

a;y and the variance-covariance matrix for the following model;

Y = (n/p) [1 - exp(-p(A-10 exp (—a1))i] : (VIiI.4)

where the parameters and variables are as for Eqdations VII.1 to VII.3.
The unconditioned model was preferred to the conditioned for this analysis

because it was more complex and thus more likely to indicate ahy problems.

For each plot the variance of the residuals for this model was then
used, together with a generator of ﬁormally distributed random numbers,
to define new data sets based on a random disturbance to the original
data,. For each new data set the parameters were re-estimated and this
was repeated until the variance-covariance matrix of these parameter
estimaﬁes appeared to have stabilised. Commonly this was betweenb

10 000 and 50 000 iterations.

For each plot the variance-covariance matrix estimated by Bard's
program was campéred with the Monte Carlo estimate using the following :

test (Morrison, 1976).

-1
L = (Np) (In iznl - 1n‘[s] +te(s 2 ) = p) (VII.5)
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where

L =. the likelihood, distributed chi~squared with
(p(p+1))/2 degrees aof fre;dom,

N = the numbef of observations,

p = the number of parameters,

z;D= the Monte Carlo estimate cf the variance-covariance
matrix,

-1

Eg= its inverse,

iZbl: its determinant,.

vS = the estimate of the variance-covariance matrix from
Bard's program,
its de£erminant, and,

T
it

tr = the trace of the product matrix (the sum of the

‘diagonal elements).

For small N, Bartlett (1954) suggested that the statistic should be

scaled to yield a new statistic f% before testing against chi-square.

% 1 -
L = {1 = 0] (2p +1 = 2/(p+1)) L (vi1.6)

This test uwas particularly‘rigorous because the Monte Carlo estimate is
really a stochastic estimate rather than the true variance-covariance

matrix, and a less powerful test would have been more appropriate.

Using a probability level of p=0.05, none of the twentykplots
yielded estimated variance-covariance matrices which differed signifipant-
ly.from the Monte Carlo estimate, The estimated variance4covari¢nce
matrix from Bard's proéram was therefore considered acceptéble for use

in the GLS models.
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MODEL DEVELOPMENT

First stage models

The conditioned model, Equation VII.7, was then fitted to the

developmental data used in Chapter V.

a1
1= exp(=p(1-m)(a=10 exp(-a,))) |7

. | (Vi1.7)
T = exp(=p(1-m)(10-10 exp(-a;)))

Y =Y

where the parameters and variables are as for Equations VII.1 to VII.3.

The parameter estimates allbhed large sampling errors and none was
significantly different from zero using a t test, paralleling the OLS
results.> For increased accuracy the analytical partial-derivatives
were used rather than the approximation described in Appendix 2. = The
models were refitted with m=0 reducing the number of parameters to be
fitted to two for each plot. | The parameter estimates for both p and 8,
appeared sensible for all plots, and, although some estimates had large
standard errors, the parameters wers all siénificantly different from

zeroﬁ the results were accepted, The parameter estimates and their

95% confidence limits are summarised in Figure VII.1.

Scatterplots‘of residuals for each plot gave no indication of heter-
, ogeneityxor serial correlation within any of the plots. The Durbin-
Watson d statistic (Durbin and uatson,‘lQSD, 1951 ) was calculated even
though its value is qhestioneble with so feu observaticns. Published
critical bounds only go down to 15 observations and extrapolating these
upper and lower bounds to the number of observations for each plot is
difficult and unsatisfactory. Recognising the dangers inherent, the
statistie was tested against these estimated‘critical bounds and it was
found that none of the plots had values of the d statistic below the
lower bound. Of the twenty»plots, fourteen fell into the inconclesive

zone, six for positive serial correlaticen and eight for negative. In
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best of the models including a linear function in Y,IO (Models 1—?2); in
that no other parameter was significant when added to this model.
Replacing Y1d.by (;n(ij)) produced a superior estimator (Model 13,
Equation VII.9) that has a lower residual sum squares (19.ﬁ9 compared
with 20.23) and has the same number of parameters, This modél could

not be improved upon by the addition of other parameters (Models 14-19)

or by alternative structures for p (Models 20-22).

p = 0.07290 - 0.01065 ln(Y10) (v11.9)
(0.01524)  (0.00317)
a, = -0.003813 v,

- (0.000316)
Further analyses were made using Equation VII.O. Each parameter

was replaced by dummy variables representing-the soil and forest groups

defined in Appéndix 1.6a. Although the residual sum:gquaresbwas smallerb

(Table VII.2), these more elaborate modeis weré not significantly better

than Model 13, Equation VII.O.

Alternative error structures

For Equation VII.S9 the correlation.betueen the parameters p and a,
waé 0.76 suggesting that there should be a considerable gain in efficiency
through the use of GLS. Bartlett's (1937) test across the tuwenty blots
also showed that the variances were heterdgeneoué (chi—square 106.3);
Table VII.3 shows that the gain in efficiency through the recognition of
the correlation between parameters was quite marked, for the relative
efficiency assuming heterogeneoﬁs independent errors was only 0.182 compar-
ea with 1.0 for the‘assumption of heterogeneous correlated errors. This
was a measure of the advantage of the two stage GLS compared with the two
stage OLS model. 0On the other hand the gain in efficiency due to the
implicit recognition of heterogeneity was felatively slight,v(relatiue

efficiencies of 0.991 compared with 1.0, 0.180 compared with 0.182).
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Table VII.2
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Table VII.3
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Testing the model

The independent test data used in Chapter V were also used to test
Equation VII.O. The standard deviaéion of the deviates was 46.44,
lower than for the OLS models (51.51 for the conditioned periodic annual
increment model developed on the pooled data, 66.1 for the two stage
oLS). For Ekquation VII.B, with the same structure as the OLS models,
the standard deviation of the deviates was 47.98, indicating that the
differences were not solely due to the change in the second stage
structure of the parameter p from linear to log-linear. Thus the
advantages of GLS over OLS seem to extend to predictors as well as

estimators.

Figure VIi.Z‘showé the developmental data and the estimated yield
curves for these data. Most of the yield curves seemed to provide a
good fit visually, although 73, 89 and 346 are underestimated and 58.

and 322 overestimated.

The test data cover a wider range of'Y10 and N1D than thé develop-
mental data. The four highest and the four lowest plots with respect
to Y1U for. the independent test data were plotted in Figure VII;S together
with their estimated yield curveé. Seven of these eight plots had values
of Y1D'outside the range of the developmental data. = For the very louw
site quality plots Egquation VII.9 consistently overestimatedkyield,‘
especially for plot 369, suggesting structural misépecification. For
the very high site quality plots the equation was satisfactory for plots
155 and 433, but EP24C and EP24E appeared to exhibit a different form of
yield curve,iEP24C being‘overéstimated as well, ~ These latter two plots
were originally planted at éxﬁ feet and 9x9 feet respectively instead cf

the mgre common 7x7, 8x8 or 9x7 feet (2.1%2.1=2.6x2.4 m). These two

plots were established on a Tantanoolé flinty sand uwhere =arly rapid

‘growth would normally be expected to be followed by a faster than average
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Figure VII.2

Estimated yield functions for
developmental data
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Figure VII.3

Estimated yield functions for

selected independent test data
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decline in growth (see Chapter VI). These differences in stocking and
soil type probably account for the anomalies with respect to these plots,
as there were no plots in the developmental data on this soil type or

with the initial plantation espacements,

Unconditioned model

For completeness similar analyses were carried out using the un-

conditioned model, Equation VII.1. The best model was

'p = 0.07575 - 0,01109 1n(Y

(VI1.10)
(0.01297)  (0.00272) |

10)

a, = -0,003535 Y
' (0.000376) 1O
n = 7.557 1n(Y,)
(0.242)

but as with the OLS analysis the unconditioned model was less éfficienf
than the conditioned as a predictor of the test data (standard deviation
of the deviates 52.34), Also, the error in using>Equation VII.10 to
estimate yield at éée ten was considerable, ranging from -1% to 15% over
the range of the data. The unconditioned model was not considered

further,

SUMMARY

- The GLS analysis of the unthinned stand data was superior to the
OLS analysis in that it satisfied the assumptions of the analysié, was
more efficient, yielded accurate estimates of the standard errors of the

parameters, and provided a superior predictor,
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VIII MODELS FOR THINNED STANDS

FIRST STAGE MODELS

Formulation

The structure of the models developed for thinned stands in Chapter
VI using OLS was inappropriate for the GLS analysisvbecause the range of
competition levels dﬁes not, and cannot, occur in each and every plot
but, unlike site potential, competition level does vary with age in a
plot. The structure with respect to competition must be simple,‘For
the first stage GLS structure already has two parameters toc be estiméted

from a time series with between 9 and 15 observations.

If Tij represents the thinning ,gbéaé;' (ratio of volume of trees
removed to the volume before thinning) then this is 1likely to affect the

parameter p after the age of the j th thinning, but should not affect

the parameter 8.

A general formulation should therefore include an adjhstment tc the
parameter p for each thinning prior to the current age, but because the

number of thinnings varies between plots, and also varies for each obser-

vation within a plot, a summation form such as Equation VIII.1 was nec-

essary.
j=k t2
po= pg+ty 2 (T - t1l ) ¢ for all A>A,  (VIII.1)
J=1
where
p = -the parameter in the second level Bertalanffy model,

Tij = thinning agracia', af the j th thinning,

k = the number of thinnings,
A = age,
A. = the age of the j th thinning, and,

t ti and t2 are the parameters tc be estimated.



The model parallels the plateau competition effect (Langsaeter, 1941;

Moller, 1954a, 1954b) described in Chapter VI, in that for t t, and

0’ M

t2 positive, then p is at minimum if Tij = t1 for all j, increasing

as Tij diverges from t1, the rate ever increasing. The asymptotic
maximum yield, the ratio n/p, would be lower for both unthinned and

heavily thinned stands than for "well thinned" stands,

This formulation is also supported by evidence from the series of
four plots X, Y, 304 and 305 described by Legis (1962).  Although the
plots were comparable at age 17, the total volume production by the
control at age‘SU was approximately 200 ms/ha lower than for the two
lightly thinned plots, while the more heavily thinned plot was approx-

imately 100 m3/ha below these two plots.

As it mas unlikely that three thinning parameters could be estimated

as well as p and 2, restricted models were formulated at various

levels.
pa;:ty=0 No thinning parameters (VIil.28)
P &, tD : t1 =0 t2 =1 Models with one thinning
parameter (VIi1.2b)
.n — = . T
pa,tyrt,=0¢t =2 'v (viir.zc)
P a, tD t1 : t2 = 1 ‘ Models with two thinning
parameters  (VIII.2d)
Pa,tyt, st =2 (ViIl.2e)
pa tygt,+t, =0 } (viri.2f)
P a tU t1 t2 Model with three thinning .
. parameters (VIII.2g)
Selection

The selection of the bést of the seven models is complicated by the
variation in results across the various first stage data sets. The
technique édopted was to summarise for each plot, and for each of the
different numbers of parameters, the model with the lowest residual sum

of sguares;  as well as using F tests to compare different numbers of
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parameters., The 'best!' model then was the model that for the majority
of plots had the léwest‘residual sumé of squares and which for the
majority of plots had the largest number of significant parameters.

If too many noisy parameters were included then this would become
apparent in the second stage analysis when no secondary structure would

be significant. The level of the best model was, in essence, the most

complicated for which second stage models could be determined.

‘BAYESIAN ESTIMATICN

As the data were relatively sparse it was considered unlikely that
more than four parameters could be estimated for each plot in the first
stage models, and even then, the estimation technique would have to make
maximum'use of the information. A sequential estihation technique
seemed desirable working from the model based on the unthinned dafa,
and then refining these estimates and estimating the fhinning parametefs‘

using data from thinned stands.,

Bayes
Sequential estimation is possible using Bayesian statistics (1763,
: I

(1958); Raiffa and Schlaif_er, 19613 Lindley, 1972; Box and Tiao,
1973); In Bayesian statistical theory data are used together with a
prior distribution from previous experiments tp produce a pdsterior
distribution. Equation VII.9.uhich was developed from unthinned stand
data can be used to provide prior estimates of the parameters p -and

a, in an analysis of the thinned stand data. Utilising Bayesian statis-
tics gaﬂe a better chance of obtaining satisfactory estimates of the

first stage thinning parameters, and made full use of the available data,

Bayesian theory is not without its opponents. However this applica-
tion can also be treated within the framework of classical statistical
theory, by simply regarding the estimates from the unthinned data as

prior estimates from a previous experiment. While the Bayesian approach
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often has considerable appeal for other applications, the debate betueen

Bayesian and Classical schools is largely irrelevant in this case.

Bard's (1967) program can perform such an analysis, offering the

option of utilising as the prior estimate the parameter estimate and

either:
1 the standard errors of the parameter estimates, or,
2 the variance-covariance matrix of the parameter estimates.

The latter is clearly more appropriate in a mixed Bayesian-GLS analysis

of this kind.

DATA

The prior estimate for the parameters p and a, was therefore

1
Equation VII.S.

p 0.07290 - 0.01065 ln(Y1U) (vi1i.9)

-0.003813 Y

4 10

wvhich has the variance-covariance matrix

2 .
o N -8 2

a1a1 = 9.9784 10 Y10

2 - -5
Cp = 2.32331077 - 9.6121 107" 1n(Y,q) +

1.0059 107> (ln(Y1D))2

2 = -1.3038 107° v,  + 3.4630 107" v in(v )
Cza ’ 10 T 7 S 10 ~ 0/
Peq

OLS estimation had shown that the Bertalanffy model seemed relatively
insensitive to the effects of thinning. Hence a prior estimate of zero
with an infinite variance and zero covariance was thought likely to be

satisfactory for the thinnihg parametsrs,

For the posterior model 58 plots were extracted from the data base.
These plots all had at least nine volume measurements, the age of first

measurement being 13 or less, although 4S5 of the plots were measured



in Appendix 2. The estimated parameters p and a
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within one year of age ten. The data are summarised in Appendix 1.6b.
The average number of Dbservations was 10.5 and the averaée growth period

24,7 years,

FIRST STAGE MODEL DEVELOPMENT

Using the prior estimate, Equation VIII.2a without any thinning
parameters was then estimated, For increased accuracy tge analytical‘
derivatives were used instead of the numerical approximation described
, are shown in Figure
VIII.1, together with the 95% confidence limits for each estimate. The

estimated parameters show similar trends with site potential to the un-

- thinned plots which are plotted in Figure VII.1.

Thinning parameters

The two singlé thinning parameter models (Equations VIII.2b and
VIII.2c) and the three two parameter modele (Equations VIII.2d, UIII.2e

and VIII.2f) were then fitted to the data.

Comparing the single parameter models with Egquation VIII.2a showed
Equation VIII.2b to be significantly better for only 9 out of the 58 plots,
Equation VIII.2c for only 7. When an extra pérameter was added
(Equations VIIl.2d, VIII.2e and VIII.2f), the results were significantly
better in only 4, 3 and 1 plot out of the 58. It was extremely difficult
to get parameter estimates for some plots, ﬁonvergence being extremely.
slow for Equations VIII.2d, VIII.2e and VIII.2f,. This suggests over-—
pafameterisation in the sense that the equations seemed to be statistic-
ally incompatible with the data. In view of this, Equation VIII.2g with

three thinning parameters was not even fitted to the data.
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Figure VIII.1
Conditioned Bertalanffy model

Posterior
First stage estimates and 95% confidence limits

| 1 1 ] 1 ]

50 100 1608 200 258 309

| | | | L B

50 100 150 200 250 39



159

SECOND GTAGE MODEL DEVELOPMENT

Site potential

For Equation VIII.2a without any thinning parameters, Bartlett's
test (1937) showed that the assumption of homogeneity was invalid (chi-
square 404.5) and that the parameter estimates were quite highly correl-

ated, the correlation between p and a, being G.77.

Various forms of the second stage models were then tried for
Equation VIII.2a without any thinning parameters, and the initial trials
are summarised in Table VIII.1. Using a linear structure in Y10 for p
(Model 8) was inferior to the logarithmic form (Model 1). A quadratic
form in site potential (Model 10) was signifibantly better than the linear,
but variants of this model (Models 11-15) did not show significant gains.
The incofporation‘of theAquadratic parameter gave only a slight gain over
the logarithmic form, Moreover, the ngdratic implied that a minimum
value of. p was reached at Y10 = 259, which was within the range of the

" data, some 7 plots having Y values in excess of this figure, No ten=

10
able argument could be advanced to justify the acceptance of a minimum

value within the range of the data, and hence it was rejected.

The posterior model was therefore the simple model Equation VIII.3.

p = 0.05271 - 0,006484 ln(Y10) (v111.3)
(0.00411)  (0.000821)
a, = -0.003467 Y,

(0.000151)

Various second stage models (linear funcfioné ian10) were then
fitted to the first stage parameter estimates for Equations VIII.2b and
VIII.2c each with a single thinning parameter (three parameters in total).
Ali models-had nonsignificant zeta values (see Appendix 6) for the thipning

parameter, with the highest zeta value being 0.3, considerably less than

the critical value of 1.96. This confirmed the suspicion that 7 or 9
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plots with significant thinning parameters out of the 58 plots were too
few for satisfactory second stage models to be developed. Equation
VIII.3 was accepted as the best modei to date and thinning parameters

were not included in the model.

Other variables

Stocking at age ten (N10) was evaluated in addition to site poten—
tial in the second stage models, but Models 2, 6, 7, 9, 11 and 15,

Table VIII.1, show that the variable was not significant.;

The data could not be divided into tﬁe same éeven groups based on
soil type used in the OLS analysis because some groups had too few
observations. The data were therefore divided into four soil groups
based on the groups defined in the 0OLS éstimation.

1 Group C, the main group of sandy soils, 33 plots.

2 Group B, €Caroline and Wandilo sands, 17 plots.

3 Group D, Tantanoola flinty sand, 4 plots.

4 Miscellaneous, thelofher groﬁps (A, E, F and G), 4 plots.
Although the fourth group is heterogeneous in terms of soil type it

enabled the other groups to be separated and analysed.

When any one of the three parameters in Equation VIII.3 was replaced
by parameters for each soil type and all parameters were re~estimated,
increasing the total number of parameters to six, the fésidual sum
squares was reduced by less than 2% (Table VIII.2) and none of the four
soil varying parameters differed from any other regardless of which was
repiaced.- Soil type could .not be included in the modei. The comparison
between Equations VII.8 and V.12 in Chapter VII indicated that the stand-
ard errors of the parameters in the (LS estimation were underestimated by
a %actor of between 3.5 and 6. Assuming that thié also holds for

Equation VI.12 it was evident that that equation may have too many param-
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eters, and thus the inability of the GLS analysis to discriminate

between groups of soil types seemed quite reasonable.

The forest groupings defined in Appendix 1.6a were evaluated in the

same way (Table VIII.2). The yield curves do not vary betwesen forests.

As form variables were not significant in the OLS analysis where
the standard errors of the parameters were underestimated they were not

even considered in the GLS analysis,

Alternative error structures

Further analysis of this posterior model with alternative error
'struptures (Table VIII1.3) showed that the implicit recognition of the
correlation between the parameters gave an improvement in rélative
efficiency: relaxing the assumption of correlation between parameters
reduced the relative efficiency to 0.157. However the advantage of
explicitly recognizing the variance heterogeneity was minimal and was

totally obscured when the assumption of correlation was also relaxed.

EXAMINATION OF THE DEVELOPMENTAL DATA

The posterior model (Equation VIII.3) and the data are plotted in

Figures VIII.2a and VIII.2b keeping the data separate by forest area.

O0f the thirteen Mount Burr plots, yields were consistently over—
estimated for two piots, 55 and 123, and were overestimated at later
ages, for two other plots,v57_and Ep248. EP24D was estimated satis-—
factorily although it is adjacent to EP248B. EP24D was planted at‘9x9
feet and EP248B ét 6x6 feet, so the diFfereﬁcevseeméd attributable to

spacing. However the. range of initial spacing in the data was too

narrow for this variable to have a significant effect in the GLS analysis.
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Table VIII.3
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Figure VIII.Za
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Figure VIIi.2b
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Five of the six Mount Gambier plots were fitted satisfactorily.

In the remaining plot (527) yield was overestimated consistently,

The yield curves overestimated for plots 412 and 418 at Myora, but
plot 418 had an inexplicable discontinuity in the actual trend which may
be anomalous. Plot 409 at Myora was overestimated at later ages and

this plot also had an inexplicable discontinuity.

. for the twenty five Penola plots, yields were consistently under-
estimated for two plots (352 and 356). The few that were underestimated
at later ages (313, 345 and 347) were balanced by others (365 and 324 )
which were ogverestimated at-later ages. The actual shape of the yield

function itself was not really suited to plots such as 325 and 313.

0f the two Comaum plots the yield function overestimates slightly

for plot 204 at later ages,

In general the anomalous plots on all forests have similar charac-
teristics. Yields for plots with higher initial stocking or for plots
on shallow heavy soils were generally bverestiﬁated at later ages.
Underestimates seemed to occur where plots have éccess to a shallouw
vater table, or where‘plots are located on soils that overly a vaolcanic
base, possibly providing access to more nutrients as the tree roots
penetrate the deep sands. The GLS analysis failed to pick up. these

trends because the soil differences were not well represented in the data.

EXAMINATION OF THE INDEPENDENT TEST DATA

Independenﬁ test data with,at least 5 measurements for volume over
at least a 15 year growth period, and with measurements at or near age 10,
were then extracted from the data base. Equation VIII.3 was fitted to
these independent tesﬁ data. " The data and the estimated yield functiocn

are plotted in Figure VIII.3a and VIII.3b by forest area.
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Figure VIII.3a
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Figure VIII.3b
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When the data were pooled the mean deviate was significantly
different from zero, with Equation VIII.3 underestimating yield. for
the 378 observations the mean deviat;.of ~7.46 had a standard error-of
2,39, This was rather disturbing and seemed too great to be attribut—
able solely to chance. On investigation it was found that the way in
which the two data sets were differentiated on number of measurements
and on the length of growth period available approximately split the

data into twe historically different data sets in the pre-1940 plantings

and the post-1940 plantings.

Over the years forest practice has changed gradually‘and this is
reflected in‘tmo general but important differences between the develop-
mental data and the independent test data. Firstly the tendency has
been for the thinning regimes in current sample plot practice to have
become heavier over the years and thus the plots in the test data gen-
erally have heavier thinning regimés than the plots in the developmental
data, The OLS analysis indicated that increment, and hence yield, is
slightly lower for heavily thinned stands and although thinning param=-
eters were not significant in the GLS analysis this possibly explainms

the significantly lower mean deviate for the test data.

Secondly, as the plantation program expanded, the range of soil

types planted changed and so did the range in the sample'plot series,

For example, 6F the soil groups recogniéed in the 0OLS analysis the terra
rossa soils with the highest estimated value of the parameter Py were
représented by only one plot out of 58 in the developmental data, but by
six out of'SS in the test data, The‘change invtﬁé distribution of soil
type between the two data séts is likely to aggravate the thihning effect,
explaining why the mean deviate for the test data was significantly,‘
“different from zero. This was possible even though neither thinning hor
soil type were significantkin the GLS analysis because the range of these

variables was somewhat reduced.
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SUMMARY

The GLS analysis, unlike the QOLS- analysis, satisfied the statistical
assumptions that could be evaluated; Analysis of the first stage models
used to develop the prior in Chapter VII indicated that serial correla-
tion was not a problem, Because a Bayesian approach was adopted, tests
of serial correlation were irrelevant for the first stage posterior
models because these models were influenced by the informative prior,

The GLS analysis explicitly took account of the plot induced heterdgeneity
that the OLS analysis had indicated was the most impottant of the three

sources considered in Chapter II1I.

The GLS analysis of the Bertalanffy model form producéd a simple
conditioned yield modely(Equation VIII.3). Although superior to the
OLS analysis, the behaviour of the independent test data suggests that
caution should be exercised in its use in practice, and further it
indicates the necessity for the model to be re-developed as more measure-

ments are available for the plots that were used in the independent test

data.
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IX  CONCLUSTIONS



173
IX  CONCLUSIONS
The development of this study fell naturally into three séparate

phases,

In the first phase (Chapter V), Ordinary Least Squares (OLS)
technigues were used to estimate and compare a variety of different
models using data from unthinned permanent sample plots. This phase
centred around a comparison of the Bertalanffy model with other models
such as the Bednarz, Johnson-Schumacher (or Clutter), Gompertz and poly-
nomial médels. The Bertalanffy model seemed marginally preferable to

the Bednarz model, all others being clearly inferior,

A number of different forms of the Bertalanffy model were evaluated
‘including both the Mitscherlich (or monomolecular) and Chapman-Richards
forms, and variants of them based on yield, the derivative of yield with
respect to age or periodic annual increment as the dependent variables,
with or without conditioning through the value of site potential. The
results suggested that the allometric constant (r) for the catébolic
destruction rate.in the Bertalanffy model could be taken as 1.0 while
the allometric cohstant (m) for the anabolic growth rate could be taken

as Zero.

This Mitscherlich or monomolecular form was preferred, even though
it is not sigmoidal in shape. The absence of the point of inflection
may reflect the limitations of tﬁe déta, which did not span very young
ages, or it may reflect the éctﬁal properties of yield when measured in
terms of volume to 10cm top diameter underbark. There are an infinite
number of transcendental Functions with sigmoidal properties, althoﬁgh
few can be fitted with soifew parameters, and the sequence: general
Bertalanffy, second level Bertélanffy (or Chapman-Richards), Mitscher=-
lich (of monomolecuiar)5 prﬁvides a logical series of model forms of

decreasing complexity.
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The conditioned pericdic annual increment version of the Mitscher-
lich form proved to be a supericr predictor to its unconditioned analogue
and to any of the yield or derivative forms. Unlike linear models, a
conditioned nonlinear model is not necessarily an inferior estimator to

unconditioned forms with more parameters.,

The model currently used for yield prediction, the graphically
defined yield table of Lewis, was shown tc be a satisfactory predictar
but was open to bias and necessarily lacked an objective measure of

precision.

In the second phase of the study (Chapter VI), Ordinary Least
Squares (0LS) téchniques were used to extend the earlier results of the
conditioned periocdic annual increment model for the unthinned stands to
include other stand variables such as those reiating to thinning énd soil
type., Thinning was taken into account in two ways. Firstly, a variable
representing the level of competition was incorpeorated in a manner which
approximated the Langsaeter or Moller hypothesis regarding the effects
of thinning. Secondly, a variable represénting thinning shock was in-
corporated, essentially as an overriding_correction factor to the model.
Seven grqﬁps of soil types were introduced by appropriate definition of
dummy variables and incorporation of these into the model. Form Qas

also investigated but the variables introduced were not found to be useful,

Although some of the estimated parameters were not significantly
different from zero, the following model seemed to be the most approp-—

riate of those tested.



Pai = {(YA+i + YA) /i } Z, (v1.2)

1~ exp(=p(A = Aj))
Yo = Vi (VI.7)
1 = exp(-p(10 - AD)) v

where
p = p. + 0.5855 1077 v
0 (0.1164 10-4) 10 (V1.12)
Pg= 0.00030 - for volcanic soils
(0.00093)
Pg= 0.00302 for Caroline, Wandilo and Myora sands
(0.00052)
pg= 0.00539 ' for other yellow and white sands
(0.00036)
Pg= 0.01119 for Tantanoola flinty sands
: (0.00131)
Pg= 0.01759 for terra rossa soils and brown soils from Comaum
(0.00201)
Pg= 0.01172 for yellow sands from Cemaum
(0.00225)
Pg= 0.00534 for rendzinas
(0.08175)
Pg= 0.005075 for all soil types combined
(0.002623).

Ag= 10.0 exp(-0.009172 ¥

)
(0.000841) 19

Z,= (1.700 + 0.4426 10:2 D - 0.7380 10_
(0.114) (0.2335 10°°) (0.3050 10

6

° %) (1.0 - 0.4287 S)

) , (0.0731)

and where

pai = periodic annual increment,

YA = yield at age A,

A = age,

i = increment period,

Y10 = site potent%?l,

D = competition level (volume), and,

"
1

= thinning shock, (Vt/(Yb i)), relative volume, the effect

lasting one year only.
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This model was tested using data from other regions. For the
threelforests in the Adelaide Hills region where reasonably éood data
were available, the model was é satiéfactory predictor. For the small
outlying Forest Reserves of Nodlook and Cave Range in the Qpper part of
the south-east region and for Bundaleer and Wirrabara Forest Reserves in
the Northern region, the model ocverestimated, but the data were too

sparse to allow detailed invesfigation. Simple correction factors to

increment were developed for use until better data are available.

Importantly to South Australia it was shown that second rotation
stands can be considered to have the same yield functibn as first

rotation stands,

In the third phasé (Chapters VII and VIII) Generalized Least Squares
(GLS) techniques were introduced to overcome statistical defects in the
OLS analyses, A yield form of the Mitscherlich model was fitted to each
of the plots from unthinned stands in turn. The resulting parameter
estimates we:é then :elated to differences between the stands, notably

in terms of site potential.

The resulting function for unthinned stands was then uséd as an
informative prior in a Bayesian analysis of the data from thinned stands,
on a plot by plot bhasis. The analysis included various models of the
effect of thinning but no thinning variables were significant. The
parameter estimates were again related to differences between the stands
such'as'site potential and soil type using GLS. The use of the
Bayesian analysis enabled a sequential approach to model building to be
adopted, in an effort to avoid likely problems from misspecification
‘otherwise introduced by trying to estimate too many parameters from too

few data from each plot,

The GLS analysis produced a far éimpler model than the OLS analysis
because thinning and soil variables were omitted, having failed to yield

parameter estimates significantly different from zero.
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v o=y 1 = exp(=p(A = 10 exp(-a,)))
AT 10
1 - exp(-p(10 - 10 exp(~a,)))

(IX.1)
where

p = 0.05271 - 0.006484 1n(v10) (VI11.3)
(0.00411)  (0.000821)

a, = -0.003467 Y
(0.000151)

10
and where
YA = yield at age A,
A = age, and,

Y o= site potential, yield at age 10.

Any comparison of OLS and GLS results must necessarily be somewhat
equivocal in the light of the complexity of the models being studied and
the inadequacies of the data. 'Nevertheless, some points need to be

stressed inrcomparing the OLS and GLS results.

Firstly, the OLS technique probably yiélded biased estimates of
the standard éfrors of the parameters, underestimating the true values
substantially; This casts considerable doubt on the entire sequence
of. hypothesis testing of a particular model in_moVing from one model

-form to the final form accepted. Thus, while the model summarized in
EquationsVI.2, VI.7 and VI.12 seems appeéling, the statistical basis of

that model is guestionable.

On the other hand, the data used to develop the GLS model did not
adequately cover the range ofbsoil types aﬁd thinning intensities. The
, omission of these variables from the GLS model may reflect inadequacies
of the data or may be well~founded: only further data and analysis can

provide an answer to this,

On balance, the GLS technique seems to offer greater advantages for
future work of this kind. The ability to build models sequentially in

a Bayesian framework has definite advantages in clarifying the form of
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the model and redﬁcing the number of alternatives to be tried. The
testing of hypotheses is alsc placed on a sounder basis than that for

the OLS analyses as used in this study.

The GLS technigue can also be expanded to cater for simultaneous
models of other dependent véfiables beside yield, such as height and
basal area, The joint estimation of such models would enable the
correlations between these variables to be taken into account and used
to improve the efficiency of the estimates. Some preliminary work was
carried out along these lines and the results seem promising, but further
modifications to the programs are required before the aﬁalysis can be

completed.
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APPENDIX 1

DATA

SUMMARY OF THE DATA BASE

SOIL TYPE

Key to soil. types
Summary by plots

Notes on specific plots

Occurrenceof soil types by forest district

UNTHINNED STAND DATA

Plots in deQelopmental and test data
Developméntal data

Test data -

DATA FROM THE LOWER SOUTH=EAST
Developmental data by age and site quality
Test data by age and site quality
Developmental data by thinning

Test data by thinning

Combined data by soil type

Second rotation plots

DATA FROM OTHER REGIONS
Noolook and CaUe’Range data

Adelaide Hills and Northern regional data

DATA FOR GLS ANALYSIS
Plots for prior estimate by soil type and forest

Plots for'posterior egstimate

1.1

162
1.2a

1.2b

1.2C
1.2d

1.3

1.3a
1.3b
1.3c

1.4

1.4a
1.4b
1.4C
1.4d
1.4e
1.4F

1.5
1.5a

1.5b

1.6

1.6a
1.6b

187



SUMMARY OF DATA BASE

Key to abbreviations

Pln
Cpt
BA
Vol
PDH
No
Min
Max
Meas

Plantation year

-Compartment number

Basal area

Volume

Predominant height
Number aof

- Minimum

Maximum
Measurements

Appendix 1.1
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Plot

Pln

Soil

Cpt Type

Mount Burr Forest Reserve

EP24A
EP24B
EP24C
EP24D
EP24E
EPS2
EP82
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38
39
41
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53
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151
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157
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1963
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11
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10
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Max
Age
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28
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46
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SUMMARY OF PLOT MEASUREMENTS

. Type of Measurement
Soil Site BA Vol PDH
Plot Pln Cpt Type OQuality No Min Max No Min Max No Min Max
Meas Age Age Meas Age Age Meas Age Age

Penola Forest Reserve

X 1923 8 K-2 v 17 17 50 15 17 50 13 17 50

Y 1923 8 K-2 IV+ 17 17 59 15 17 50 14 17 50
300 1922 4 NS3 II/11I 20 13 50 13 16 50 11 23 598
301 1922 4 NS3 III+ 19 13 50 13 1€ 50 12 16 58
304 1923 8 K-3 Iv 19 12 5@ 13 17 50 12 - 24 50
385 1923 8 K-3 v 21 12 58 16 15 50 12 22 568
306 1924 1 WN1 II+ 15 11 50 13 11 50 8 11 50
367 1924 1 WN1 I- 17 11 50 12 11 50 16 14 58
310 1925 7 NS2 III+ 19 10 47 12 13 45 8 21 45
313 1925 1 K-3 v 17 19 47 13 10 45 10 17 45
314 1925 1 K-2 v 17 1@ 47 13 19 45 8 21 45
315Aa 1956 8 NS3 VI+ 16 9 18 2 11 16 1e 9 18
315B 1956 9 NS1 v- 11 9 19 3 11 19 - 11 9 19
315C 1956 8 NS1 Vi 10 9 18 2 11 16 10 9 18
315D 1956 8 NS3 v- 18 9 18 2 11 . 16 10 9 18
315E 1956 8 NS2 v/V+ 19 9 18 2 11 16 16 9 18
321 1927 59 NS3 IV+ 16 8 44 12 11 44 8 19 44
322 1927 57 NS3 111 15 8 46 13 11 46 8 21 46
323 1927 55 KN1 v 17 8 46 14 11 46 9 21 46
324 1927 54 KN2 v 18 8 46 16 11 46 120 18 46
325 1927 54 K-3 v 18 8 46 16 11 46 14 15 46
326 1927 57 K-3 Iv- 15 8 46 14 11 46 9 21 46
327 1927 56 NS3 v 17 8 46 16 11 46 11 17 46
328 1927 56 NS3 v 17 8 46 14 11 46 12 18 46
332 1929 5 NS2 III/IV 18 6 45 13 9 45 8 18 45
335 1929 2 K-1 v/VI 14 6 41 10 9 41 4 24 41
337 1924 6 wWsl v 18 11 50 12 11 50 9 21 50
338 1924 6 WSl I11 19- 11 50 12 14 58 -9 21 508
341 1927 59 NS3 Iv+ 15 17 46 11 17 44 10 18 44
344 1836 34 WSl I 14 9 36 12 9 36 11 11 36
345 1936 20 WSl III- 13 9 36 12 9 36 11 11 36
346 1935 22 NS1 v+ 11 1@ 37 1@ 10 37 9 12 37
347 1935 22 NS1 - IV- 12 10 37 11 10 37 19 12 37
348 1935 15 NS1 III+ 12 10 3e 12 10 38 10 14 38
349 1934 25 NSl Iv- 12 11 49 19 11 490 9 13 40
358 1934 25 NS2 Iv/v 12 11 40 19 11 49 9 13 42
351 1936 13 WSl I1 12 12 37 12 12 37 12 12 37
352 1937 3 WSl I+ 12 11 35 12 11 35 12 11 35
353 1937 3 WN2 III- 10 11 35 1 11 35 ‘10 11 35
354 1937 3 K-2. Iiv 11 11 36 8 11 36 9 11 36
355 1937 5 wsl II+ 11 11 36 10 11 33 10 11 33
356 1937 5 Wsl II 12 11 36 11 11 34 11 11 34
357 1937 6 KN3 Iv 11 11 36 9 11 36 10 11 36
358 1937 1 KN1 v 12 11 36 18 11 36 11 11 36
359 1937 1 KN1 I11 11 11 37 11 11 37 11 ° 11 37
3606 1937 4 NSl II+ 12 11 37 12 11 37 12 11 37
361 1937 5 NS2 I11- 11 11 37 11 11 37 11 11 37
362 1937 6 NS2 I 13 11 37 12 11 37 12 11 37
363 1937 13 NS1 1I 12 11 36 10 11 33 11 11 33
364 1937 12 K-1 v 12 11 36 8 11 34 9 11 34
365 1937 8 "NS2 = II+ 12 11 36 11 11 33 11 11 33
366 1937 10 KN1 VI 11 11 36 g 11 36 9 11 36
367 1938 1 NS2 v+ 9 10 34 9 18 34 9 18 34
368 1938 10 K-1 Vi 7 10 32 6 10 32 7 18 32
369 193¢ 11 K-1 VII 7 18 33 6 18 = 33 7 10 33
374 1941 2 ‘WSl III 8 10 31 8 10 31 8 19~ 31
375 1944 3 NS2 III 9 7 28 8 9 28 8 9 28
376 1942 2 NS1 IIT 9 10 32 9 10 32 9 10 32
377 1944 1 wsl T Il 7 8 29 6 10 29 6 18 29
379 1941 4 wsl v+ 11 19 32 8 10 29 8 18 29 -
380 1944 4 Ws1 11 186 . 8 30 8 18 27 8 10 27
381 1944 4 wsl - II 1e 8 30 8 1le 27 8 10 27
382 1944 3 ' NS2 II- 9 7 28 8 - 9 28 8 9 28
383 1944 3 NS1 IV 16 7 29 9 9 29 9 9 29
395 1946 4 KN3 - VII 12 16 28 4 16 25 9 16 25
396 1946 4 KN3 - VIiI 13 16 28 4 16 26 10 16 26
397 1949 -6 NS3 Vi 11 15 25 4 15 22 8 15 24
398 1949 6 NS2 VI 11 15 25 4 15 22 8 15 24
399 1949 6 NS2 VI 11 15 25 4 15 22 8 15 24



Plot

Pln

Mount Gambier

508
511
513
514
524
526
527
528
530
531
532
533
535
536
538
539
540
541
542
543
547
548
549
550
553
555
557
558
559
560
563
564
565
571
572
573
576
577
578
579

1924
1926
193¢
1928
1928
1937
1937
1937
1938
1938
1940
1940
1940
19480
1938
1938
1940
1948
1944
1944
1944
1944
1944
1944
1943
1926
1928
1935
1935
1945
1948
1948
1948
1946
1946
1946
1948
1948
1948
1948

Cpt

Soil
Type

SUMMARY OF PLOT MEASUREMENTS

Site
Quality

Forest Reserve

. N
NMOOOENDFNDNIOONOS

1E
1E
1B

MB1
MB1
MB1
WSl
WSl
TF1
MB2
MB1
TR1
TR1
MB1
MB1

RELl"

RE1
TF1
TF1
TF1
TF1
MB1
MB1
MM2
TF1
TR1
" TF1
TF1
MB3
¥s3
-MB2
MB3
WSl
TR1
TR1
TR1
wsl
wsl
wsl
¥s3

¥YS3

¥s3
YS3

Myora and Caroline Forest

402
403
404
45
407
408
409
410
411
412
413
414
415
417
418
422
423
425
426
427
433
434
435

1930
1930
1930
1929
1936
1936
1936
1936

1935 |

1635
1937
1938
1938
1938
1938
1949
1949
1942
1942
1942
1944
1942
1944

24
22
20
8A
83
91
87
81
74
77
199
112
114
114
117
122
125
136
136
136
145
134
148

Ccs3
Cs3
Cs2
Ccs3
Cs3
Ccs3
Ccs3
MS3
cs1
Ccs2
Ccs2
Cs1
Cs3
csl
TR1
Ccs3
Ccs3
cs2
Cs3
cs2
Cs3
Cs3
Cs2

Reserves

iv
v
11
II+
II
II
I-
III
II+
I

I
IT+
II-
II
v
I11/1IV
ITI-
I-

No
Meas

- [ bt ot et ot pd et
=0 DO = e = U1 W O O

b b e
OO ~2D 0D IO SN D

[
o

s e (e b bt et el et s
PRNRNESSNND

10
16

12
12

12

11
11
11

11
- 1@
11
11
10
18
10

11

11

‘BA
Min
Age

et
[T- RV RV 0. NN NN ]

Type of Measurement

Max
Age

50
44
39
41
45
35
35
34
34
34
31
32
30
38
34
34
32
33
27
29
29
28
28

38
47
45
37
37
27
23
25
25

25

25
25
26
26
26
26

42
41
42
42
38
37
36
38
39
39
37

- 35

35
35
33

- 31

29
31
31
25
39
28

No
Meas

[ e ol
RO SN -

- -
NN DB BY IO DOOANOODONOROOOHIINOUN

vol
Min
Age

13
11

17

11
11
10
18
11
11
11
11
10
10
11
10
10

13

18

© 27

25
18
18
10

11
11
11
14
14
14
14

18

18
18
19
12
12
12
12
13
13
11
19
18
.10
10
11
11
10
18
10
ig
12
11

Max
Age

50
44
39
41
45
33
35
34
30
30
31
32
30
30
34
31
29
38
27
29
29
28
28
28
27
47
45
37
37
27
23
25
25
25
25
25
24
24
23
23

42

41

42
42
38
37
36
38
39
39
37
35
33
35
35
31
31
29
31
31
25
30
28

No
Meas

[
MUEFERO[NOVOOVON
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DONNDODOANOPVOVOEWNID®

[
[

bt bt et
CVVVLVEE 8 & &S

18

PDH
Min
Age

25
16
10

14
17 -

12
11
11
19
10

11
11
11
11
12
11
18
19

13

18
27
25

18
1¢

11
11
11
14
14
14
14

18
20
18
21
14

13 -
14

14
15
13
12
18
12
14
11
11
18
19
19
18
12
11
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Max
Age

50
44
39
41
45
33
35
34
30
30

32
30
30
34
31
29
30
27
29
29
28
28
28
27
47
45
37
37
27
23
25
25 -
25
25
25
24
24
24
24

42
41
42
42
38
37
36
38

-39

39
37
35
33
35
35
31
31
29
31
31
25
30
28



Plot

Pln

Comaum Forest

200
202
263
204
289
212
218
220A
220D
221A
221D
222A
222D

19238
1938
1938
1939
1942
1944
194¢
1956
1956
1956
1956
1958

1958

SUMMARY OF PLOT MEASUREMENTS

Type of Measurement

Cave Range Forest Reserve

TPCS541
TPC542
TPC571
TPC573
TPC592
TPC593

Noolook Forest

TPN541
TPN542
TPN543
TPN544
TPN552
TPN554
TPN555
TPN556
TPN561
TPN562
TPN564
TPNS571
TPN572

TPN585

TPN591
TPN593

1954
1954
1857
1957
1959
1959

1954
1954
1654
1954
1955
1955
1955
1955
1956
1956
1958
1957
1957
1958
1959
1959

Soil Site BA Vol PDH
Cpt Type Quality No Min Mex No Min Max No Min
Meas Age Age Meas Age Age Meas Age
Reserve
1 BS1 I1I- 9 10 31 9 10 31 8 12
2 BS1 IV+ 9 10 31 8 12 28 9 19
2 BS2 v 18 12 36 18 13 36 10 12
7 DY3 I1- 10 9 32 1e 9 32 19 9
22 BS1 v 9 11 29 7 11 29 8 11
29 DY3 \' 9 10 29 7 10 27 8 19
41 DY3 VI 12 10 25 g 1¢ 25 12 10
65 NS2 Vi %] 4} 4] ¢ (4] 2} 13 4
65 NS2 VI 4] 8 %] 5} 4] 4] 13 4
65 NS3 VI a [ [4] 8 2 0 13 4
65 NS3 VI ] ] 0 e 0 0 13 4
73 NS3 VII ] 0 0 %} 4] "] 13 2
73 NS3 VII 4] [’] g 4] 3 %] 13 2
11A CY1l \' 3 9 21 3 ) 21 2 9
11A CYl VI+ 3 9 21 3 -9 21 3 9
14 CYl v 3 9 18 3 9 18 3 9
12 CY1 . V1 3 9 18 3 9 18 3 9
17 CcYl vw/v 3 S 16 3 9 16 3 9
17 CYl VI 3 2 16 3 9 16 3 9
Reserve
4 NR1 v+ 4 9 21 4 9 21 4
5 NR1 Iv/v 4 9 21 4 9 21 4
6 NR1 v/v 4 9 21 4 9 21 4
6- NR1 ' 4 9 21 4 9 21 4
e NT1 v 4 9 20 4 9 20 4
9 NY2 . I- 4 9 20 4 9 20 4
7 NT1 VI 4 9 . 20 4 9 20 4
8 NT1 v 4 9 20 4 9 20 4
12 NT1 \Y% 3 9 19 3 9 19 3
12 NT1 Vi 1 9 19 3 9 19 3
12 NY2 v 3 9 19 3 9 19 3
14 NR1 Iv 3 9 18 2 9 18 3
14 NR1 \' 3. 9 18 2 9 18 3
15 NY2 1I1/11II 3 9 17 2 9 17 3
18 NY3 I 3 9 16 3 9 16 3
18 NY1 III- 3 9 16 3 9 3

16

DV WOWWOWWWOWIOWWWWOW

192

Max
Age

31
31
- 36
32
29
27
25
18
18
18
18
16
16

21 .
21
18
1g
16
16

21
21
21
21
20
20
20
290
19
19
19
lg
18
17
16
16



SUMMARY OF PLOT MEASUREMENTS

Type of Measurement
Soil Site BA vol

Plot Pln Cpt Type Quality No Min Max No Min Max No
Meas Age Age Meas Age Age Meas

Wirrabara Forest Reserve

908 1949 1 WAl v 11 14 25 4 14 21

909 1944 11 WAl VI 11 19 32 4 19 26

919 1944 11 WL1 Vi 12 19 32 4 19 26

911 1944 15 WL1 VII 11 19 32 5 19 27

912 1944 4 WR1 VI+ 12 19 32 4 19 26

913 1944 4 WR1 V- 12 19 32 4 19 26

914 1945 2 WR1 v 12 18 31 4 18 25

915 1945 2 WAl v/V- 12 18 31 4 18 25
Bundaleer Forest Reserve

956 1946 46 BD1 v/vV- 10 20 30 4 20 38 8
957 1946 46 BD1 V- 10 20 30 4 20 ki) 8
958 1948 50 BR1 VI+ 10 18 28 4 18 28 8
959 1948 50 BR1 VI 10 18 28 4 18 28 8
960 1948 50 BR1 VI+ 10 18 28 4 18 28 8
961 1958 57 BR1 VI 6 16 21 3 17 21 S
962 1950 57 BR1 VI 9 16 26 2 17 18 3
963 1953 63 . BR1 Vi+ 9 13 23 2 14 15 4
964 1953 63 BR1 VI 9 13 23 2 - 14 15 4
965 1953 63 . BR1 A 9 13 23 2 14 15 4
966 1953 63 BR1 ‘V/VI 9 13 23 2 14 15 4
967 1953 63 BR1 vV/V1 9 13 23 2 14 15 4
Mount Crawford Forest Reserve

7081 1929 114Aa Ccal v 11 19 45 10 19 45 9
782 1936 198 CAl v 11 12 35 148 12 35 9
704 1936 202 asl II 13 12 37 8 12 37 8
705 1937 219 CAl II/I1II 11 11 36 9 11 33 9
714 1943 232 AC1 VII+ 19 10 31 9 18 31 13
7142 1943 232 ACl VII+ 15 17 31 5 17 3l 9
715 1944 235 ACl1 v 18 9 30 8 9 308 12
715A 1944 235 AC1 , \'4 15 16 30 5 16 30 9
718 1940 225 CAl Iv/v 9 13 33 8 13 33 8
Kuitpo Forest Reserve

685 1936 160 ‘AL2 II1/1V 12 12 38 10 12 38 11
606 1936 155 ML1 /v 12 12 38 11 12 38 11
687 1936 162 MD1 V- 11 12 38 10 12 38 8 .
610 1936 83A TL1 I11 11 12 36 10 12 36 19
612 1937 149 ML1 v+ 11 11 35 11 11 35 10
613 1937 149 ML1 v/v- 12 11 37 11 11 35 11
616 1941 24 ALl III 8 13 32 8 13 32 8
617 1942 137 LL1 vVI- 9 12 32 7 12 32 9
617A 1942 37 LLl VI/VII 7 18 32 5 18 32 7
619 1943 38 LLl1 VI/VII 16 11 31 8 11 28 11
619A 1943 30 = LL1 VI/VII 13 18 31 5 18 28 8
622 1944 18 ML1 IV+ 10 10 30 8 16 28 9
Second Valley Forest Reserve

651 1935 5@ SAl v 12 13 38 11 13 as 11
658 1944 204 s01 v 17 10 30 7 19 39 10
"658A 1944 2064 sol v/V1 15 16 38 -5 16 39

658B 1944 204 s01 v 15 16 38 5 16 30

658C 1944 264 s01 vi 15 16 k] 5 16 k']

659 1944 204 SO1 Vi 15 10 30 8 18 38 1
659A 1944 204 - so1l Vi~ 13 16 38 6 16 30

662A 1949 209 SO01 1IV/1IvV+ 12 12 24 5. 14 24

662B 1949 269 SO0l 1IV/1v+ 12 12 24 5 14 24

(- X W W N N N N )

O WO W~

PDH
Min

Age

14
19
19
19

19.

-19

18 .

18

290
20
18
18
18
16
16
13
13

13
13

21
14
12
11

17

16
13

12
12
17
12
14
11
13
12
18
11
18
10

13
10
16
16

16

19
16
12
12

183

Max
Age

21
26
26
29
26
26
25
25

- 308
30
28
28
28
21
19
16
16
16
16
16

38
38
38
36
35
35
32
32
32
30
30
38

38
-39
30
30
30
30
30
24
24
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Appendix 1,2

SOIL TYPE
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Appendix 1,.2a

Key to soil types

SOUTH EASTERN REGION

NS  Nangwarry sand DY Deep yellow sand
MB Mount Burr sand YS  Young sand
CsS Caroline sand K= Kilbride sand v
YM  Young/Mount Burr trans., KN  Kilbride/Nangwarry trans.
MS Myora sand WS Wandilo sand
WN Wandilo/Nangwarry trans, RI Riddoch sand
Cv  Coarse valley soil BS Brown soil from Comaum
MM Mount Muir sand TR Terra rossa
TF Tantanoola flinty sand V= Volcanic
RE Rendzina
CAVE RANGE F.R,
{CY Yellow sand
NOOLOOK F.R.
NR . Red sand NT Red/yellow trans.
NY Yellow sand
WIRRABARA F 4R,
WA Alluvial loam WL Grey brown loam
WR Red brown earth
BUNDALEER F R,
[BR__ Red broun earth
MOUNT CRAWFORD F.R.
AS Alluvial sand AC Cromer sand
CA Alluvial sandy clay & clay
KUITPO F.R.
AL Alluvial sand MD Mid slope loamy sand or sand
TL  Transported loam ML  Mid=lower slope sandy loam
LL  Laterite ridge loam '
SECOND VALLEY Fl.R.
[ SA  Alluvial soils S0 Laterite soils
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Summary by Plots ' Appendix 1.2b
SOUTH EASTERN REGION S
NS 'NS2 “NS3 MB1 MB2 MB3 €51 £s2 Cs3
3158 310 300 53° | 57 EP52 411 404 402
315C 31S5E | 301 54 812 EPB2, | 414 412 403
346 332 3154 55 | 116 87, | 417 413 405
347 350 315D 58% | 121 89 425 407
348 361 321 63 | 124 117: 427 408
349 362 322 115% | 129 118, 435 409
360 365 327 144 | 1700 | 123 : 415
363, 367 328 176A | 175 126 422§
376 375 341 1768 | 176E | 127 423
383 382 397 176C | 1764 | 128 426
DAV 1 398 220A | 176D | 527 141 433
DAV 2 | 399 2200 | 176F 142 | 434
221A 1763 148 ' '
221D | 177A 156
2227 | 1778 157
222D | 177C 158
177D 1708
177E 171A
177F 171D
1776 173
177H 174
1773 555
508 558
511 559
513 ‘
528
532
533
542
543
DY3 ym3 | kw1 | KnN2 | kN3 | vs3 K1 K2 Ke3
206 | 150 323 324 | 357 149 335 X 304
212 358 395 | 172a | 364 y 305
218 359 396 172D 368 | 314 | 313
, 366 , 557 369 354 325
576 326
577 '
578
579

x See Appendix 1.2c
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MS3 WS1 WA wn2 | RIN Nz Cv3 BS1 BS2
410% 514 306 353 | 155 119 140 200 203
524° | 307 202
560 209

571%
572%
573%
337
338
344
345%
351
352
355
356
374%
377
379
380
381
TF1 TR1 MM MM2_ | MM3 | =1 RE1 N/A
EP24A | 176G 73 120° | 139%| 37 535 TP1B64
EP24B | 530 74 547 38 | 536 TP1G61
Ep24C | 531 75 39 TP1G62
Ep24D | 549 76 41 TP1G63
EP24E | 563 42 TP1T61
525 564 122 TP1T63
538 565 143 TP2B64
539 418 151 TP26G61
540 : TP2662
541 TP2663
548 TP3B64
550 TP3G63
553 TP4BE4
TPSB64

X See Appendix 1.2c



CAVE RANGE FR.

NOOLOOK F.R.

WIRRABARA F.R.

BUNDALEER F.R.

MT.CRAWFORD F.R.

KUTPO F.R.

SECOND
VALLEY F.R.

6628

cY1
TPC541
TPC542
TPC571
TPC573
TPC592
TPC593
NR1 NY NY?2 NY3 NT1
TPNS41| TPNS93| TPNS64| TPNS5S4| TPNS52
TPNS42 TPNS85| TPN591| TPNSS55
TPN543 TPNS56
TPNS44 TPN561
TPNS71 TPN562
TPN572
WAl WR1 WL
908 912 910
909 913 911
915 914
BD1 BR1
956 958
957 959
960
CAI AS1 ACA
701 704 714
702 714A
705 715
718 715A
ALY AL2 TLA ML MD1 LL1
616 605 610 606 607 617
612 617A
613 619
622 619A
SA1 S01
651 658
658A
6588
658C
659
659A
662A

198



199

Appendix 1.,2c

Notes on specific plots

The soil type as coded refers to the predominant soil type, These

notes refer to possible secondary profiles or variations in a single

hole compared with the other holes,

Plot Variation
58 possibly a Mount Muir transitional
120 139 Mount Burr/volcanic transitional
81 87 89 115 Mount Burr sand soils over a‘volcanic base
116 117 118
123 141
53 Mount Burr éandvbut possibly a terra rossa influence
323 Shallow and wet | | |
345 possibly a Nangwarry sand transitional
357 closer to a Kilbride sand
358 closer to a Nangwarry sand
364 transitional sandy swamp soil
374 possibly é Kilbride sand transitional
376 some Wandilo sand influence
410 a mixture of soil types
422 423 "Terra rossa influence
_524 Mount Burr transitional
527 Mount Muir transitional
571 572 573

possibly a Mount Burr sand transitional




Occurrenceof soil types

by

forest district

Appendix 1,2d

~
©
« | 0| D
Soil Soil type s |~ | E
28|83
type (Stephens et al., 1941) wlSlolelels
cC | L[| C}| 41 0} @©
3 c 3 ) C E
O | @1 o] ] o] o
s |-l |alao
NS Nangwarry -sand X *
MmBe flount Burr sand * | % | *
)4 Deep yellow sand *
Cs Caroline sand X *
YS Young sand * | * | * %
K= Kilbride sand *
KN Kilbride/Nangwarry *
ws Wandilo esand x | * | * | *
WN Wandilo/Nanguwarry %
RI Riddoch sand X
BS Brown sand *
TF Tantancola fiinty.sand x | ¥ %
Cv Coarse sandy valley soils X
MM Mount Muir X | x
TR Terra rossa ¥ ¥ ¥ x'! x
U= Volcanic h X | X X
RE Rendzina X

Notes

X s0il type occurs as a minor occurrence

200

* soil type occurs commonly on this forest district



Appendix 1.3

UNTHINNED STAND DATA

Appendix 1,3a lists the plots that were included in both the
developmental and test data sets. These data sets are graphically

depicted in Appendices 1,3b and 1.3c.

201
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Appendix 1.,3a

Plots in developmental and test data

Developmental Test
daté | data
Plot numbers 37 EP24C
58 : EP24E
73 87
75 124
81 142
89 149
120 155
305 202
307 209
310 368
321 369
323 377
326 379 .
335 - 403
338 ' 405
346 413
508 433
513 , 547
514 550
553
855
557
Number of plots 20 23
Average number of 11.4 6.9
measurements
Average growth period  33,0° ‘ 20.8
Age range ~ 8=50 B=47
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Appendix 1.3b

1 8@@ — : Devglopmental data

1600+

387

1400 -

1200

YIELD |
- 1000F
(MP/HRY |

800 -

338
. 5%

385

600 -

400 -

2001

AGE (YEARS)
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Appendix 1.3c

1800 | ‘ Test data
16080
1400

1200 -

YIELD
1008+
(M3/HA)

800 -
_ 555
600

400

200+

50

- AGE (YEARS)
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Appendix 1.4

DATA FROM THE LOWER SOUTH EAST
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Inspection of the data from the lower south east of South Australia
(exclﬁding Noolook and Cave Range forest reserves) showédnthat there
were relatively few data at later ages from poore; sites. The data
were divided by plots (to ensure the independence of the developmental
and test data sets). The developmental data included a random 70% of
the low site guality plots and plots measured at later ages, and 50% of
the other plots. The objective was to provide a balance by increment
periods of approximately 60-40% with the developmental data being better

balanbed than the test data. The data are summarised by age and site

guality in Appendices 1.4a and 1.4b.

The range of periodic annual increment in the developmental data
was 7.0 to 62.9 ms/ha, mean 27.3 with a standard deviation of 8.0. The
test data had a mean of 28.6 with a standard deviation of é.?, somewhat
surprising in view of the care taken to provide a better balance in the

developmental data, but attributable to the random selection technigue.

The data caover a range of thinnings (one plot having received six
thinnihgs and 26 plots five thinnings) with the plots thinned most often
being on the better sites. The distribution of the developmental and
testvdata by thinning and site potential 46 detailed in Appendices
1.4c and 1.4d, where it can be seen that‘the data cover a.relafively

wide range of stand conditions.

Appendix 1.2 details the soil types for the data. There afe a
number of soil types represented by only a few plots so that it was
considered impractical to evaluaté soil type.on indépendeht developmental
data testing the models against independent test déta. The déta were
' thereFore combined for the soil type evaluation. Appendix 1.49vdetails
how the 1638 increment periods are distributed by soil typé aﬁd site
quality. It must be remembered that for example the 20 observations for

soil type NS1 and.site quality II came from only two plots.
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It should be noted that the age of measurement in these tables is
the age at the start of the increment period so that although in
Appendix 1.4a there appears to be only 3 plots measured after age 45

there were in fact 7 plots measured at age 50.
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Appendix 1.4a

potaad juswsIouT ayz JO 3Ie3s ayy 3e aby

696 L2 9y 8Ll olLg Lz I Lol 1301
g L z 05-9%
Gz S Ll 9 z L Sh=Lt
95 6 %4 Sl S ¥ ov=9¢
gLl g Ll Zy . 92 0z 8 5e-1g
onl L g Ll 91 A gz 9l 0£-92
L0Z ol Lt 9z 89 e og e 5Z-12
cLz zL- 9l 5z Z9 8Y Lz ¥4 0Z-91
961 % A LS Zs 8¢ 9z Lz SL=11
6l L > g 6 L L oLs

. IIN IN n NI III I I juBWs INsEAW
Te30] (OVA) A3tTEnD 83TS 40 aby

A3TTEnd 83TS pue aby Aq ejeQ TejuswdoraneQ




209

Appendix 1.4b
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Appendix 1.4¢

Combined Data by Soil Type

Soil Site Quality Total
Type 1 11 111 IV v VI V1T

NS 20 19 27 10 1 77
NS2 11 17 28 13 18 6 93
NS3 ' 36 49 1 4 90
MB1 34 18 53 47 152
MB2 12 9 21 21 4 67
ma3 16 90 | 39 10 8 163
€S 30 . 30
€S2 25 18 7 50
€s3 15 44 8 21 6 94
DY3 9 6 7 22
YM3 6 6
KN 10 22 8 40
KN2 : 15 15
KN3 8 ' 6 14
YS3 5 8 12 25
K=1 7 14 5 26
K-2 35 12 47
K=3 55 12 . 67
MS3 10 10
ws1 47 57 38 | 11 7 160
WN1 11 12 23
WN2 9’ ' 9
RI1 5 } 5
cw 10 , 10
Cv3 ‘ 8 8
BS1 8 13 21
BS2 9 9
TF1 74 18 8 7 107
TR1 5 26 10 41
MM1 _ ' 21 20 4
MM2 4 8 : : 12
MM3 9 9
V-1 57 26 83
RE1 ‘ , 6 6 12
Total | 204 280 306 542 | 213 58 35 1638
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Appendix 1.4f

Second rotation plots

Forest Reserve Pln Plot Site Quality Age range
Mount Burr 1936 115 IV+ 8-37
1936 116 1w+ | 10-38
1936 117 IV~ 9-35
1936 118 IV- 10-37
1936 119 | IV 9-35
1936 120 IV 9-35
1937 124 Voo 11=35
1940 140 I+ 11=34
1540 141 v 10-32
1940 142 IV- 11-32
1940 143 111/1V 1 10-32
1940 149 VIl 11-33
1940 EPS2 v 13=34
1944 EPB2 v 9-28
Tantanoola 1947 173 VI/VIT 15-25
1947 174 VII+ 15-25
1948 175 VII+ 14-24
1955 177 (V) v 11-15
~ penola 1946 395 VII 16=25
1946 396 VII 16-26
1956 315 (2)] y/ur 1116

Note (1) nine plots
(2) five plots
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Appendix 1.5

DATA FROM OTHER REGIONS
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Appendix 1.6

DATA FOR GLS ANALYSIS



218

Appendix 1.6a

oL eT0Uad
o wmﬂnsmu unoy)
L 1Ing junoyy
S30Td 4O Jsqunp 158304
b - b l m‘ L=N
g L ZWl LW
L .
sm
¢ ¢ c Z 9 L
L G LNM
IIVA —
p & £ v g=M L=
N
ST b £ L
\ 6 v 4 Z €SN  ZSN  LSN
S S L e8lW Z28W L8W
sbutdnoab

anT3BUIB}TE UT s30Td Jo Iaguny

Jsqunu adAj ﬂﬂow

adAl TTOS

1sal104 pue adA| 1105 Aq sjewl3sa iotad oy s307d




219

Appendix 1.6b

8S Z S L L : L 1% g S L L oL Ll L
Te3ol ve gg A e 62 Le =4 . S¢ Ve £z A4 YA 14
yamoab jJo potasd jJo yzbus’
BS 4 g e 9l 6 4
Te3ol gL cl L ol 6 8
jusweanseaw 3sIT4 40 aby
85 g 0 L 6 L St Bl
Teizol Sl vl gl <l bl oL 6
SUOT3BAIaSGO JO I3qunp
8% L L St vl Sl 9 0
Te30l |{00g<  00g=0SZ 0SZ-00C¢ 00Z=-0SL 0SL=00L 00L=0S . 0S >

(O'A) tetjuerod e3ts

ajewtyss Jotasjsod 10y sS30Td




220

APPENDIX 2

EVALUATION OF THE PARTIAL DERIVATIVES
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For each evaluation of a partial derivative the function was eval-
vated at intervals (h=%(n/2)delta) either side of the estimated parameter
value, where delta was a reiativeiy small value and n an integer.

Expressing the function as a Taylor's series.

r=n T
(h
f(b+h) = E : ——; T (b)

-

where
b = the parameter estimate,
h = *(n/2)delta, and

f7(b) is the rth derivative of the function,
and solving the equation for f1(b) enabled an estimate to be made of the
derivative, The accuracy of this approximation depended on the order of

the series and on the value of delta.

Evaluation of simple test data‘using a simple growth model indicated
that the fourth order was sﬁfficient giving resulfs within an order of
10"4 of the correct figures, however td ensufe éccuracy a sixth order
was used, The value of delta Qas more difficult to determine. Pre-
liminary evaluation indicated that the optimum value was of the order
of 10-3 of the estimated parameter value, Smaller valuesof delta
tended to introduce pfoblems with machine noise, and large values of

delta reduced the accuracy of the approximation, although changes of

order 107" or 107> had 1ittle effect.

The problem could have been solved by evaluating all the models
using a range of delta values, accepting as the best‘values of delta those
which provided'the minimum variance estimates. However this would have
necessitated many evaluations of a model form, and és there were a large
number of models evaluated in the study, it was impractical to carry out
this procedure for all models. The delta values were checked for thoée
models for which parameter estimates are repofted and for a number of

other models within each group.
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It is impractical to report these evaluations in this Appendix, but

the fdllowing example indicates how the analysis was carried out and the

sort of results obtained.

The conditioned Bertalanffy periodic increment model

Pai = "0 {j _ EXp(-p(AZ_AO))} - {1 - ex”('p(A1‘Ao))}
(Ay = Aq) T = exp(-p(10-Ay))
where ; .
Ag =10 exp(-a1 Y1U)
P =Pg* Py Vg

and where

Pai = periodic annual increment between ages I-'\1 and A2,
Y10 = site potential,
A0 = the age at which volume growth commences, and,

Pgs Py and a, are the parameters to be estimated,
was evaluated in Chapter V, Equation V.12, where it was concluded that
it was the best of the models developed along that line and also the best

model developed by 0OLS using the unthinned data,

Appendix‘2.0a shouws the effect of changing the delta values for this
model, Over a wide range of delta values the models wére all relatively -
~efficient, but within this range the lowest total deviates squared value
was at the edge of the range where a slight change in deltavmade it
either impossible‘to fit the model or provided a markedly'less efficient
model, The’program provides asymptotically efficient estimates rather
than true minimum variance estimates and the fluctuations within the
bounded region reflect the effect of this on the models. The delta

values selected were in the middle of this range.

, £5p0 .00001

[581 .000001

Here the total deviates sguared were 8562.8 although the minimum was

8557.6., These 'middle' values of delta also coincided with the sensible

first subjective estimate of ’IU“3 of the estimated value of the parameter.
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APPENDIX 3

SECOND LEVEL BERTALANFFY MODEL




Appendix 3.1

Integration of the second level Bertalanff} equation

to give a yield eguation.

The second level Bertalanffy equation

dy m
an = nyY - pY

can be integrated using Bernoulli's equation,
s s m
Dividing by Y

dY -m 1=
an Y = n - pY

and substituting u =Y

du_ =(m=1) dy

dA ~ y"  dA

duf 1 \_ 91{1_
dA Q1=mf = dA Lym

n - pu

ﬁign = '/‘(m—']) dA + C

%-ln(pu-n) = (m=1)A + c
u = -'-;—{1 + exp {-—p(‘l-m)A + c}}
or _
1 1
Y =

{-&}m{1 + exp{-p(1-m)A + C}} T-F

which can be rewritten as

1 L
— A-m
Y = {%} {1» + e, exp{-—p(’l-m)(A-Cz)}}

wvhere c, and c, are constants,

1 2

225



226

The constants 4 and c, can be defined in a number of ways:

c, = Ay (the age at which growth commences)

YI =0
A=AU 1

T=m
={£— (1 +c1)}

which can only be defined if m#1, and then c,=-1

1
c, = Ai (the age at which growth rate culminates)
g% = ny" - pyY
d%y m=1 dy '
5;5 = {TnY - p} a = 0 at A=Ai
' A
: o 1=m
ie Y #v{——}
p
therefore
S 1
) 1=~m am 1~m
1+ ¢ =4{—
{p ( 1)} {FJ }
A=A,
i

which can only be defined if m#1, and then e =(m-1).

For the logistic m=2, ie c1=+1.
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The Gompertz model form (Equation IV.17)

Y = a exp { —exp [—b(A-Aij}iv

can be reformulated

1n(Y) = 1n(a) - exp {—b(A-Ai)}

therefore

ay

G = v b e {-b(amap)

bY 1n(a/Y)

wvhich has the same form as the limit form of the second level

Bertalanffy equation.

HOWEVER this logic, as used by Pienaar (1966) assumes that a and b are

defined at m=1, which is not so if
1

n 1=m
a= {E} and b = p(1-m).

Therefore the logic is inconclusive if Bertalanffy's model is used, and

assumes a and b are defined and not equal to zero as m approaches one.
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Appendix 3.2

The limit form of the second level Bertalanffy as m approaches 1,0

The second level Bertalanffy equation (Equation IV.9) with c,=1 and

02=AU can be reformulated into the Chapman-Richards form:

1

. _ 1-m
Y=oa { 1 - exp [—b(A-ADﬂ}
by substituting "

S

. ={%} T=m

b= p(1-m)
Differentiating

dy m

a8 = nY - pY

pY {(a/v)1‘"‘ - 1}

by %(a/v)""" -1 §

T=m

using L'Hopitals rule

Lim  a"=1

x*»0 X = 1n(a)
then form =1
Xy 1n(a/y)

dA.
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APPENDIX 4

EXPLORATORY ANALYSES OF UNTHINNED DATA

Analysis of trend in variance ' 4,1
Bertalanffy; general model ’ 4,2
Bertalanffys; unconditioned periodic annual increment 4,3
Bertalanffys; conditioned yield | - 4,4
Johnson-Schumacher; 1linear unconditioned : 4.5a
Johnson-Schumacher; nonlinear unconditioned .‘ 4,5b
Johnson-Schumachery nonlinear conditioned 4 . 4,5¢c
Bednarz; conditioned yield 4,6a
Bednarz; conditioned periodic annual increment 4,6b

Gompertz; conditioned yield ’ ; 4.7
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Appendix 4.1

Analysis of trend in variance

To investigate whether yield and periodic annual increment could
be used as the dependent variables without the necessity of weighting,
the unthinned deveiopmental data were partitioned into age-site potential
cells, and ﬁeriodic annual increment into increment-period cells. The
age cells were of eight years, 10-17, 18-25, 26-33, 34;41 and 42-4%, the

site potential cells having boundaries at Y

10 = 100 and 200. Increment

period was divided into years.

Bartlett's test was applied to the variances for each cell. When
yield was invéstigated the value of Chi-square was 21.1 for 15 cells and
when periodic annﬁal increment was investigated the value of Chi-square
was 15.5 for the 15 age site potential cells and 12,3 for the seven
increment periodic cells..v None of these values was significant and it

was inferred that the models could be developed unweighted.



Bertalanffy: general model
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Appendix 4,2

30000
' X m=2,0
20000 . m=1.5
Total
deviates : : m=1.,0
sguared .
10000 | x\\%;f’~’ée”"ﬂ¥%—_____;__;x m=045
XX * % X m=0.0
vJ 1 I |
1.0 2.0 3.0
Total deviates squared
Value Value of m
gf ' float 0.0 0.5 0.667 1,0 1.5 2.0
float | 5819.8'|5819,8°
0.5 5820,8
0,667 5820.0 | 9436.1
1.0 | 5823.3°|5830.7 | 6901.5 | 7468.6|
1.5 5865.3 | 778541 | 10861.6
2.0 5904.3 | 8592.3 12650.2 | 16455.3 |
3.0 5975.3 | 9846.1 15408.7 | 20551.8 | 24927.3
Note: 1  m=0.,002 r=0,682
2 m=0,0 r=0,833
3 m=0,050 T=1.0
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Generalized Least Squares Estimation
of Yield Functions

1. S. FERGUSON

J. W. LEECH

ABSTRACT. Data were obtained from 9 measurements of 20 unthinned plots established in
Monterey pine plantations in South Australia. A two-stage procedure for estimation of the
yield functions was developed, drawing on the theory relating to random coefficients and to
seemingly unrelated equations. "In the first stage, coefficients relating yield to age for each
plot were estimated using ordinary least squares. In the second stage these plot coefficients
were then regressed against plot variables such as site index and stocking at age 10. The
error terms in the second stage violated the assumptions of ordinary least squares, being
heterogeneous across plots and correlated across coefficients. A generalized least squares
algorithm was therefore developed and programmed to estimate the final coefficients and
other relevant statistics. The algorithm also enabled comparison of the final coefficients
based on alternative assumptions about the structure of the error terms. The results showed
that the coefficients estimated under the assumption of heterogeneous correlated errors
were more efficient than those under other assumptions. Recognition of the correlations
between first stage coefficients proved especially important. Comparison of the hetero-
geneous correlated results with those from ordinary least squares applied to the pooled data
from all plots also showed that while the latter estimates of the coefficients seemed robust,
their variances were grossly underestimated. Model selection based on ordinary least
squares and pooled data may therefore be misleading. Generalized least squares estimators
offer substantial advantages in this respect and are consistent and asymptotically efficient.
Forest Sci. 24:27-42.

ADDITIONAL KEY WORDS. Statistical analysis, mathematical models, Monterey pine, Pinus
radiata.

THIS PAPER deals with the problem of estimating yield functions for plantations of
Monterey pine (Pinus radiata D. Don) located in the southeast of South Australia.
Data used in these analyses were obtained from repeated measurement of perma-
nent plots, often spanning 40 years in time. These data pose a number of problems
for efficient estimation of yield functions. A new and more efficient technique has

The authors are, respectively, Senior Lecturer, Department of Forestry, Australian National
University, Canberra, Australia; and Assistant Forest Resources Officer, Woods and Forests
Department of South Australia, currently undertaking Ph. D. studies at the Australian National
University. '

The theory, techniques, and initial empirical research for this paper were developed while the
. senior author was on study leave at the College of Forest Resources, University of Washington.
The assistance of Dean J. Bethel and Professor G. F. Schreuder in providing research facilities
end computer time is gratefully acknowledged. This paper was first presented to a Workshop
organized by Research Working Group 2, Mensuration and Management, of the Standing Com-
mittee of the Australian Forestry Council. Thanks are due to a number of participants for their
comments. Special acknowledgment is due to Mr. J. Miles of the Department of Forestry,
Australian National University, who developed the computer program for generalized least
squares estimation; and to the Director of the Woods and Forests Department of South Aus-
tralia for permission to publish this paper. Manuscript received May 3, 1977.
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been developed for this purpose. This paper outlines the approach used and reports
the results for a yield function suitable for use in unthinned stands.

STRUCTURE OF THE GROWTH MODEL

Nonlinear models such as the Chapman-Richards model or variants of it have been
used extensively in recent work in estimating site or yield functions (Pienaar and
Turnbull 1973). However, these models pose difficult problems in relation to
statistical inference about alternative hypotheses. Moreover some of the problems
associated with the data available for this study arise in both linear and nonlinear
models. It was therefore simpler to start with linear form for which well-developed
techmques of inference were available.
The log/reciprocal model provides a useful starting point:

lnv=b1+b2/a N V (l)

where In denotes logarithm to base e,
v denotes volume of the ith observation,
a denotes age of the ith observation,
by, b, denote the fixed coefficients.

The log/reciprocal model (equation 1) has a number of desirable properties for
the present study. Bailey and Clutter (1974) suggested that the simple form in
equation (1) could be generalized to provide a polymorphic system of curves by

including a further coefficient (c), and by making the slope coefficient plot-specific
(b2:):

lnv=b1+b2¢(l/a)° . , 2)

This extension seems unduly restrictive, however, since it must either be fitted by
nonlinear regression or by undertaking further transforms of the model to obtain
a linear form (Bailey and Clutter 1974). An alternative and more powerful gen-
eralization would be:

Inv = by + ba(1/a)+ by (1/a) +. .. @)

where b,; are the coefficients of a polynomial in (1/a).

Equation (3) is linear in the coefficients and can thus be estimated directly using

ordinary least squares. Each of the coefficients can be related to site or to other
variables which affect differences between the plots. This enables the asymptotic
value of volume to vary according to site, while still allowing the point of mﬂexnon
to vary with site (cf. Bailey and Clutter 1974). :

Since the log-reciprocal transform itself substantially linearizes the relationship, a
~ high-order polynomial is unlikely to be required. Nevertheless the rank of the
matrix of independent variables in the polynomial needs to be established before
proceeding further. Thus we proceed to discuss briefly the data and the results of

the first stage of the estimation process, which involved fitting polynomials to each

plot separately.

DATA

The data used in this study were derived from successive measurements of a series
of 20 permanent plots in Monterey pine plantations in the southeast of South Aus-
tralia. All the plots had been left unthinned. The first measurement of each piot
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TABLE 1. Number of plots showing significant improvement in f{it.

Number of plots showing

Forms of model significant improvement
Linear to quadratic - : 15
Quadratic to cubic 9
Cubic to quartic 5

had been carried out at or near age 10 years. Subsequent measurements were car-
ried out at varying intervals to ages of 40 or 50 years. The standards of measure-
ment were notable for strict adherence to well-established and documented proce-
dures, using highly trained and expenenced staff.

The irregular number of observations in the plots posed a problem Although
variable numbers of observations could be handled by the techniques outlined in this
paper, the advantages seemed to be outweighed by the additional computational
burden.

Thus the data were culled to reduce all plots to nine observations. The {first and
last measurements were retained in each plot, in order to maintain the maximum

period of growth possible. For each plot the surplus observations were culled ran-
domly.

FIRST-STAGE MODEL

A polynomial was fitted to the data® from each plot using ordinary least squares.
The most appropriate order for the polynomial was not clear, although consideration
of the second-stage model suggested that it should be consistent for all plots. Thus
linear, quadratic, cubic, and quartic forms of the model were fitted to each plot.

The various forms of the polynomial model were then tested to determine whether
the addition of each successive term represented a significant difference over the
simpler forms. Inspection of the plot variances of the residuals for any one form
of the polynomial model indicated that the plot variances were markedly hetero-
geneous.

Differences in the pattern of heterogenelty between different forms of the model
seemed to eliminate an analysis of variance based on the pooled data. Tests were
therefore carried out by plots to establish whether each additional term represented
a significant improvement over the previous form. The numbers of the calculated
values of the F statistic which exceeded the critical value at the 95 percent probabil-
ity level are summarized in Table 1.

The results in Table 1 suggested that the quadratic form was probably superior
to the linear, but the other comparisons were not so clear. The signs and values of
the higher order coefficients in the cubic and quartic forms were notably erratic.

Thus quadratic and higher forms were pursued in the second-stage analyses. Since-

the cubic and quartic proved to be untenable in the second stage, only the results for
the quadratic form will be reported in subsequent sections.
The estimated values of the coefficients for the quadratic model are shown in

Table 2, together with the values of site index (s;) and stocking at age 10 years

(ny). In accord with South Australian practice, site index was measured by the esti-
mated volume per unit area the plot would carry at age 10 years.

! Age was measured in fens of years to provide better-conditioned moment matrices for the
first-stage estimates. All subsequent results reflect this scaling of age.
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TABLE 2. Estimated coefficients and plot data for quadratic first-stage model.

Estimated coefficients Site index Stocking (age 10)

. .. . (m®/ha) (Stems/ha)
Plot by ba bas 5S¢ ne
1 7.902  -3.503 1.131 253.2 1549
2 7.826 - -3.479 1.044 2239 1495
3 7.621  -3.141, 0.870 204.1 1690
4 7.956 —4.436 1.873 184.5 . 1700
5 7.886 -4.532 2.125 179.2 1619
6 7.522 -2.552 0.122 168.5 1673
7 7.525 -2.890  0.402 ' 164.2 1703
8 7.699  -3.983 1.442 161.1 1716
9 . 7.650 -3.213 0.528 T 1452 1549
10 7.434 -3.148 0.717 1438 - 1680
11 7.407 -2.716 0.238 143.1 1680
12 7713 —4.065 1.445 141.5 1737
13 7.275 -2.465 0.062 ) 1350 1468
14 7.648 -3.637 0.815 132.1 1982
15 7.390 -1713 0991 119.1 1208
16 7.524 -3.374 0.460 1113 2162
17 7398 3142 0.276 93.7 1834
18 7.093 -2.816 -0.023 70.0 v 1673
19 7.027 -1.817 -0954 69.1 1581

20 7.013 -2.153 -0.878 57.2 1609

The data in Table 2 are arranged in descending order of site and provide some
visual evidence of a probable correlation between the values of the coefficients and
the values of site index.

The estimated values of the elements (oj;*) of the variance-covariance matrix for
these coefficients are summarized in Table 3. Since the matrices for each plot are
symmetric, only the diagonal and upper diagonal elements are shown.

Considerable heterogeneity between plots is apparent in the data in Table 3.
Bartlett’s test of homogeneity was used to examine this problem, using the estimated
variances of the residuals for each plot. The calculated value of the test statistic
was 65.6. This statistic is approximately distributed as a x> variable with 19 degrees
of freedom. The calculated value exceeds the critical value (30.1) of x* at the 95
percent probability level and thus the vanances of the re51duals are significantly
heterogeneous.

Scatter diagrams of the residuals for each plot gave no indication of heterogeneity
or of serial correlation within any of the plots. The Durbin-Watson statistic was also
calculated for each plot, even though its value is questionable with so few observa-
tions. The published critical bounds only go down to 15 observations (Theil 1971).
Extrapolating these to 9 observations (and recognizing the dangers inherent), the
lower bound is about 0.8 and the upper bound is about 1.5 at the 95 percent proba-
bility level. None of the plots had calculated values of the statistic below the lower
bound. Six fell in the inconclusive zone (between upper and lower critical bounds)
for positive serial correlation and six in the inconclusive zone for negative serial
correlation. If serial correlation were present in the first-stage model, one would
expect it to be consistent (either positive or negative) for all or most plots. These
results suggest that serial correlation was not a serious problem in the data.
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TABLE 3. Estimated variances and covariances of first-stage coefficients.

Estimated variances and covariances (X 107*)

Plot on' o1t o' 018t o' o'
1 9 -36 159 30 ~141 129
2 48 -171 652° 122 478 362
3 18 -7 306 61 272 250
4 8 —34 162 34 -165 171
5 10 -47 242 50 -263 292
6 104 368 1370 260 988 731
7 25 -80 269 49 -174 118
8 21 -82 333 68 -283 247
9 23 -77 279 54 203 154
10 26 -112 516 98 —467 433
11 30 93 318 59 210 144
12 24 -105 491 102 . 497 519
13 41 -143 515 109 -369 268
14 15 -83 485 107 —639 855
15 - 74 -230 783 146 -517 356
16 .25 -127 655 138 722 811
17 7 30 - 129 25 -113 103
18 ‘ 10 -39 153 30 -121 99
19 37 -135 522 105 -416 339

20 45 -105 - 536 104 -386 - 288

SECOND-STAGE MODEL

The estimated coefficients for the first-stage models enable yield predictions to be
made for any plot in the sample but not for any other plot. The second-stage model
is concerned with the development of a more general model, capable of making
yield predictions for any plot drawn from the same population as the sample.

‘Consider the estimated coefficients for the quadratic form of equation (3), shown
in Table 2. Each plot can be regarded as a random sample from the population of
all plots. Thus these coefficients can be regarded as random variables or “random
coefficients,” to use the terminology of the literature on growth curves and related
work (e.g. Potthoff and Roy 1964, Rao 1965, Grizzle and Allen 1969). Swamy
(1971), Rosenberg (1973), and Fearn (1965) have further developed the relevant
theory (both classical and Bayesian) regarding random coefficient models, and
efficient unbiased estimators of the expected values (and variances) of these coeffi-
cients have been developed for various applications. Leak’s (1966) pioneering
work with repeated measurements in forestry data developed what would now be
recognized as large-sample esnmators of the expected values and variances for a
random coefficients model.

These models need not be limited to random coeffzczents as Grizzle and Allen
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(1969) and Rosenberg (1973) have noted. The coefficients of the first-stage model -

can be postulated to be random functions of other exogenous variables. Neverthe-
less the techniques for estimation of random functions received little attention in the
literature on random coefficients models.

The problem of estimating random functions is exactly analogous to that of esti-
mating “seemingly unrelated equations,” although this does not seem to have been
recognized previously in the literature. The theory and techniques of estimation for
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the latter problem were first developed by Zellner (1962). Goldberger (1964),
Dhrymes (1970), and Theil (1971) also contain useful contributions on the
problem.

Before turning to the formal development for estimation of a general model of
this type, let us consider the structure of the second-stage model in more detail.
The regression coefficients in equation (3) may be postulated to be random func-
tions of site index and any other appropriate variables. As a specific example, let us
postulate that the intercept term in equation (3) is a linear function of the logarithm
of site index, which seems reasonable because this coefficient determines the
asymptotic value of volume as age approaches infinity:

bi=an+apIns;+6; 4)

The random error (3;) may be attributed to the inherently stochastic nature of
biological relationships and/or to the large number of potentially important factors
which are not taken explicitly into account in the model. For example, the genotype
of the planting stock and a multitude of soil and microclimatic factors are known to

be potentially important determinants of forest growth, but none of them appear in

this model. A

The detail of the structure in terms of the variables, and the form in which they
are included, may vary between the different regression coefficients. Hence it is
desirable to adopt a more general formulation of equation (4):

b= ; @z +8u A - | )

where the subscript I (=1, 2, 3) is used to denote the Ith regression coefficient
in equation (3), '

zj denotes the jth (= 1, 2...) independent variable for the -

_ ith plot.

~ For any one first-stage coefficient it seems reasonable to assume that the errors
(8::) in equation (5) are identically and independently distributed with mean zero
and variance denoted A;;. However the covariances between the error terms of
different first-stage coefficients will not in general be equal to zero (i.e., Ay # 0),
because the coefficients are generally interrelated. For example, other things being

' .equal,a particular soil type is likely to affect all of the first-stage coefficients for a

particular plot in some related manner.
The formulation in equatlon (5) is based on the true regressxon coeffxcnent
Clearly, errors of estimation in the first-stage must also be recognized:

a =k : '
. bu = Eau Z,‘;'I'au‘l'eu (6)

where b;; denotes the estimated values of the lth coefficient (1=1,2...) for
the ith plot,

e; denotes the error of the estimate of the /th coefficient for the ith plot.

In this form, it will be apparent that the second-stage coefficients (ay;) should
not be estimated by ordinary least squares applied separately to the data for each
coefficient. The combined error term (8;; + e;;) does not obey the assumptions
underlying ordinary least squares; the variance of one component (e;;) being hetero-
-geneous from plot to plot. Moreover more powerful techniques are available which
take advantage of the properties of the error term to increase the efficiency of esti-
mation of the second-stage coefficients. '
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GENERALIZED LEAST SQUARES
The model outlined in equation (6) can be developed fully in matrix notation thus:
B=ZA+U @
where B’ = [B,, B2, Bs]
and B;'=[bz,1, bz,g. ..bz,i.. .bz,zo]; :
Z; 0 O
Z=10 Zg 0
|0 0 Z

b4 70 S 21,20

and Z, =

 Zo1 - - - - - Zm2o
A’ =14, As, A5)

and A/= ta;,l, anz...aLml; -
U’ = [U,, Uy, Uyl
UY = [uy,1, ur,2 - - - U1,20] |

and U, = 8“ + e .

Equation (7) is applicable to other first-stage models such as the cubic form by
appropriate modification of the dimensions of the components.

Note that the submatrix of independent variables (Z;) need not be identical for
all values of /. Indeed, if all these submatrices were identical, much of the gain in
efficiency which accrues from a generalized least squares approach would be lost
(Theil 1971).

Using equation (4) as a specific example, the submatrix (Z;) would contain the
vectors derived from z;;=1 and zo;=Ins; fori=1...20.

Assuming the variance-covariance matrix of errors (U) in equation (6) is known,
the theory of generalized least squares (Aitken 1934-1935) may be used to derive
best linear unbiased estimates for the second-stage model. These are sometimes
referred to as Aitken estimators.

The generalized least squares approach involves a transformatlon of the model:

TB=TZA+TU (8)
where T is a square matrix _such that:
T =[E(UU)]? =W | Q)

where E denotes the expected value operator :
- and W denotes the known variance-covariance of the error terms in equation

.
Under these condmons it can be shown (Thell 1971) that
CE[T'U]= | | (10)

E[TUUTI=I (11)
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where I denotes an identity matrix.

Hence equation (8) fulfills the assumption underlying least squares and can be
~ estimated using ordinary least squares. The resultant Aitken estimators of the
coefficients (4) can be shown to be best linear unbiased estimators (Theil 1971).

Of course, the variance-covariance matrix (W) is not known. We therefore
follow the usual practice of substituting an estimate for it. Swamy (1971) has
developed an unbiased estimator, which will be outlined in the next section, and has
shown that so-called feasible Aitken estimators (Dhrymes 1970) based on it are
consistent and asymptctically efficient. Thus throughout the remainder of this
paper we will use W to denote the estimated variance-covariance matrix.

The feasible Aitken estimators can be calculated using the following formula:

A = [Z’W-Z) [ZW-B] (12)
where A’ = [44, 42, 43]

(Z W1.1'1 Z, ZyWrZ, Z)yWislZ, 1
[ZWAZI =\ Zy W Zy Z)f Woyl Zy Zy Was' Z,
| Zd Wt Zy, Zf Wt Zy Zy' Wit Zy

(Zy Wi By + Z) Wiy By + Zy W' By
[Z’W_IB] = Zz’ W21_1 B] + Zg’ Wzg_l Bz + Zz, Wza—l Ba
_Z3' Wal_l B, + Za' Waz_l B, + Za’ I‘Vsa—l B3

The partitioned matrices provide a somewhat simpler basis for computation and
aid comparisons with other developments later in this paper. :

The inverse matrix [Z’W-1Z] in equatxon (12) has been shown (Theil 1971) to
provide a consistent estimator of the variance-covariance matrix for the estimated
cocfficients, i.e.:

Var (4)= (2 W1z} | (13)

where Var is used to denote the variance-covariance operator.

VARIANCE-COVARIANCE ERROR MATRIX

Following Swamy (1971), an unbiased estimator of the variance-covariance error
matrix (W) can be derived in two stages. First, the variance-covariance matrix (1')
for the estimated first-stage coefficients (by) can be calculated in the usual way:

Y1 Yiz Y13
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T'=|vY21 Y22 Yo3|. ' (14)

731, Y32 Yss3
where Yim = (2 bll m(- 2 bu 2 bmz/n)/(n 1)

For the quadratic form of the first-stage model, the fcllowing values were
obtained:

—-.6582 .6128 .2109
=1793 2109 .0774

This matrix includes the errors of estimation in the coefficients. This component
can be estimated separately from the mean (over the 20 plots) of the relevant

[.6128 —.6582 —.1793:|
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variance or covariance elements derived in the first-stage fitting by ordinary least
squares. Thus the variance-covariance matrix of the 3, terms can be estimated as
follows: S

Ay Ay Ay
A=]hBa Asx Ap
Az; Asz Ass
and Ay = Yim — g o-,,,.‘/rf . (15

The values in the matrix can be used to estimate the correlation coefficient (L)

between the error terms (8, 8,,) associated with different regression coefficients

in the second stage model:
he=-972, L3=-823, ly= .876.

The high values obtained suggest that substantial gains in efficiency should accrue
from recognition of this feature in the estimating process.

The second stage in estimating the final variance-covariance matrix (W) involves
adding the variances and covariances attributable to the first-stage estimation to the
A matrix, for each plot:

wit wit wig

~

Wi=| wa' wadt way
War® Wa' was'
wlm‘ : Alm + O-im‘ } (16)
where the superscript 7 is used to denote the elements of the W matrix for the ith
plot. .

-The elements of the 20 matrices so derived can be rearranged to form the W
matrix:

-

Wll W12 W13
W=| W Wi Wq
| Wa1 Wi Wi

W(ml o. .. 0

10 Wim? .
and Wim=1. " .
- wlm‘ . ‘ ) . B
_0 . - - - . - mem) v ( 1 7)

Each of the W,,, submatrices is a diagonal matrix with zero off-diagonal elements.
The diagonal elements are the variance or covariance elements for each plot. It is
" thus obvious that the variance-covariance matrix W is far removed from the struc-
ture embodied in the assumption underlying ordinary least squares, which would
imply that W was a diagonal matrix with constant values along the diagonal.

ALTERNATIVE FORMS OF ERROR MATRIX

Comparison of the structure of the error matrix with alternative forms seems desir-
able so that the theoretical gains in efficiency can be examined empirically.
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Heterogencous and Correlated.—The treatment in the preceding sections seems
appropriate in view of the evidence to date. Significant heterogeneity existed
between the variance-covariance matrices of different plots and high correlations
existed between the errors for different regression coefficients. Nevertheless a num-
ber of alternative forms can be examined within the same framework. The resulting

modifications of equation (12) will be reviewed briefly to provnde a basis for sub-
sequent analyses.

Heterogeneous and Independent.—If the combined error term (8;+ey) - is
assumed to be heterogeneous across plots but independent for different coefficients,

the off-diagonal submatrices in equation (12) equal zero. Thus the components -of
equation (12) become:

[(Zy Wiy Zy) ! 0 0 ) '
[Zwizri=| 0 2 W' Z)? 0 ]
B Y 0 (Zs' Was™ Z5)
-:Zl Wut B, :
[Z’ WAB] =|Zy Wy Bz] (18)
) [_Za W33 By

Such a model could be estimated by weighted least squares applied separately to
each of the three regression cqefficients.

Homogeneous and Correlated.—If the error term is assumed to be homogeneous
across plots but correlated for different coefficients, the Wi, ! submatrices are

simply replaced by the scalar value for the inverse of the variance or covariance
element concerned:

[ZWAZI = |onZS 2, 0012 2, 0x3'Z)Zs
LO' a1 23 Zy 032 23 Zy 0335 ' Zy' Zg

01w Zy By + 01251 Z) By + 057! Z1'. Bs
[Z’ "V'1 B] = 0'21—1 Zg' Bl + 0'22'1 Zz' B2 + 023-1 Zz’ Bs (19)
’ 03171 Zy By + 0351 Z By + 05371 Z3' Bs

where o,,! is the inverse of the (constant) variance or covariance elements for all
plots.

This formulation does not decompose to separate equations as in the prevxous
section and can only be estimated by joint generalised least squares.

[on2)Z, 0w'ZyZ, outZY 23}1

Homogeneous and Independent.—If the error term is assumed to be both homo-
geneous across plots and independent for different coefficients, the components of
equation (12) simplify still further:

[ou(Zy Z,)7 0 0
2wzt = 0 022(Zy Z,5) 0
| 0 0 o33(Zs" Z3) ’I:I
Cou Zy By o \ |
[ZW1B]=]|0212Z/B, ‘ - (20)
ol Zy BJ '

Clearly this model could be estimated by applying ordinary least squares sepa-
rately to the data for each regression coefficient, because the o terms cancel on
multiplication.
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Homogeneous and Independent Using Pooled Data.—One further possibility war-
rants comparison. Suppose the assumptions regarding random coefficients or func-
tions are dropped. The first- and second-stage moedels can then be combined on the
assumption that the coefficients are fixed, not random:

Inwv,= za,xu-!-e; (21)

where a; denotes the jth fixed coefficient,

x; denotes the jth independent variable for the ith observation,
€; denotes the random error term.

If the error term in equation (21) is assumed to be homogeneous for all observa-
tions, and the error terms for different observations are assumed to be independent,
equation (21) can be estimated by applying ordmary least _squares to the pooled
data covering all plots and measurements..

ANALYSES

A computer program was developed to compute the second-stage model based on
equation (12) (Miles and others 1978).

The first models were based on the assumption that the error terms were hetero—
geneous and correlated. The cubic form of the first-stage model was eliminated
from further consideration at this stage, because the estimated error matrix for the
regression coefficients (A) had some off-diagonal terms whose square exceeded the
value of the product of the corresponding diagonal terms. This indicates (Swamy
1971) that either the assumed model is incorrect or that statistical variability has
obscured the underlying relation. In the light of the F tests carried out on the
earlier model, reported earlier, the former seemed more likely.

For the quadratic model, different forms of the Z; submatrices were examined to
determine the most appropriate structure for the second-stage models in relation to
the independent variables. Site index, stocking at age 10 years, and dummy vari-
ables for soil types were included in various forms and combinations.

Tests of significance for an individual independent variable were based on the
following test statistic:

a o
{=——= (22)
VVar (a;) ,
where ! denotes the test statistic which is asymptotically a N (0, 1) variate,
a, denotes the estimated value of the regression coefficient,
Var (a;) denotes the estimated value of the variance of the coefficient.

Where joint tests of significance were required to test whether two or more coeffi-
cients were jointly significantly different from zero, F tests were carried out based
on the alternative models with and without the variables concerned (Theil 1971):

(Lp - k2) SS:—SS:
(k2—ki)  SS:
- where L, p denotes the number of equations and plots respectively,

ki, ko denote the numbers of coefficients in models 1 and 2,
§S3, S denote the error terms of squares for models 1 and 2 (SS; > SS2).

F=

(23)

This statistic is distributed as the F statistic with ko —ky on Lp — k; degrees of
freedom.

Having selected the most appropriate form of the second-stage model, compari-
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sons with alternative forms of the error matrix were made by. appropriate modifica-
tion of the data used in the computer program. As noted earlier, the homogeneous
independent form using the pooled data could not be estimated with this program
and was estimated separately using ordinary least squares. » '

For alternative forms of the error matrix, the relative efficiency of the model can
be gauged by the ratio of the generalized variances, which are determinants of the
variance-covariance matrices for the final coefficients:

— |Vaf1 (A )|
|Var; (4)]

where R.E. denotes efficiency, measured relative to the heterogeneous correlated
form (model 1),
Var; (A) and Var; (4) denote the estimated variance-covariance ma-
trices for the regression coefficients in model 1 and model 2 (the
alterpative). ’

R.E. 24)

RESULTS

Heterogeneous and Correlated Error Matrix.—A large number of alternative mod-
els, using different forms of the Z; submatrices, were estimated by generalized least
squares, based on the assumption of heterogeneous and correlated error terms. The
complete details are too voluminous to report in detail but selected results are sum-
marised in Table 4.

The joint dependent variables shown in Table 4 are the coefficients estimated
from the first-stage model and are associated with the intercept term, the reciprocal
of age term, and the reciprocal of age squared term respectively (see equation 3).
The Z matrix variables in Table 4 comprised a unit vector (1), the logarithm of site
index (In s;), and the stocking at age 10 years (n;).

The results for model 1 in Table 4 show that the estimated coefficients for the
stocking variable (n;) were not significantly different from zero in the case of the

TABLE 4. Results of GLS estimation of alternative models.

Joint dependent variables

L Error sums
Z matrix N R . of squares
Model ~ variables b b bas (ss)
l 1" L] * £ 4
In s * . . 30.35
T : n.s. * n.s.
2 1 - n.s.
In s . * * ) - 34.66
ne *
3 1 .
In s¢ * * * 36.76
ns . .S : :
4 1 * b :
In s o * * * 40.66

n;:

* denotes significant zeta value @ 95 percent probability level;
n.s. denotes not significantly different from zero;
blank denotes the variable was not included.
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FiGure 1. Predicted surfaces and actual values of yield.

first and third dependent variables. Models 2 and 3 show the results for various
intermediate deletions and inclusions in the Z matrix, culminating in model 4. All
the estimated coefficients were significantly different from zero in model 4, and F
tests (see equation 22) showed that the other models were not significantly different
from it. ' '

Model 4 was therefore selected as the best model. Expanding both the first and
second stages this model can be written:
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TABLE 5. Results for alternative forms of error matrix.

Independent variables

: Relative
Model 1 In 5 In si/as 1/as® in si/as efficiency
Heterogeneous 5.155 485 -.648 -4.637 1.061 1.0
correlated (.205)* (.009) (.0013) (.341) (.016) :
Homogeneous 5.161 482 ~.642 -4.653 1.060 92
correlated (.206) (.009) (.0013) (.347) (.016) ’
Heterogeneous 4.481 621 —.645 ~7.127 1.561 00014
independent (.638) (.026) (.0013) (6.114) (.252)
Homogeneous 4.485 619 —.642 -7.136 1.563 00014
independent ‘ (.639) (.026) (.0013) (6.184) (.255)
Pooled data OLS 5.029 496 578  -5.073 1.079 -

(.012) (.0005)  (.0005) (.056) (.003)

3 Estimated variances are shown in parentheses below the respective coefficient.

In v = 5.155 + 0.485 In 5, — 0.648 In 5,/a; — 4.637/a + 1.061 In s,/a2 (25)
(.45)  (.09) (.04) (.58) (.12)

where the figures in brackets are the standard errors for the coefficient concerned.

Using the results for the model based on heterogeneous and correlated errors
(equation 25), graphs of the predicted surfaces and actual values of yield were pre-
pared for the 20 plots (Fig. 1).

The graphs show that the predicted surfaces provided an excellent visual fit for 9
of the plots. The predicted surface tended to deviate from the actual values for
three or so of the observations at older ages in 4 of the plots, although the fit was
still generally tolerable. In three plots (73, 89, 307), the predicted surfaces con-
sistently underestimated actual yields and in 4 plots (58, 120, 321, 323) they con-
sistently overestimated the actual values, sometimes markedly.

The poor performance of the predicted surfaces in 7 plots is, we believe, related
to differences in soil types and/or soil-water regimes. However there were insuffi-
cient plots available in the various types to prove this in the present data set. No
method of estimation can overcome this type of problem unless addmonal data or
information are available. :

Other Forms of the Error Matrix.—A model identical in form to that in equation
(25) was re-estimated using alternative assumptions about the nature of the error
matrix. The results are shown in Table 5.

The independent variables shown at the top of Table 5 are ldentlcal to those in
equation (25), unity being used to indicate the intercept term. The estimated values
of the coefficients for the heterogeneous correlated model shown in equation (25)
are repeated in Table 5, with the estimated values of the respective variances shown
in brackets immediately below them. This model formed the basis for comparisons
with other models (see equation 24) and therefore has a relative efficiency of 1.0.

When the error matrix was assumed to be homogeneous but still correlated, the
estimates calculated from equation (18) had a relative efficiency of .92 and the
coefficient values differed little from those for the heterogeneous correlated model.

When the error matrix was assumed to be either heterogeneous independent or
homogeneous independent, the estimated values of the coefficients (see equations
19 and 20) diverged from those for the heterogeneous correlated model; the differ-
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ences being well beyond the limits of the confidence intervals in some cases. Rela-
tive efficiency also dropped to .00014, indicating the dramatic decrease in precision
for the estimates from these two models. The results of the homogeneous indepen-
dent model correspond with those which would be obtained by applying ordinary
least squares to the data for each first-stage coefficient separately. These results
highlight the dangers and inefficiency which can arise from this procedure.

The last model in Table 5 was estimated by pooling all data from all plots. The
model was then re-estimated using ordinary least squares, assuming the error term
to be of homogeneous variance and independent both across and within plots. The
estimated values of the coefficients for this model differed little from those of the
heterogeneous correlated model, which suggests that the ordinary least squares
estimates are reasonably robust under this assumption. However, the estimates of
the variances were markedly lower than those for the heterogeneous correlated
model and reflect a serious bias in the ordinary least squares results.

This bias stems from the implicit assumption that the pooled observations con-
stitute a random sample whereas the observations within a plot are clearly related.
Thus the inherent variation in the pooled data is less than would be the case for a
truly random sample, leading to a gross underestimate of the sampling variance

261

attached to the coefficients. As might be expected, scatter plots of the residuals for '

this model showed a marked serial correlation, in that nearly all the residuals within
any one plot had consistent signs.

The underestimation of variances has serious implications. In estimating growth
models, hypothesis testing is invariably carried out to choose between alternative
models. Underestimation of the variances is likely to result in misleading results
from these tests, especially if stepwise regression is used. Under these circumstances
the method of model selection may not be nearly as robust as the estimates of the
coefficients.

CONCLUSIONS

The analysis of yield data from remeasurements of permanent plots spanning a long
period of time has a long history in forestry. Prior to the development (in a readily
accessible form) of statistical techniques such as multiple regression, the established
practice was to fit the data for each plot by eye. A process of “harmonization”
was then employed to achieve sensible trends across all plots and sites.

This practice was well founded because, within the limits of the techniques avail-
able, it attempted to make the most effective use of the data available. The gen-
eralized least squares technique described in this paper represents a rigorous exten-
sion of this practice; rigorous in the sense that it is designed to be statistically
efficient in the use of the data.

As with the graphical process of harmonization, generalized least squares gives
more weight to the plots with the least variable trends. Similarly it recognizes the
interrelationships between the parameters of the function. If the plot intercept is to
be changed its impact on other plot coefficients is taken into account and vice versa.
- Finally it gives due welght to the dxstmcnon between observations on plots and those
within plots.

. The development of computer packages for multiple regression analysis spawned
a new wave of estimation of yield functions. Most of this work has focused solely
on the deterministic structure of the model; the structure of the error term being
largely neglected. The results of this study show that this can be a potentially
dangerous course to follow in the case of remeasurements of permanent plots.

-Where sufficient remeasurements are available, generalized least squares offers a
new and efficient technique for estimation of yield functions.
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Program GLS—Generalized Least Squares for Two-Stage Model Development
Note by J. A. Miles, 1. S. Ferguson, and J. W. Leech

ProGRAM GLS estimates the second stage of the two-stage model described by Ferguson
and Leech (1978). Estimation of the first stage can be carried out using any standard
regression program, provided it can be modified to write out the data in the format
required for the second-stage analyses.

The GLS user must supply an external procedure, coded in a suitable language, speci-
fying transformations of the exogenous variables. Each transformed variable is scaled
by GLS to improve the conditioning of the weighted moment matrix and thus reduce the
possibility of numerical instability in the results. GLS was coded in ALGOL to take
advantage of the dynamic run-time storage allocation.

Second-stage models involving 20 plots, 3 first-stage parameters per plot, and up to 9

‘ second-stage parameters, took less than 2 seconds run-time on a Univac 1100/42 under
EXEC 8.

Copies of the program, together with user instructions, test data and output, can be

" obtained from Dr. I. S. Ferguson, Department of Forestry, Australian National Univer-
sity, P. O. Box 4, Canberra, A.C.T. 2601, Australia
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