1,119 research outputs found

    An innovation integrated approach to testing motorcycle drive chain lubricants

    Get PDF
    An innovative integrated approach to the testing and comparison of motorcycle drive chain lubricants is presented. This is a novel way of testing the lubrication by using loaded operating chains and sprockets. A test rig has been designed to operate chains and sprockets in a clean environment and allow direct comparison between different lubricants. The advantage of this method over previous techniques is that it allows the differentiation of lubricants in a more controlled operating environment and evaluates the overall lubricant performance as opposed to individual properties. The lubricants tested were a wax spray, PTFE spray and drip fed light oil. The test rig allowed measurement of the power saved by the lubricant in running the chains and sprockets. Chain length and component masses were also taken before and after running the chains and sprockets under load on the test rig. The results clearly show that any lubricant is preferable to none. The drip fed oil provided the greatest power saving and wear protection between the chain rollers and pins and the spray lubricants provided the highest level of protection between rollers and sprocket

    Influence of gasoline engine lubricant on tribological performance, fuel economy and emissions

    Get PDF
    The requirement for increased performance, improved fuel economy and reduced emissions is constantly sustaining the demand for research into combustion, fuels and lubricants. Due to the nature of the operation of an engine and the current market climate the lubricant not only has to respond to these requirements, but also to changes in engine design, fuelling methods and fuel types, increased power densities and developments in emissions formation and after-treatment. This paper will describe advances made at the authors’ institution to elucidate the influence of gasoline engine lubricant on tribological performance, fuel economy and emissions, giving examples of work undertaken and then look to future possible lubricant demands

    The Effect of Physical Weight and Stimulus Spatial Location on Lexical Decision: Implications for Embodied Cognition

    Get PDF
    Traditional models of cognition within cognitive psychology have utilised dualistic perspectives and largely ignored the roles of the motor systems and bodily experiences. More recent embodied approaches have sought to combat this dualism by incorporating the motor systems and bodily experiences into their perspectives. Recent research has highlighted the role of bodily experiences in shaping cognition (Proffitt, 2006; Jostmann et al., 2009), how language comprehension can be embodied and grounded in physical experiences (Glenberg and Kaschak, 2002; Zwaan and Yaxley, 2003) and also how stimulus spatial location can influence responses (Meteyard et al., 2008; Dunn et al., 2014). The present study aimed to explore those areas and provide empirical evidence in support as well as explore a gap in current research. The literature search indicated an abundance of embodied system research but a lack of research looking at possible interactions between the systems, it was this gap that was explored within the present study. Utilising a lexical decision task and methods similar to that of Proffitt (2006) three experiments were conducted. A total of 64 participants underwent standard and spatial lexical decision tasks. Three experiments were conducted exploring the bodily effect of weight, stimulus spatial effect and interactions between embodied systems.Results from the three experiments displayed a lack of support for past research regarding the effect of the bodily experience of weight. Results also displayed a main effect of word type leading to the indication that the comprehension of the word/non-word letter strings affected task performance. Analysis of results proposed that a cohesion effect between embodied systems facilitated task performance. It was concluded that further research is needed in order to fully understand the possibility of dominance or cohesion effects within an embodied perspective

    Lubricant degradation, transport and the effect of extended oil drain intervals on piston assembly tribology

    Get PDF
    There are ever increasing demands on lubricant manufacturers to meet governmental legislation and customer needs by improving fuel economy, engine durability and exhaust system compatibility as shown by the introduction of GF4 and move towards GF5 specification oils. This has created an ever increasing need to understand how oil degrades in an engine and how this degraded oil affects piston assembly tribology. This review conference paper will give an overview of a collaborative project that has been undertaken to further enhance the understanding of how lubricant degrades in an operating engine, its transport through the engine and effect upon piston assembly tribology

    Extraction and tribological investigation of top piston ring zone oil from a gasoline engine

    Get PDF
    With tightening emission regulations, increased expected fuel economy, and longer drain intervals impacting on lubricant formulation, greater understanding of how oil degrades in an automotive engine is becoming ever more important. Equally significant is the effect that this degraded lubricant has on the tribological operation of the engine, particularly its overall internal friction and component wear. In a previous paper, four tests to degrade oil in a single cylinder engine were reported [1]. These tests were set up such that the lubricating oil was degraded in the ring pack before returning to the sump, where it was sampled and chemical and rheological analysis undertaken. This paper reports the extension of this work using the same Hydra engine and describes how oil has additionally been extracted from the rear of the top piston ring during engine operation. This extracted oil has then been subjected to similar analysis as the sump oil samples in the previous tests, along with additional analysis to look at the tribological properties of the oil using tribometers. The results clearly show significant differences in the rheological, tribological, and chemical properties of the fresh oil and used sump oil samples when compared with the top ring zone (TRZ) oil samples, particularly the effect of load on the levels of volatiles present in the TRZ samples and their effect on traction and friction coefficient values during tribological testing

    High-Lundquist Number Scaling in Three-Dimensional Simulations of Parker's Model of Coronal Heating

    Full text link
    Parker's model is one of the most discussed mechanisms for coronal heating and has generated much debate. We have recently obtained new scaling results in a two-dimensional (2D) version of this problem suggesting that the heating rate becomes independent of resistivity in a statistical steady state [Ng and Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now been extended to 3D by means of large-scale numerical simulations. Random photospheric footpoint motion is applied for a time much longer than the correlation time of the motion to obtain converged average coronal heating rates. Simulations are done for different values of the Lundquist number to determine scaling. In the high-Lundquist number limit, the coronal heating rate obtained so far is consistent with a trend that is independent of the Lundquist number, as predicted by previous analysis as well as 2D simulations. In the same limit the average magnetic energy built up by the random footpoint motion tends to have a much weaker dependence on the Lundquist number than that in the 2D simulations, due to the formation of strong current layers and subsequent disruption when the equilibrium becomes unstable. We will present scaling analysis showing that when the dissipation time is comparable or larger than the correlation time of the random footpoint motion, the heating rate tends to become independent of Lundquist number, and that the magnetic energy production is also reduced significantly.Comment: Accepted for publication in Astrophysical Journa

    Time-energy correlations in solar flare occurrence

    Full text link
    The existence of time-energy correlations in flare occurrence is still an open and much debated problem. This study addresses the question whether statistically significant correlations are present between energies of successive flares as well as energies and waiting times. We analyze the GOES catalog with a statistical approach based on the comparison of the real catalog with a reshuffled one where energies are decorrelated. This analysis reduces the effect of background activity and is able to reveal the role of obscuration. We show the existence of non-trivial correlations between waiting times and energies, as well as between energies of subsequent flares. More precisely, we find that flares close in time tend to have the second event with large energy. Moreover, after large flares the flaring rate significantly increases, together with the probability of other large flares. Results suggest that correlations between energies and waiting times are a physical property and not an effect of obscuration. These findings could give important information on the mechanisms for energy storage and release in the solar corona

    Ergogenic and psychological effects of synchronous music during circuit-type exercise

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below.Objectives: Motivational music when synchronized with movement has been found to improve performance in anaerobic and aerobic endurance tasks, although gender differences pertaining to the potential benefits of such music have seldom been investigated. The present study addresses the psychological and ergogenic effects of synchronous music during circuit-type exercise. Design: A mixed-model design was employed in which there was a within-subjects factor (two experimental conditions and a control) and a between-subjects factor (gender). Methods: Participants (N ¼ 26) performed six circuit-type exercises under each of three synchronous conditions: motivational music, motivationally-neutral (oudeterous) music, and a metronome control. Dependent measures comprised anaerobic endurance, which was assessed using the number of repetitions performed prior to the failure to maintain synchronicity, and post-task affect, which was assessed using Hardy and Rejeski’s (1989) Feeling Scale. Mixed-model 3 (Condition) X 2 (Gender) ANOVAs, ANCOVAs, and MANOVA were used to analyze the data. Results: Synchronous music did not elicit significant (p < .05) ergogenic or psychological effects in isolation; rather, significant (p < .05) Condition X Gender interaction effects emerged for both total repetitions and mean affect scores. Women and men showed differential affective responses to synchronous music and men responded more positively than women to metronomic regulation of their movements. Women derived the greatest overall benefit from both music conditions. Conclusions: Men may place greater emphasis on the metronomic regulation of movement than the remaining, extra-rhythmical, musical qualities. Men and women appear to exhibit differential responses in terms of affective responses to synchronous music
    corecore