The existence of time-energy correlations in flare occurrence is still an
open and much debated problem. This study addresses the question whether
statistically significant correlations are present between energies of
successive flares as well as energies and waiting times. We analyze the GOES
catalog with a statistical approach based on the comparison of the real catalog
with a reshuffled one where energies are decorrelated. This analysis reduces
the effect of background activity and is able to reveal the role of
obscuration. We show the existence of non-trivial correlations between waiting
times and energies, as well as between energies of subsequent flares. More
precisely, we find that flares close in time tend to have the second event with
large energy. Moreover, after large flares the flaring rate significantly
increases, together with the probability of other large flares. Results suggest
that correlations between energies and waiting times are a physical property
and not an effect of obscuration. These findings could give important
information on the mechanisms for energy storage and release in the solar
corona