5,092 research outputs found
Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections
In this note we analyze an anisotropic, two-dimensional bootstrap percolation
model introduced by Gravner and Griffeath. We present upper and lower bounds on
the finite-size effects. We discuss the similarities with the semi-oriented
model introduced by Duarte.Comment: Key words: Bootstrap percolation, anisotropy, finite-size effect
High Temperature Expansion Study of the Nishimori multicritical Point in Two and Four Dimensions
We study the two and four dimensional Nishimori multicritical point via high
temperature expansions for the distribution, random-bond, Ising model.
In we estimate the the critical exponents along the Nishimori line to be
, . These, and earlier estimates
, are remarkably close to the critical
exponents for percolation, which are known to be , in
and and in . However, the
estimated Nishimori exponents , , are
quite distinct from the percolation results ,
.Comment: 5 pages, RevTex, 3 postscript files; To appear in Physical Review
Wetting and particle adsorption in nanoflows
Molecular dynamics simulations are used to study the behavior of
closely-fitting spherical and ellipsoidal particles moving through a
fluid-filled cylinder at nanometer scales. The particle, the cylinder wall and
the fluid solvent are all treated as atomic systems, and special attention is
given to the effects of varying the wetting properties of the fluid. Although
the modification of the solid-fluid interaction leads to significant changes in
the microstructure of the fluid, its transport properties are found to be the
same as in bulk. Independently of the shape and relative size of the particle,
we find two distinct regimes as a function of the degree of wetting, with a
sharp transition between them. In the case of a highly-wetting suspending
fluid, the particle moves through the cylinder with an average axial velocity
in agreement with that obtained from the solution of the continuum Stokes
equations. In contrast, in the case of less-wetting fluids, only the early-time
motion of the particle is consistent with continuum dynamics. At later times,
the particle is eventually adsorbed onto the wall and subsequently executes an
intermittent stick-slip motion.We show that van der Walls forces are the
dominant contribution to the particle adsorption phenomenon and that depletion
forces are weak enough to allow, in the highly-wetting situation, an initially
adsorbed particle to spontaneously desorb
Dilemmas in doing insider research in professional education
This article explores the dilemmas I encountered when researching social work education in England as an insider researcher who was simultaneously employed as an educator in the host institution. This was an ethnographic project deploying multiple methods and generating rich case study material which informed the student textbook Becoming a Social Worker the four-year period of the project. First, ethical dilemmas emerged around informed consent and confidentiality when conducting surveys of students and reading their portfolios. Second, professional dilemmas stemmed from the ways in which my roles as a researcher, academic tutor, social worker and former practice educator converged and collided. Third, political dilemmas pertained to the potential for the project to crystallize and convey conflicts among stakeholders in the university and community. Since the majority of research in social work education is conducted by insiders, we have a vital interest in making sense of such complexity
Spectra of random Hermitian matrices with a small-rank external source: supercritical and subcritical regimes
Random Hermitian matrices with a source term arise, for instance, in the
study of non-intersecting Brownian walkers \cite{Adler:2009a, Daems:2007} and
sample covariance matrices \cite{Baik:2005}.
We consider the case when the external source matrix has two
distinct real eigenvalues: with multiplicity and zero with multiplicity
. The source is small in the sense that is finite or , for . For a Gaussian potential, P\'ech\'e
\cite{Peche:2006} showed that for sufficiently small (the subcritical
regime) the external source has no leading-order effect on the eigenvalues,
while for sufficiently large (the supercritical regime) eigenvalues
exit the bulk of the spectrum and behave as the eigenvalues of
Gaussian unitary ensemble (GUE). We establish the universality of these results
for a general class of analytic potentials in the supercritical and subcritical
regimes.Comment: 41 pages, 4 figure
Between overt and covert research: concealment and disclosure in an ethnographic study of commercial hospitality
This article examines the ways in which problems of concealment emerged in an ethnographic study of a suburban bar and considers how disclosure of the research aims, the recruitment of informants, and elicitation of information was negotiated throughout the fieldwork. The case study demonstrates how the social context and the relationships with specific informants determined overtness or covertness in the research. It is argued that the existing literature on covert research and covert methods provides an inappropriate frame of reference with which to understand concealment in fieldwork. The article illustrates why concealment is sometimes necessary, and often unavoidable, and concludes that the criticisms leveled against covert methods should not stop the fieldworker from engaging in research that involves covertness
From Current to Constituent Quarks: a Renormalization Group Improved Hamiltonian-based Description of Hadrons
A model which combines the perturbative behavior of QCD with low energy
phenomenology in a unified framework is developed. This is achieved by applying
a similarity transformation to the QCD Hamiltonian which removes interactions
between the ultraviolet cutoff and an arbitrary lower scale. Iteration then
yields a renormalization group improved effective Hamiltonian at the hadronic
energy scale. The procedure preserves the standard ultraviolet behavior of QCD.
Furthermore, the Hamiltonian evolves smoothly to a phenomenological low energy
behavior below the hadronic scale. This method has the benefit of allowing
radiative corrections to be directly incorporated into nonperturbative
many-body techniques. It is applied to Coulomb gauge QCD supplemented with a
low energy linear confinement interaction. A nontrivial vacuum is included in
the analysis via a Bogoliubov-Valatin transformation. Finally, the formalism is
applied to the vacuum gap equation, the quark condensate, and the dynamical
quark mass.Comment: 36 pages, RevTeX, 5 ps figures include
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV
We present spectra of charged pions and protons in 0-10% central Au+Au
collisions at GeV at mid-rapidity () and forward
pseudorapidity () measured with the BRAHMS experiment at RHIC. The
spectra are compared to spectra from p+p collisions at the same energy scaled
by the number of binary collisions. The resulting nuclear modification factors
for central Au+Au collisions at both and exhibit suppression
for charged pions but not for (anti-)protons at intermediate . The
ratios have been measured up to GeV/ at the two
rapidities and the results indicate that a significant fraction of the charged
hadrons produced at intermediate range are (anti-)protons at both
mid-rapidity and
Strange particle production at RHIC in a single-freeze-out model
Strange particle ratios and pT-spectra are calculated in a thermal model with
single freeze-out, previously used successfully to describe non-strange
particle production at RHIC. The model and the recently released data for phi,
Lambda, anti-Lambda, and K*(892) are in very satisfactory agreement, showing
that the thermal approach can be used to describe the strangeness production at
RHIC.Comment: We have added the comparison of the model predictions to the newly
released Lambda and K*(892) pT-spectra from STA
- âŠ