11,982 research outputs found
A dislocation dynamics study of the strength of stacking fault tetrahedra. Part II: interactions with mixed and edge dislocations
In this paper we present the sequel to Part I and present a comprehensive dislocation dynamics study of the strength of stacking fault tetrahedra to mixed and edge dislocation glides in fcc Cu
A "kilonova" associated with short-duration gamma-ray burst 130603B
Short-duration gamma-ray bursts (SGRBs) are intense flashes of cosmic
gamma-rays, lasting less than ~2 s, whose origin is one of the great unsolved
questions of astrophysics today. While the favoured hypothesis for their
production, a relativistic jet created by the merger of two compact stellar
objects (specifically, two neutron stars, NS-NS, or a neutron star and a black
hole, NS-BH), is supported by indirect evidence such as their host galaxy
properties, unambiguous confirmation of the model is still lacking. Mergers of
this kind are also expected to create significant quantities of neutron-rich
radioactive species, whose decay should result in a faint transient in the days
following the burst, a so-called "kilonova". Indeed, it is speculated that this
mechanism may be the predominant source of stable r-process elements in the
Universe. Recent calculations suggest much of the kilonova energy should appear
in the near-infrared (nIR) due to the high optical opacity created by these
heavy r-process elements. Here we report strong evidence for such an event
accompanying SGRB 130603B. If this simplest interpretation of the data is
correct, it provides (i) support for the compact object merger hypothesis of
SGRBs, (ii) confirmation that such mergers are likely sites of significant
r-process production and (iii) quite possibly an alternative, un-beamed
electromagnetic signature of the most promising sources for direct detection of
gravitational waves.Comment: preprint of paper appearing in Nature (3 Aug 2013
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression
Four-nucleon contact interactions from holographic QCD
We calculate the low energy constants of four-nucleon interactions in an
effective chiral Lagrangian in holographic QCD. We start with a D4-D8 model to
obtain meson-nucleon interactions and then integrate out massive mesons to
obtain the four-nucleon interactions in 4D. We end up with two low energy
constants at the leading order and seven of them at the next leading order,
which is consistent with the effective chiral Lagrangian. The values of the low
energy constants are evaluated with the first five Kaluza-Klein resonances.Comment: 28 page
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
Health literacy, health status, and healthcare utilization of Taiwanese adults: results from a national survey
Abstract Background Low health literacy is considered a worldwide health threat. The purpose of this study is to assess the prevalence and socio-demographic covariates of low health literacy in Taiwanese adults and to investigate the relationships between health literacy and health status and health care utilization. Methods A national survey of 1493 adults was conducted in 2008. Health literacy was measured using the Mandarin Health Literacy Scale. Health status was measured based on self-rated physical and mental health. Health care utilization was measured based on self-reported outpatient clinic visits, emergency room visits, and hospitalizations. Results Approximately thirty percent of adults were found to have low (inadequate or marginal) health literacy. They tended to be older, have fewer years of schooling, lower household income, and reside in less populated areas. Inadequate health literacy was associated with poorer mental health (OR, 0.57; 95% CI, 0.35-0.91). No association was found between health literacy and health care utilization even after adjusting for other covariates. Conclusions Low (inadequate and marginal) health literacy is prevalent in Taiwan. High prevalence of low health literacy is not necessarily indicative of the need for interventions. Systematic efforts to evaluate the impact of low health literacy on health outcomes in other countries would help to illuminate features of health care delivery and financing systems that may mitigate the adverse health effects of low health literacy.http://deepblue.lib.umich.edu/bitstream/2027.42/78252/1/1471-2458-10-614.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78252/2/1471-2458-10-614.pdfPeer Reviewe
Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment
International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments
Quantifying Inactive Lithium in Lithium Metal Batteries
Inactive lithium (Li) formation is the immediate cause of capacity loss and
catastrophic failure of Li metal batteries. However, the chemical component and
the atomic level structure of inactive Li have rarely been studied due to the
lack of effective diagnosis tools to accurately differentiate and quantify Li+
in solid electrolyte interphase (SEI) components and the electrically isolated
unreacted metallic Li0, which together comprise the inactive Li. Here, by
introducing a new analytical method, Titration Gas Chromatography (TGC), we can
accurately quantify the contribution from metallic Li0 to the total amount of
inactive Li. We uncover that the Li0, rather than the electrochemically formed
SEI, dominates the inactive Li and capacity loss. Using cryogenic electron
microscopies to further study the microstructure and nanostructure of inactive
Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic
conductive pathway to the bulk electrode. Coupling the measurements of the Li0
global content to observations of its local atomic structure, we reveal the
formation mechanism of inactive Li in different types of electrolytes, and
identify the true underlying cause of low Coulombic efficiency in Li metal
deposition and stripping. We ultimately propose strategies to enable the highly
efficient Li deposition and stripping to enable Li metal anode for next
generation high energy batteries
Primary cilia elongation in response to interleukin-1 mediates the inflammatory response
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50 % increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA
Cancer-selective, single agent chemoradiosensitising gold nanoparticles
Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics
- …
