26 research outputs found

    Advanced CO2 Capture Process Using MEA Scrubbing: Configuration of a Split Flow and Phase Separation Heat Exchanger

    Get PDF
    AbstractCO2 capture process using aqueous Monoethanolamine (MEA) scrubbing is a well-proven and commercially-ready technology for reducing CO2 emission to the atmosphere. Although the MEA scrubbing is the one of the most suitable technologies for post-combustion CO2 capture, the MEA process has a critical problem which is high consumption of reboiler heat energy for solvent regeneration. In order to reduce the reboiler heat requirement, this paper suggests an advanced configuration of MEA process which consists of split flow and a phase separation heat exchanger. The split flow permits to reduce the reflux ratio in the stripper and the phase separation heat exchanger permits to alleviate preheating duty loss. As a result, the regeneration energy of the advanced process is reduced by 2.84GJ/ton CO2, which is lower than one of the reference process by 27%.CO2 capture; post combustion CO2 capture; advanced stripper configuration; cold solvent split; rich vapor compressio

    Antibiotic susceptibility and imaging findings of the causative microorganisms responsible for acute urinary tract infection in children: a five-year single center study

    Get PDF
    PurposeWe studied the differences in the antibiotic susceptibilities of the microorganisms that causeing urinary tract infections (UTI) in children to obtain useful information on appropriate drug selection for childhood UTI.MethodsWe retrospectively analyzed the antibiotic susceptibilities of 429 microorganisms isolated from 900 patients diagnosed with UTI in the Department of Pediatrics, Chungbuk National University Hospital, from 2003 to 2008.ResultsThe most common causative microorganisms for UTI were Escherichia coli (81.4%), Klebsiella pneumoniae (8.4%), Enterobacter spp. (1.7%), and Proteus spp. (0.4%). E. coli showed relatively high susceptibility as compared to imipenem (100%), amikacin (97.7%), aztreonam (97.9%), cefepime (97.7%), and ceftriaxone (97.1%), while it showed relatively low susceptibility to gentamicin (GM) (79.0%), trimethoprim/sulfamethoxazole (TMP/SMX) (68.7%), ampicillin/sulbactam (33.0%), and ampicillin (AMP) (28.6%). There were no significant differences in the image findings for causative microorganisms.ConclusionGram-negative organisms showed high susceptibility to amikacin and third-generation cephalosporins, and low susceptibility to AMP, GM, and TMP/SMX. Therefore, the use of AMP or TMP/SMX as the first choice in empirical and prophylactic treatment of childhood UTI in Korea should be reconsidered and investigated further

    Optically detected galaxy cluster candidates in the <i>AKARI</i> North Ecliptic Pole field based on photometric redshift from the Subaru Hyper Suprime-Cam

    Get PDF
    Galaxy clusters provide an excellent probe in various research fields in astrophysics and cosmology. However, the number of galaxy clusters detected so far in the AKARI North Ecliptic Pole (NEP) field is limited. In this work, we provide galaxy cluster candidates in the AKARI NEP field with the minimum requisites based only on the coordinates and photometric redshift (photo-z) of galaxies. We used galaxies detected in five optical bands (g, r, i, z, and Y) by the Subaru Hyper Suprime-Cam (HSC), with additional data from the u band obtained from the Canada-France-Hawaii Telescope (CFHT) MegaPrime/MegaCam, and from the IRAC1 and IRAC2 bands from the Spitzer space telescope for photo-z estimation. We calculated the local density around every galaxy using the 10th-nearest neighbourhood. Cluster candidates were determined by applying the friends-of-friends algorithm to over-densities. A total of 88 cluster candidates containing 4390 member galaxies below redshift 1.1 in 5.4 deg2 were identified. The reliability of our method was examined through false-detection tests, redshift-uncertainty tests, and applications on the Cosmic Evolution Survey (COSMOS) data, giving false-detection rates of 0.01 to 0.05 and a recovery rate of 0.9 at high richness. Three X-ray clusters previously observed by ROSAT and Chandra were recovered. The cluster galaxies show a higher stellar mass and lower star formation rate compared with the field galaxies in two-sample Z-tests. These cluster candidates are useful for environmental studies of galaxy evolution and future astronomical surveys in the NEP, where AKARI has performed unique nine-band mid-infrared photometry for tens of thousands of galaxies

    Association between Body Temperature Patterns and Neurological Outcomes after Extracorporeal Cardiopulmonary Resuscitation.

    No full text
    We evaluated the association of body temperature patterns with neurological outcomes after extracorporeal cardiopulmonary resuscitation (ECPR). Between December 2013 and December 2015, we enrolled 48 patients with cardiac arrest who survived for at least 24 hours after ECPR. Based on their body temperature patterns and the intention to control fever, we divided the patients into those in whom fever was actively controlled (N = 25), those with normothermia (N = 17), and those with unintended hypothermia (N = 6). The primary outcome was the Cerebral Performance Categories (CPC) scale at discharge. Of the 48 ECPR patients, 23 patients (47.9%) had good neurological outcomes (CPC 1 and 2) and 27 patients (56.3%) survived to discharge. The normothermia group showed a pattern of higher temperatures compared with the other groups during 48 hours after ECPR. Not only poor neurological outcomes but also intensive care unit (ICU) mortality occurred more often in the unintended hypothermia group than in the other two groups, regardless of the fever control strategy (p = 0.023 and p = 0.002, respectively). There were no differences in neurological outcomes and ICU mortality between the actively controlled fever group and the normothermia group (p = 0.845 and p = 0.616, respectively). Unintentionally sustained hypothermia may be associated with poor neurological outcomes after ECPR. These findings suggest that patients who are unable to generate a fever following ECPR may incur severe hypoxic brain injury

    Structural and Thermodynamic Understandings in Mn-Based Sodium Layered Oxides during Anionic Redox

    No full text
    © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimA breakthrough utilizing an anionic redox reaction (O2−/On−) for charge compensation has led to the development of high-energy cathode materials in sodium-ion batteries. However, its reaction results in a large voltage hysteresis due to the structural degradation arising from an oxygen loss. Herein, an interesting P2-type Mn-based compound exhibits a distinct two-phase behavior preserving a high-potential anionic redox (≈4.2 V vs Na+/Na) even during the subsequent cycling. Through a systematic series of experimental characterizations and theoretical calculations, the anionic redox reaction originating from O 2p-electron and the reversible unmixing of Na-rich and Na-poor phases are confirmed in detail. In light of the combined study, a critical role of the anion-redox-induced two-phase reaction in the positive-negative point of view is demonstrated, suggesting a rational design principle considering the phase separation and lattice mismatch. Furthermore, these results provide an exciting approach for utilizing the high-voltage feature in Mn-based layered cathode materials that are charge-compensated by an anionic redox reaction11sci
    corecore