1,762 research outputs found

    Synthesis and bioactivity of a conjugate composed of green tea catechins and hyaluronic acid

    Get PDF
    (-)-Epigallocatechin-3-gallate (EGCG) is a green tea polyphenol that has several biological activities, including anti-cancer activity and anti-inflammation. Hyaluronic acid (HA) is a naturally-occurring polysaccharide that is widely used as a biomaterial for drug delivery and tissue engineering due to its viscoelastic, biocompatible and biodegradable properties. By conjugating HA with EGCG, the resulting HA-EGCG conjugate is expected to exhibit not only the inherent properties of HA but also the bioactivities of EGCG. Toward this end, we report the synthesis of an amine-functionalized EGCG as an intermediate compound for conjugation to HA. EGCG was reacted with 2,2-diethoxyethylamine (DA) under acidic conditions, forming ethylamine-bridged EGCG dimers. The EGCG dimers were composed of four isomers, which were characterized by HPLC, high-resolution mass spectrometry and NMR spectroscopy. The amine-functionalized EGCG dimers were conjugated to hyaluronic acid (HA) through the formation of amide bonds. HA-EGCG conjugates demonstrated several bioactivities which were not present in unmodified HA, including resistance to hyaluronidase-mediated degradation, inhibition of cell growth and scavenging of radicals. The potential applications of HA-EGCG conjugates are discussed

    Chiral primary one-point functions in the D3-D7 defect conformal field theory

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: NORDITA-2012-81 slaccitation: %%CITATION = ARXIV:1210.7015;%%C.F.K. and D.Y. were supported in part by FNU through grant number 272-08-0329. G.W.S. is supported by NSERC of Canada and by the Villum foundation through their Velux Visiting Professor program

    Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics

    Get PDF
    Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype–phenotype linkages in the marine ‘plastisphere’, and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. Results For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. Conclusion Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution

    Factors Associated With Ocular Health Care Utilization Among Hispanics/Latinos: Results From an Ancillary Study to the Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

    Get PDF
    Regular ocular care is critical to early detection and prevention of eye disease and associated morbidity and mortality; however, there have been relatively few studies of ocular health care utilization among Hispanics/Latinos of diverse backgrounds

    Clinical and Non-Clinical Cardiovascular Disease Associated Pathologies in Parkinson’s Disease

    Get PDF
    Despite considerable breakthroughs in Parkinson’s disease (PD) research, understanding of non-motor symptoms (NMS) in PD remains limited. The lack of basic level models that can properly recapitulate PD NMS either in vivo or in vitro complicates matters. Even so, recent research advances have identified cardiovascular NMS as being underestimated in PD. Considering that a cardiovascular phenotype reflects sympathetic autonomic dysregulation, cardiovascular symptoms of PD can play a pivotal role in understanding the pathogenesis of PD. In this study, we have reviewed clinical and non-clinical published papers with four key parameters: cardiovascular disease risks, electrocardiograms (ECG), neurocardiac lesions in PD, and fundamental electrophysiological studies that can be linked to the heart. We have highlighted the points and limitations that the reviewed articles have in common. ECG and pathological reports suggested that PD patients may undergo alterations in neurocardiac regulation. The pathological evidence also suggested that the hearts of PD patients were involved in alpha-synucleinopathy. Finally, there is to date little research available that addresses the electrophysiology of in vitro Parkinson’s disease models. For future reference, research that can integrate cardiac electrophysiology and pathological alterations is required

    Insulin-Resistant Subjects Have Normal Angiogenic Response to Aerobic Exercise Training in Skeletal Muscle, but Not in Adipose Tissue

    Get PDF
    Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt 2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training

    Inducible Depletion of Satellite Cells in Adult, Sedentary Mice Impairs Muscle Regenerative Capacity without Affecting Sarcopenia

    Get PDF
    A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis

    Integration of datasets for individual prediction of DNA methylation-based biomarkers

    Get PDF
    BACKGROUND: Epigenetic scores (EpiScores) can provide biomarkers of lifestyle and disease risk. Projecting new datasets onto a reference panel is challenging due to separation of technical and biological variation with array data. Normalisation can standardise data distributions but may also remove population-level biological variation.RESULTS: We compare two birth cohorts (Lothian Birth Cohorts of 1921 and 1936 - nLBC1921 = 387 and nLBC1936 = 498) with blood-based DNA methylation assessed at the same chronological age (79 years) and processed in the same lab but in different years and experimental batches. We examine the effect of 16 normalisation methods on a novel BMI EpiScore (trained in an external cohort, n = 18,413), and Horvath's pan-tissue DNA methylation age, when the cohorts are normalised separately and together. The BMI EpiScore explains a maximum variance of R2=24.5% in BMI in LBC1936 (SWAN normalisation). Although there are cross-cohort R2 differences, the normalisation method makes a minimal difference to within-cohort estimates. Conversely, a range of absolute differences are seen for individual-level EpiScore estimates for BMI and age when cohorts are normalised separately versus together. While within-array methods result in identical EpiScores whether a cohort is normalised on its own or together with the second dataset, a range of differences is observed for between-array methods.CONCLUSIONS: Normalisation methods returning similar EpiScores, whether cohorts are analysed separately or together, will minimise technical variation when projecting new data onto a reference panel. These methods are important for cases where raw data is unavailable and joint normalisation of cohorts is computationally expensive.</p

    Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters

    Get PDF
    Millions of people globally, and particularly in South and Southeast Asia, face chronic exposure to arsenic from reducing groundwater in which arsenic release is widely attributed to the reductive dissolution of arsenic-bearing iron minerals, driven by metal reducing bacteria using bioavailable organic matter as an electron donor. However, the nature of the organic matter implicated in arsenic mobilization, and the location within the subsurface where these processes occur, remains debated. In a high resolution study of a largely pristine, shallow aquifer in Kandal Province, Cambodia, we have used a complementary suite of geochemical tracers (including 14C, 3H, 3He, 4He, Ne, δ18O, δD, CFCs and SF6) to study the evolution in arsenic-prone shallow reducing groundwaters along dominant flow paths. The observation of widespread apparent 3H-3He ages of 30 m, and the relationships between age-related tracers and arsenic suggest that this surface-derived organic matter is likely to contribute to in-aquifer arsenic mobilization. A strong relationship between 3H-3He age and depth suggests the dominance of a vertical hydrological control with an overall vertical flow velocity of ~0.4 ± 0.1 m·yr−1 across the field area. A calculated overall groundwater arsenic accumulation rate of ~0.08 ± 0.03 μM·yr−1 is broadly comparable to previous estimates from other researchers for similar reducing aquifers in Bangladesh. Although apparent arsenic groundwater accumulation rates varied significantly with site (e.g. between sand versus clay dominated sequences), rates are generally highest near the surface, perhaps reflecting the proximity to the redox cline and/or depth-dependent characteristics of the OM pool, and confounded by localized processes such as continued in-aquifer mobilization, sorption/desorption, and methanogenesis
    corecore