

University of Kentucky UKnowledge

Rehabilitation Sciences Faculty Publications

Rehabilitation Sciences

1-2015

Inducible Depletion of Satellite Cells in Adult, Sedentary Mice Impairs Muscle Regenerative Capacity without Affecting Sarcopenia

Christopher S. Fry University of Kentucky

Jonah D. Lee University of Kentucky

Iyothi Mula University of Kentucky, jyothi.mula@uky.edu

Tyler J. Kirby University of Kentucky, tyler.kirby@uky.edu

Janna R. Jackson University of Kentucky

See next page for additional authors

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/rehabsci facpub

Part of the Rehabilitation and Therapy Commons

Repository Citation

Fry, Christopher S.; Lee, Jonah D.; Mula, Jyothi; Kirby, Tyler J.; Jackson, Janna R.; Liu, Fujun; Yang, Lin; Mendias, Christopher L.; Dupont-Versteegden, Esther E.; McCarthy, John J.; and Peterson, Charlotte A., "Inducible Depletion of Satellite Cells in Adult, Sedentary Mice Impairs Muscle Regenerative Capacity without Affecting Sarcopenia" (2015). Rehabilitation Sciences Faculty Publications. 19.

https://uknowledge.uky.edu/rehabsci_facpub/19

This Article is brought to you for free and open access by the Rehabilitation Sciences at UKnowledge. It has been accepted for inclusion in Rehabilitation Sciences Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Authors

Christopher S. Fry, Jonah D. Lee, Jyothi Mula, Tyler J. Kirby, Janna R. Jackson, Fujun Liu, Lin Yang, Christopher L. Mendias, Esther E. Dupont-Versteegden, John J. McCarthy, and Charlotte A. Peterson

Inducible Depletion of Satellite Cells in Adult, Sedentary Mice Impairs Muscle Regenerative Capacity without Affecting Sarcopenia

Notes/Citation Information

Published in *Nature Medicine*, v. 21, no. 1, p. 76-80.

The document available for download is the authors' post-peer-review final draft of the article.

The publisher allows authors to archive the accepted version of their article in their institution's repositories six months after the original publication.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1038/nm.3710

This is the authors' post-peer-review final draft of the article. The publisher may have edited it after it was submitted for publication. Changes resulting from such editing are not reflected in this document. The final published version is available from *Nature Medicine*, v. 21, no. 1, p. 76-80, Jan. 2015, DOI: http://dx.doi.org/10.1038/nm.3710

Figures and supplemental figures are at the end of the document.

Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia

Christopher S. Fry^{1,2}, Jonah D. Lee^{1,2}, Jyothi Mula^{1,2}, Tyler J. Kirby^{2,3}, Janna R. Jackson^{1,2}, Fujun Liu^{2,4}, Lin Yang^{2,4}, Christopher L. Mendias⁵, Esther E. Dupont-Versteegden^{1,2}, John J. McCarthy^{2,3}†, Charlotte A. Peterson^{1,2,3}*†.

University of Kentucky, Lexington, Kentucky 40536, USA.

⁵Department of Orthopaedic Surgery University of Michigan, Ann Arbor, MI 48109, USA

*Correspondence to: 900 S. Limestone, CTW 105

University of Kentucky Lexington, KY 40536

Tel: 859-218-0476 Fax: 859-257-2375

Email: cpete4@uky.edu

†Co-senior authors

One Sentence Summary: Satellite cell depletion does not affect sarcopenia

¹Department of Rehabilitation Sciences, College of Health Sciences

²Center for Muscle Biology

³Department of Physiology, College of Medicine

⁴Department of Biostatistics, College of Public Health

A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength 1,2. Although the etiology of sarcopenia is unknown, the correlation between the loss of satellite cell activity and impaired regenerative capacity in aged muscle has led to the hypothesis that diminished activity of satellite cells, skeletal muscle stem cells, with age is a cause of sarcopenia 3,4. We tested this hypothesis using a mouse model to deplete young adult muscle of satellite cells to a level sufficient to impair regeneration throughout the life of the animal. A detailed analysis of multiple muscles in sedentary male mice as they aged showed that they were of normal size and strength, despite reduced regenerative capacity, suggesting that life-long reduction of satellite cells did not accelerate nor exacerbate sarcopenia. These data argue against satellite cell contribution to the maintenance of muscle size or fiber type composition during aging; however, an increase in extracellular matrix suggests that loss of satellite cells may contribute to fibrosis with age.

Recent estimates indicate that up to one-third of the elderly suffer from frailty, characterized by a common set of symptoms including loss of muscle strength, increased fatigability, modest levels of physical activity and decreased body weight¹. The close relationship between frailty and the musculoskeletal system suggests sarcopenia is a critical factor contributing to the emergence of geriatric frailty, thus limiting the ability to perform activities of daily living and significantly increasing the risk of falling ^{5,6}. Numerous studies in humans and rodents report a strong correlation between the loss and dysfunction of satellite cells and sarcopenia ^{3,4}. Motivated by the idea that the restoration of satellite cell activity will provide a therapeutic basis for treating sarcopenia, a great deal of effort has gone into defining the environmental and cellular changes underlying the loss in satellite cell activity with age⁷⁻¹⁸.

Despite the correlation between declining satellite cell-dependent regenerative capacity and age,

no studies to date have tested this relationship directly to determine if the loss of satellite cell activity causes sarcopenia. We recently developed a genetic mouse model that allows for the specific, inducible depletion of satellite cells in adult skeletal muscle¹⁹⁻²¹. The Pax7^{CreER/+}; Rosa26^{DTA/+} strain, designated Pax7^{CreER}-DTA, was generated by crossing Pax7^{CreER/CreER} and Rosa26^{DTA/DTA} strains. Treatment of the Pax7^{CreER}-DTA mouse with tamoxifen activates *Cre* recombinase only in satellite cells driven by the *Pax7* promoter, which activates the diphtheria toxin A gene, killing satellite cells²¹. We took advantage of this mouse model to directly test the hypothesis that loss of satellite cells, which underlies the well-documented impairment in muscle regenerative capacity²¹⁻²⁴, results in muscle wasting with advancing age. If there is a causal relationship between the loss of satellite cell activity and sarcopenia, then we would predict accelerated and exacerbated sarcopenia in muscle with a significantly reduced complement of satellite cells.

We administered vehicle or tamoxifen by IP injection to adult (4 months of age) male

Pax7^{CreER} -DTA mice for five consecutive days to effectively deplete satellite cells and then
allowed the mice to age. We analyzed a subset of mice after approximately one year, at 16–18
months of age (middle age, MA), and showed that satellite cell numbers did not recover over
time. Consistent with previous studies^{21,23}, in muscles which remained significantly satellite celldepleted (>85%), muscle regeneration following BaCl₂ injection was severely impaired (Fig.

1a). No loss of muscle mass was apparent in any hind limb muscle of vehicle- or tamoxifentreated middle aged mice except in the soleus muscle (MA, Fig.1b); however, significant atrophy
was apparent by 24 months in both vehicle- and tamoxifen-treated mice (Aged, Fig. 1b).

Decrements in hind limb muscle mass in the aged mice met criteria for sarcopenia in humans²⁵;
that is, appendicular muscle mass was two standard deviations below the young group. These

data suggest that loss of satellite cell-dependent regenerative capacity throughout adulthood does not accelerate sarcopenia in aging mice.

We next determined if in aged mice, features of sarcopenia were exacerbated due to a lifetime reduction of satellite cells. Analysis of satellite cell abundance in vehicle-treated 5 month old (1 month following injection, young, Fig. 2a) and 24 month old (20 months following injection, aged, Fig. 2a) mice showed a substantial age-associated reduction in satellite cells (Fig. 2b). Tamoxifen administration resulted in >94% reduction in satellite cells in multiple hind limb muscles 1 month following injection, with little recovery in satellite cells per myofiber occurring even after 20 months (Fig. 2b); on average, satellite cells remained 83% depleted in aged mice (range: 64-87%), well below the loss normally associated with aging. Despite the reduction in satellite cell abundance to levels associated with severely impaired muscle regeneration, age-associated atrophy, as indicated both by muscle wet weight (Fig. 1b) and by mean myofiber cross-sectional area (CSA, Fig. 2c), occurred to the same extent in all hind limb muscles from both vehicle-treated and satellite cell-depleted mice. Myofiber CSA analyzed by fiber type (Figs. 3a and b) showed age-related atrophy in all muscles except the soleus, which has a higher proportion of slow-twitch fibers (Fig. 3c). In agreement with the well-characterized atrophy of the largest, fast-twitch glycolytic fibers with age²⁶, type 2b fibers showed the greatest degree of atrophy that appeared unaffected by satellite cell abundance (Fig. 3c). Moreover, fiber size distribution across hind limb muscles showed the characteristic leftward shift due to overall higher abundance of smaller fibers with age in both treatment groups (Supplemental Fig. 1). Satellite cell depletion also showed no significant effect on fiber type distribution (Supplemental Fig. 2); at 24 months, only the plantaris and soleus muscles showed an agedependent shift in the relative frequency of different fast-twitch (type 2) fibers that was independent of satellite cell abundance.

In addition to atrophy of individual myofibers, sarcopenia is associated with a decline in the number of myofibers and a reduction in single fiber specific force generation (force per unit area)². We measured these characteristics in the plantaris muscle, as it showed little recovery of satellite cells with age and was therefore most severely depleted (see Fig. 2b). We did not observe a loss of myofibers at 24 months in either vehicle- or tamoxifen-treated mice (Fig. 4a). Analyses of isolated myofibers (**Fig. 4b**) showed that the number of myonuclei per 100 µm of myofiber length was not changed with age (Fig. 4c). We performed myonuclear counts primarily on intermediate-sized myofibers (1000–2500 µm²), that make up greater than 80% of all myofibers, and our results are consistent with a recent study reporting no myonuclear loss with age in fibers in this size range²⁷. Moreover, myonuclear number appeared unaffected by satellite cell depletion (Fig. 4c), suggesting that the maintenance of myonuclei is not linked to satellite cell abundance. This conclusion was further supported by analysis of BrdU-labeled myonuclei (Fig. 4d). We provided mice with BrdU via drinking water for two weeks prior to sacrifice, and quantified fusion of labeled nuclei into myofibers. Although myonuclear addition was very infrequent during the two week labeling (approximately 0.1% of myofibers from vehicle-treated young and aged mice contained a labeled myonucleus), no labeled myonuclei were detected in plantaris muscle following tamoxifen treatment (Fig. 4d). Finally, as shown in Fig. 4e, myofiber specific force was reduced 31% with age, comparable to the force decrement reported in isolated myofibers in adult humans aged 65-85 years, using a similar permeabilized fiber preparation²⁸; however, the decrease in specific force did not appear to be affected by satellite cell abundance. We also functionally tested single fibers from the EDL muscle from 24

month old tamoxifen- and vehicle-treated mice (**Supplemental Fig. 3a–c**). As with the plantaris muscle, no differences in either specific or absolute force, or single fiber CSA, were apparent as a result of satellite cell depletion in the EDL. Further, overall loss of function with age, as measured by grip strength, was not altered by satellite cell depletion (**Supplemental Fig. 3d**). The loss of 45–59% raw grip strength in the aged mice did not differ with treatment, and is consistent with loss reported in humans with age ^{29,30}.

Although age-related myofiber atrophy and weakness were not significantly altered by lifelong satellite cell reduction, we did observe a change in the muscle fiber environment. Extracellular matrix (ECM) surrounding myofibers, quantified by Sirius Red staining of collagens, was higher with age and reduced satellite cell content in the plantaris muscle (representative images, Fig. 4f and g, quantified in Fig. 4h). We also assessed ECM accumulation via alpha-wheat germ agglutinin (WGA) staining of glycosaminoglycans, which showed that this component of the ECM was also more abundant with age and satellite cell depletion (representative images Supplemental Fig. 4a and b, quantified in Supplemental Fig. 4c). WGA staining of other hind limb muscles showed excess accumulation of ECM with age that was further exacerbated by a reduction in satellite cell content specifically in the plantaris and TA/EDL muscles (Supplemental Fig. 4c). These observations support our recent findings that satellite cells regulate the myofiber environment by signaling to fibroblasts¹⁹. While our previous work illustrated an additive effect of satellite cell-depletion and functional overload on ECM deposition in young adult mice¹⁹, novel findings in the current study show that long term depletion of satellite cells in sedentary mice contributes to dysregulation of the ECM in old age. Moreover, the present work extends previous findings to suggest that satellite cells may limit fibrosis preferentially in fast muscles³¹.

In summary, although our understanding of satellite cell function in muscle regeneration continues to be refined, results of the present study suggest that the loss of satellite celldependent regenerative capacity neither accelerates nor exacerbates sarcopenia. Moreover, our findings have broader implications for the study of tissue homeostasis by showing that skeletal muscle, much like the pancreas, kidney and liver, apparently employs cellular mechanisms that do not necessarily require stem cell participation for tissue maintenance³²⁻³⁵. However, the loss of satellite cells may adversely affect overall muscle quality, potentially contributing to the increase in fibrosis observed in aged skeletal muscle¹². One limitation of the current findings stems from the sedentary nature of the mice. The satellite cell requirement for muscle maintenance in more physically active mice remains to be determined; however, the sedentary nature of the mice in the current study is reflective of low physical activity levels of older adults in the United States³⁶. The findings of the current study have clinical importance as they draw a clear distinction between therapeutic strategies that may effectively treat degenerative myopathies, such as dystrophies³⁷ and cachexia³⁸, versus sarcopenia. While degenerative conditions are expected to benefit from a satellite cell-based therapy, our results support the conclusion of a recent study³⁹, that treatment for sarcopenia should more appropriately focus on the myofiber and motor neuron.

Acknowledgments

The authors thank Ben Lawson and Ken Campbell from the University of Kentucky Center for Muscle Biology, and Stuart Roche from University of Michigan for technical assistance on single fiber functional analyses; Heather Bush and Catherine Starnes for their biostatistics expertise; Thomas Chaillou for assistance with muscle regeneration experiments; Amy Confides for assistance with grip strength testing; and Margo Ubele, Rod Erfani, Jake Beggs, Marilyn Campbell, Tyler Kmiec, Justin Werker, Robin Anglin and Zakkary Hardyniec for image acquisition and quantification. Research was supported by the Jeane B. Kempner Postdoctoral Scholar Award and NIH grant AR065337 to C.S.F.; Ellison Medical Foundation/American Federation of Aging Research Fellow EPD 12102 to J.D.L.; NIH grants AG34453 to C.A.P., AG043721 to E.E.D., and AR60701 to C.A.P. and J.J.M.; and the NIH National Center for Advancing Translational Sciences, through Grant UL1TR000117. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or AFAR.

Author Contributions

C.S.F, J.D.L., J.J.M and C.A.P. designed the study. C.S.F, J.D.L., J.M., T.J.K., J.R.J., and C.L.M. performed experiments and collected the data. C.S.F, J.D.L., J.M., F.L., L.Y., C.L.M. and E.E.D. analyzed the data. C.S.F, J.J.M and C.A.P. wrote the manuscript. All authors approved the final version of the manuscript.

Figure Legends

Figure 1. Reduction in satellite cell content leads to impaired regenerative capacity but does not appear to accelerate or exacerbate sarcopenia. (a) Tibialis anterior muscles of vehicle- and tamoxifen-treated Pax7^{CreER}-DTA middle aged (MA, 16-18 month) mice following barium chloride (BaCl₂) or PBS injection. Hematoxylin and eosin stained cross-sections 7 days after injection. Scale bar = $100 \, \mu m$. (b) Hind limb muscle (plantaris, gastrocnemius (gastroc), tibialis anterior/extensor digitorum longus (TA/EDL), soleus) wet weights. Data are presented as mean weight (mg) \pm SEM. n = 4-8 mice/group. \dagger Significant difference between Aged and Young mice, independent of treatment (P < 0.05); \ddagger Significant difference between MA and Young mice, independent of treatment, (P < 0.05); \ddagger Significant difference between MA and Young mice, independent of treatment (P < 0.05); \ddagger Significant difference between MA and Young mice, independent of treatment (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/MA/aged) and Treatment (vehicle/tamoxifen)).

Figure 2. Reduction in satellite cell content throughout the lifespan does not appear to affect mean fiber cross-sectional area (CSA). (a) Satellite cell quantification of plantaris, gastrocnemius, TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7^{CreER}-DTA young (5 month) and aged (24 month) mice. Representative images of Pax7+ cells (white arrowheads) co-stained with DAPI. Scale bar = $100 \, \mu m$. (b) Quantification of satellite cell content in hind limb muscles in vehicle- and tamoxifen-treated Pax7^{CreER}-DTA young (5 month) and aged (24 month) mice. Data are presented as mean number of satellite cells/fiber/cross-section (CS) \pm SEM. * Significant difference between tamoxifen and vehicle treatment in animals of the same age (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). (c) Mean fiber CSA of the hind limb muscles.

Data are presented as mean fiber CSA \pm SEM. N.S. – not significant (P = 0.06). n = 4–8 mice/group. † Significant difference between Young and Aged, independent of treatment (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).

Figure 3. Age-associated fiber type-specific atrophy appears unaffected by reduction in satellite cell content. Fiber-type specific cross-sectional area (CSA) of plantaris, gastrocnemius, TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7^{CreER}-DTA young (5 month), middle aged (MA, 16–18 month) and aged (24 month) mice. Representative images from plantaris (a) and soleus (b) showing myosin heavy chain type 1 (pink), 2a (green), 2b (orange) and 2x (unstained) fibers, in addition to dystrophin (white) ringing each fiber. Scale bar = 100 μ m. (c) Quantification of mean CSA by fiber type in the hind limb muscles. Mean fiber CSA is provided for fiber types which comprise $\geq 2\%$ of total fibers in a given muscle (see Supplemental Figure 1b for fiber type frequencies). Data are presented as mean fiber CSA \pm SEM. n = 3-8 mice/group, \dagger Significant difference between Aged and Young mice, independent of treatment (P < 0.05); \ddagger Significant difference between Aged and MA mice, independent of treatment (P < 0.05); \ddagger Significant difference between MA and Young mice, independent of treatment (P < 0.05); as measured by a two-factor ANOVA (factors: Age (young/MA/aged) and Treatment (vehicle/tamoxifen)).

Figure 4. Reduced satellite cell content does not appear to affect plantaris fiber number, myonuclear number or single fiber force production during aging, but contributes to extracellular matrix (ECM) accumulation. Plantaris muscles isolated from young (5 month)

and aged (24 month) Pax7^{CReER}-DTA vehicle- and tamoxifen-treated mice. (a) Number of fibers in whole muscle cross-sections taken at mid-belly of the muscle. Data are presented as mean fiber number ± SEM and analyzed by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle (V)/tamoxifen (T)). n = 5-7 mice/group. (b) Representative image of a single plantaris muscle fiber with nuclei visualized with DAPI. (c) Myonuclear number normalized to fiber length. Data are presented as mean number of myonuclei per 100 µm ± SEM and analyzed by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). n = 40-60 fibers/group. (d) Quantification of BrdU+/DAPI+ myonuclei residing within the dystrophin antibody-labeled sarcolemma of muscle fibers. All fibers were counted in a cross section taken at mid-belly of the plantaris. Data are presented as % fibers $BrdU + \pm SEM$. n = 5-8 mice/group. ND = none detected. * Significant difference between tamoxifen and vehicle treatment, independent of age (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). (e) Maximum isometric force normalized to fiber cross-sectional area (specific force, KN/m²) of permeabilized single fibers. Data are presented as mean specific force \pm SEM. n = 5 Young vehicle, n = 7Young tamoxifen, n = 6 Aged vehicle and n = 8 Aged tamoxifen; eight fibers/mouse. † Significant difference between Aged and Young mice of the same treatment group (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). Representative images of vehicle- (f) and tamoxifen-treated (g) muscle stained with Sirius Red which binds collagens in the ECM. Scale bar = $100 \, \mu m$. (h) Quantification of collagen content. Data are presented as mean % of total area ± SEM for Young (Y) and Aged (A) Pax 7^{CReER} -DTA vehicle- and tamoxifen-treated mice. n = 3-4 mice/group. * Main effect of treatment (tamoxifen/vehicle, P < 0.05); † Significant difference between Aged

and Young mice of the same treatment group (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).

References

- 1. Bortz, W.M., 2nd. A conceptual framework of frailty: a review. *J Gerontol A Biol Sci Med Sci* **57**, M283-288 (2002).
- 2. Mitchell, W.K., *et al.* Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. *Front Physiol* **3**, 260 (2012).
- 3. Garcia-Prat, L., Sousa-Victor, P. & Munoz-Canoves, P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. *FEBS J* **280**, 4051-4062 (2013).
- 4. Gopinath, S.D. & Rando, T.A. Stem cell review series: aging of the skeletal muscle stem cell niche. *Aging Cell* **7**, 590-598 (2008).
- 5. Topinkova, E. Aging, disability and frailty. *Ann Nutr Metab* **52 Suppl 1**, 6-11 (2008).
- 6. Walston, J., *et al.* Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. *J Am Geriat Soc* **54**, 991-1001 (2006).
- 7. Sinha, M., *et al.* Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. *Science* **344**, 649-652 (2014).
- 8. Collins, C.A., Zammit, P.S., Ruiz, A.P., Morgan, J.E. & Partridge, T.A. A population of myogenic stem cells that survives skeletal muscle aging. *Stem Cell* **25**, 885-894 (2007).
- 9. Shefer, G., Van de Mark, D.P., Richardson, J.B. & Yablonka-Reuveni, Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. *Dev Biol* **294**, 50-66 (2006).
- 10. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. *Nature* **490**, 355-360 (2012).
- 11. Bernet, J.D., *et al.* p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. *Nat Med* (2014).
- 12. Brack, A.S., *et al.* Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. *Science* **317**, 807-810 (2007).
- 13. Carlson, M.E. & Conboy, I.M. Loss of stem cell regenerative capacity within aged niches. *Aging Cell* **6**, 371-382 (2007).
- 14. Conboy, I.M., *et al.* Rejuvenation of aged progenitor cells by exposure to a young systemic environment. *Nature* **433**, 760-764 (2005).
- 15. Cosgrove, B.D., *et al.* Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. *Nat Med* (2014).
- 16. McKay, B.R., *et al.* Elevated SOCS3 and altered IL-6 signaling is associated with agerelated human muscle stem cell dysfunction. *Am J Physiol Cell Physiol* **304**, C717-728 (2013).

- 17. Shefer, G., Rauner, G., Yablonka-Reuveni, Z. & Benayahu, D. Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. *PLoS One* **5**, e13307 (2010).
- 18. Sousa-Victor, P., *et al.* Geriatric muscle stem cells switch reversible quiescence into senescence. *Nature* **506**, 316-321 (2014).
- 19. Fry, C.S., *et al.* Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. *FASEB J* **28**, 1654-65 (2014).
- 20. Jackson, J.R., *et al.* Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. *Am J Physiol Cell Physiol* **303**, C854-861 (2012).
- 21. McCarthy, J.J., *et al.* Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. *Development* **138**, 3657-3666 (2011).
- 22. Lepper, C., Partridge, T.A. & Fan, C.M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. *Development* **138**, 3639-3646 (2011).
- 23. Murphy, M.M., Lawson, J.A., Mathew, S.J., Hutcheson, D.A. & Kardon, G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. *Development* **138**, 3625-3637 (2011).
- 24. Sambasivan, R., *et al.* Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. *Development* **138**, 3647-3656 (2011).
- 25. Baumgartner, R.N., *et al.* Epidemiology of sarcopenia among the elderly in New Mexico. *Am J Epidemiol* **147**, 755-763 (1998).
- 26. Larsson, L. Motor units remodeling in aged animals. *J Gerontol A Biol Sci Med Sci* **50**, 91-95 (1995).
- 27. Brack, A.S., Bildsoe, H. & Hughes, S.M. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine agerelated muscle atrophy. *J Cell Sci* **118**, 4813-4821 (2005).
- 28. Yu, F., Hedstrom, M., Cristea, A., Dalen, N. & Larsson, L. Effects of ageing and gender on contractile properties in human skeletal muscle and single fibres. *Acta Physiol* **190**, 229-241 (2007).
- 29. Sinaki, M., Nwaogwugwu, N.C., Phillips, B.E. & Mokri, M. Effect of gender, age, and anthropometry on axial and appendicular muscle strength. *Am J Phys Med Rehab* **80**, 330-338 (2001).
- 30. Shephard, R.J., Montelpare, W., Plyley, M., McCracken, D. & Goode, R.C. Handgrip dynamometry, Cybex measurements and lean mass as markers of the ageing of muscle function. *Br J Sports Med* **25**, 204-208 (1991).
- 31. Morrison, J., Lu, Q.L., Pastoret, C., Partridge, T. & Bou-Gharios, G. T-cell-dependent fibrosis in the mdx dystrophic mouse. *Lab Investig* **80**, 881-891 (2000).
- 32. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. *Nature* **429**, 41-46 (2004).

- 33. Humphreys, B.D., *et al.* Intrinsic epithelial cells repair the kidney after injury. *Cell Stem Cell* **2**, 284-291 (2008).
- 34. Miyaoka, Y., *et al.* Hypertrophy and Unconventional Cell Division of Hepatocytes Underlie Liver Regeneration. *Curr Biol* **22**, 1166-1175 (2012).
- 35. Teta, M., Rankin, M.M., Long, S.Y., Stein, G.M. & Kushner, J.A. Growth and regeneration of adult beta cells does not involve specialized progenitors. *Dev Cell* 12, 817-826 (2007).
- 36. Jones, D.A., *et al.* Moderate leisure-time physical activity: who is meeting the public health recommendations? A national cross-sectional study. *Arch Fam Med* **7**, 285-289 (1998).
- 37. Law, P.K., *et al.* Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. *Cell Transplant* **1**, 235-244 (1992).
- 38. He, W.A., *et al.* NF-kappaB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. *J Clin Investig* **123**, 4821-4835 (2013).
- 39. Bareja, A. & Billin, A.N. Satellite cell therapy from mice to men. *Skelet Muscle* **3**, 2 (2013).

Online Methods

The Pax7^{CreER}-DTA genetic mouse model allows for the specific and Mouse Model inducible depletion of satellite cells upon tamoxifen treatment, through activation of the diphtheria toxin A gene only in Pax7-expressing cells ²¹. The Pax7^{CreER} strain was generated by placing an ires-CreERTM-FRT-Neo-FRT cassette into the ClaI site of the Pax7 gene 3'-UTR following the stop codon in exon 9 40. Mice are on a mixed C57BL/6 – 129 background strain. All animal procedures were conducted in accordance with institutional guidelines approved by the Institutional Animal Care and Use Committee of the University of Kentucky. Mice were housed in a temperature- and humidity-controlled room and maintained on a 14:10 h light: dark cycle with food and water ad libitum. Mice were not housed in a barrier/pathogen-free facility, and were not screened for tumors. Sample size was determined by a power analysis with an expected standard deviation of 0.001, power of 0.8 and alpha of 0.05. Adult (4 months of age), male Pax7^{CreER}-DTA mice were randomized and administered by intraperitoneal (IP) injection either vehicle (15% ethanol in sunflower seed oil) or tamoxifen (2.0 mg · d⁻¹) for five consecutive days, two hours prior to lights out. Following one month (5 month old, young), 12 months (16–18 month old, middle aged (MA)) or 20 months (24 month old, aged), vehicle and tamoxifen-treated mice were sacrificed (n=4-8 mice/group). Aged vehicle mice had a median lifespan of 23.9 months, and a maximum lifespan of 24.6 months; aged tamoxifen mice had a median lifespan of 22.6 months and a maximum lifespan of 24.4 months. A subset of mice was provided with 5-bromo-2'-deoxyuridine (BrdU) at a concentration of 0.8 mg · ml⁻¹ in their drinking water for two weeks prior to sacrifice.

BaCl₂-induced muscle injury MA mice were anesthetized with isoflurane and the tibialis anterior (TA) injected with either 50 μl of 1.2% BaCl₂ solution or sterile PBS. After seven days, TA muscles were collected and processed for histochemistry.

Histochemistry/Immunohistochemistry Muscles were mounted at resting length, covered in OCT compound and frozen in liquid nitrogen-cooled isopentane and stored at -80 °C until cryosectioning (7µm). For Pax7 (satellite cells) immunohistochemistry, muscle sections were fixed in 4% paraformaldehyde (PFA) followed by epitope retrieval using sodium citrate (10 mM, pH 6.5) at 92 °C for 20 min. Endogenous peroxidase activity was blocked with 3% hydrogen peroxide in phosphate-buffered saline followed by an additional blocking step with Mouse-on-Mouse Blocking Reagent (Vector Laboratories, Burlingame, CA). Incubation with Pax7 antibody (1:100, Developmental Studies Hybridoma Bank, Iowa City, IA) was followed by incubation with the biotin-conjugated secondary antibody and streptavidin-HRP included within the Tyramide Signal Amplification kit (Cat#T20935, Invitrogen, Carlsbad, CA). Sections were co-stained with DAPI (4', 6'-diamidino-2-henylindole, 10 nM, Invitrogen), and mounted with Vectashield fluorescent mounting media. For fiber typing, unfixed sections were incubated in antibodies against myosin heavy chain (MyHC) types 1, 2a and 2b (1:100, Cat#BA.D5, SC.71 and BF.F3, Developmental Studies Hybridoma Bank) in addition to dystrophin (1:50, Cat#VPD505, Vector). MyHC type 2x expression was assumed from unstained fibers. Fluorescent-conjugated secondary antibodies against various mouse immunoglobulin subtypes were applied to visualize MyHC expression and dystrophin. Sections were post-fixed in 4% PFA prior to mounting. For extracellular matrix accumulation, muscle sections were fixed in 4% PFA, and then incubated with Texas-red conjugated WGA (wheat germ agglutinin,

Cat#W21405, Invitrogen). Basic muscle morphology and regeneration were assessed with hematoxylin and eosin staining, and collagen content was assessed with Sirius Red staining following standard protocols. For BrdU detection, unfixed slides were incubated in an antibody against dystrophin followed by secondary antibody conjugated to Texas-Red (Cat#610-109-121, Rockland Immunochemicals Inc., Gilbertsville, PA). Sections were then fixed in absolute methanol, treated with 2 N HCl to denature DNA and neutralized with 0.1 M borate buffer (BORAX, pH 8.5). BrdU antibody incubation was followed by biotin-conjugated goat antimouse secondary antibody and streptavidin-FITC (Cat#SA-5001, Vector). Sections were post-fixed in PFA and co-stained with DAPI.

Images were captured at 10 and 20x with an upright microscope (AxioImager M1; Zeiss, Göttingen, Germany). Fiber type-specific cross-sectional area was quantified using a newly developed, automated image segmentation algorithm ^{41,42}, that identifies fiber types by MyHC isoform expression combined with fiber boundary detection using dystrophin immunohistochemistry. All other images were quantified with Zeiss Axiovision rel. software (v4.8). Satellite cell abundance was assessed using Pax7 staining and only those cells that were Pax7+ and DAPI+ were counted. Fibers were classified as BrdU+ with a BrdU+/DAPI+ nucleus within the dystrophin border. WGA and Sirius Red staining were quantified using threshold intensity programs within the imaging software. Investigators were blinded to treatment (vehicle/tamoxifen) but not age during image quantification and analysis.

Single Myofiber Contractility Measurement of permeabilized muscle fiber contractility was performed as previously described ⁴³. Muscles were removed from the animal and

immediately placed in ice cold relaxing solution. Bundles of fibers were dissected from whole muscles, placed in skinning solution for 30 min and then in storage solution for 16 h at 4 °C and assayed immediately or stored at -80 °C until use. Individual myofibers (n=8 myofibers/mouse; 3-8 mice/group; see figure legends for specific numbers) were pulled from bundles in relaxing solution and secured at one end to a force transducer (Aurora Scientific, Model 403, Ontario, Canada) and at the other end to a servomotor (Aurora Scientific). The length of the whole fiber was adjusted to obtain a sarcomere length of 2.5 μ m using laser diffraction techniques. The average fiber cross-sectional area (CSA) was calculated assuming an elliptical cross-section, with diameters obtained at five different positions along the fiber from high-magnification images of the top and the side views. Maximum isometric force (F_0) of the fiber was elicited by dividing F_0 by CSA.

Myonuclear Number Plantaris muscles were fixed *in situ* at resting length in 4% PFA for 48 h. Single myofibers were isolated by 40% NaOH digestion, as previously described ²¹. Single myofibers were stained with DAPI and nuclei from 15–25 myofibers per animal (n = 4–8 mice/group) within a given segment were counted by *z*-stack analysis using the AxioImager M1 microscope. AxioVision software was used to measure myonuclear number per myofiber segment.

Grip Strength Mice were held at the base of the tail and were allowed to grab with fore limb paws the horizontal bar of the grip strength apparatus in a pronated manner (Columbus Instruments, Columbus, OH) while being held horizontally. The mice were then pulled back

gently until the grip was released and the maximal force achieved by the animal was recorded (in N); hind limbs were kept free from the apparatus and the average of 3 trials was reported. Data are presented as mean grip strength per body weight. All mice were tested by the same person.

Statistics All data were analyzed with SigmaPlot v12.0 software (Systat Software, San Jose, CA) via a two-factor ANOVA (factors: Treatment (vehicle/tamoxifen) x Age (young/MA/aged)) or simple two-tailed t-tests for each dependent variable under consideration. Assumptions for statistical analyses were met (i.e. normal distribution, equal variance). If a significant interaction was detected, an appropriate *post-hoc* analysis was employed to determine the source of the significance. Statistical significance was accepted at P < 0.05. Data are reported as mean \pm standard error; brackets in figures were used to help visualize significant main effects.

Online Methods References

- 40. Nishijo, K., *et al.* Biomarker system for studying muscle, stem cells, and cancer in vivo. *FASEB J* **23**, 2681-2690 (2009).
- 41. Mula, J., Lee, J.D., Liu, F., Yang, L. & Peterson, C.A. Automated image analysis of skeletal muscle fiber cross-sectional area. *J Appl Physiol* **114**, 148-155 (2013).
- 42. Liu, F., *et al.* Automated fiber-type-specific cross-sectional area assessment and myonuclei counting in skeletal muscle. *J Appl Physiol* **115**, 1714-1724 (2013).
- 43. Mendias, C.L., Kayupov, E., Bradley, J.R., Brooks, S.V. & Claflin, D.R. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. *J Appl Physiol* **111**, 185-191 (2011).

Supplementary Information Titles

Please list each supplementary item and its title or caption, in the order shown below.

Note that we do NOT copy edit or otherwise change supplementary information, and minor (nonfactual) errors in these documents cannot be corrected after publication. Please submit document(s) exactly as you want them to appear, with all text, images, legends and references in the desired order, and check carefully for errors.

Journal: Nature Medicine

Article Title:	Inducible depletion of satellite cells in adult, sedentary mice
	impairs muscle regenerative capacity with no observable impact on
	sarcopenia
Corresponding Author:	Charlotte A. Peterson

Supplementary Item & Number (add rows as necessary)	Title or Caption
Supplementary Figure 1	Muscle fiber size is reduced with age.
Supplementary Figure 2	Muscle fiber type appears unaffected by reduced satellite cell content.
Supplementary Figure 3	Specific force, absolute force and cross-sectional area (CSA) of permeabilized fibers from the EDL appear unaffected by reduced satellite cell content in aged mice; grip strength of the fore limb is reduced in aged mice but unaffected by reduced satellite cell content.
Supplementary Figure 4	Increased extracellular matrix (ECM) accumulation with age in the soleus and gastrocnemius muscles and increased ECM accumulation with age and reduced satellite cell content in plantaris and TA/EDL muscles.

Figure 1

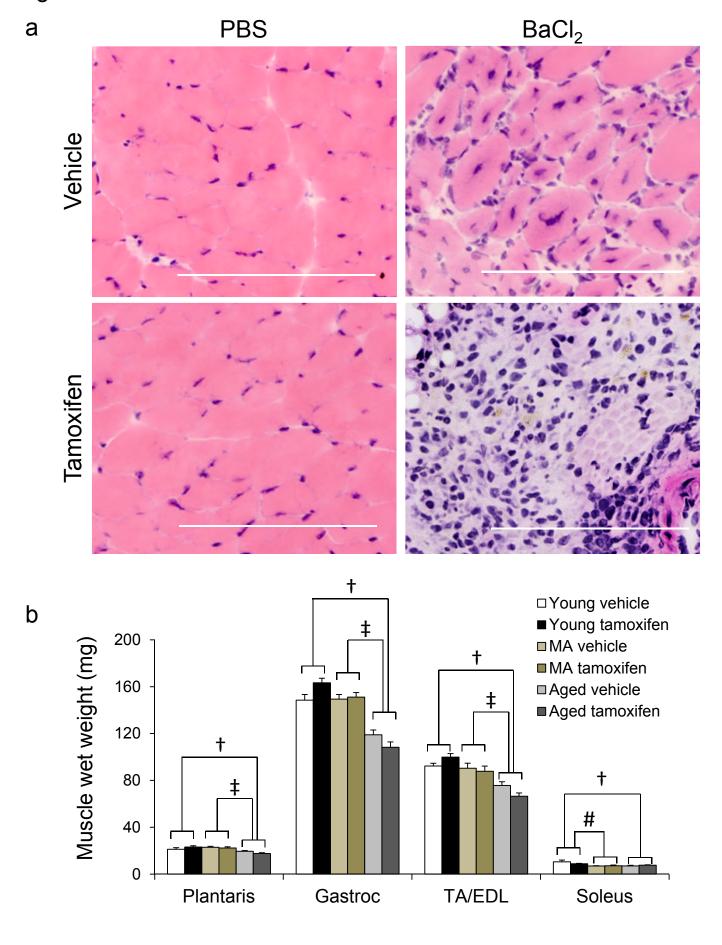


Figure 2

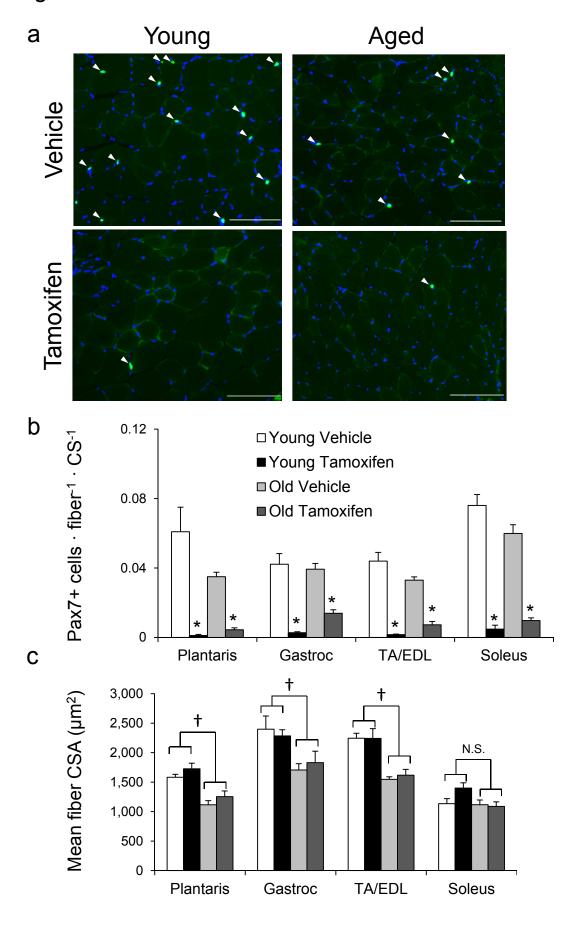
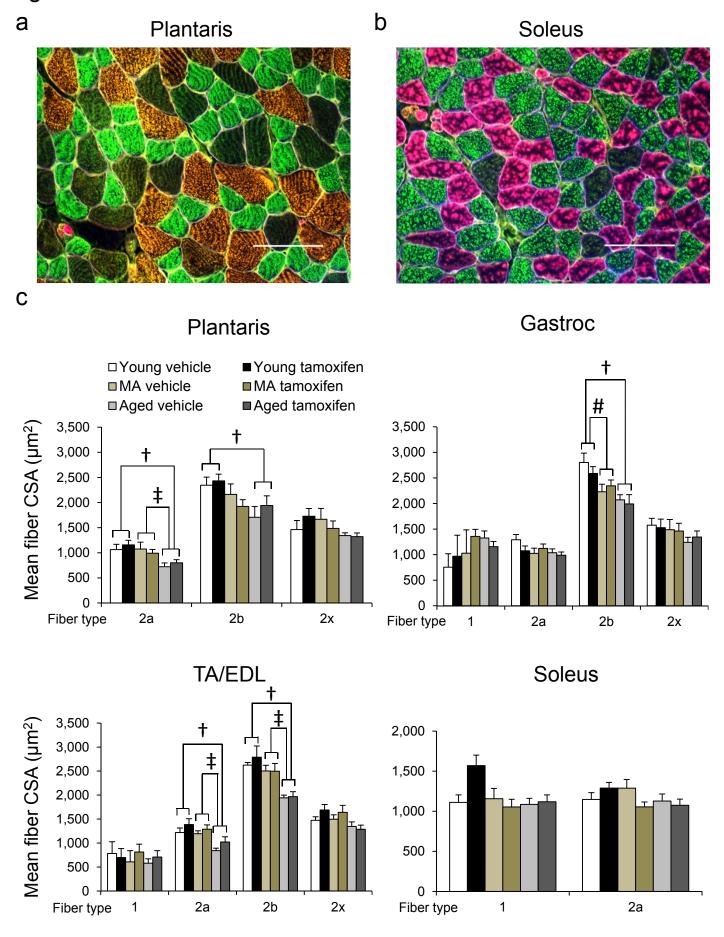
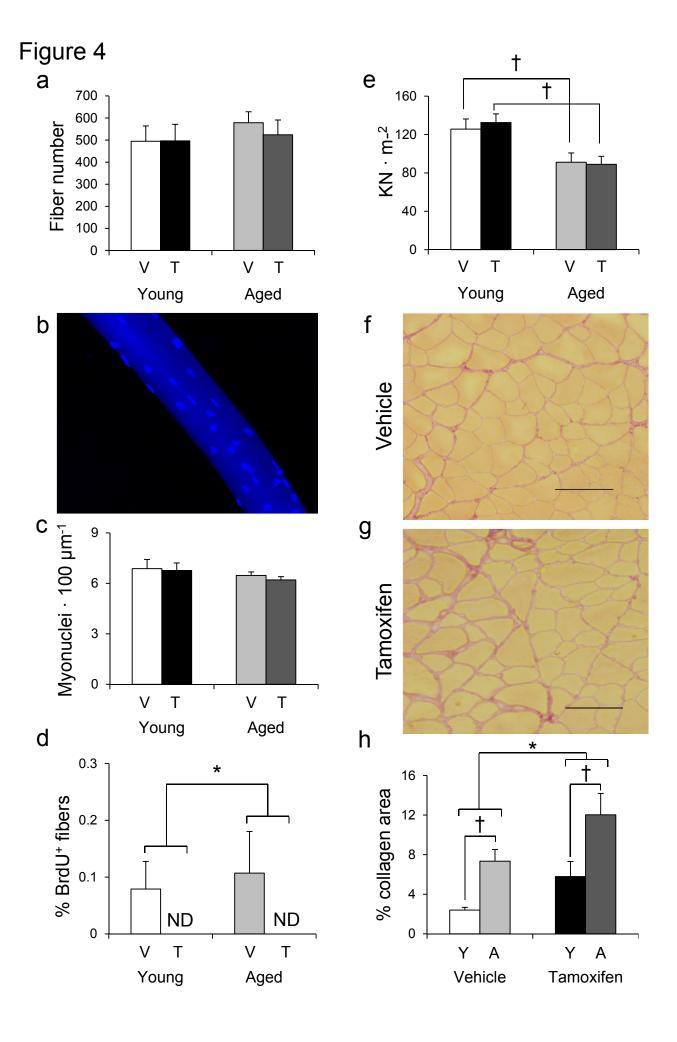
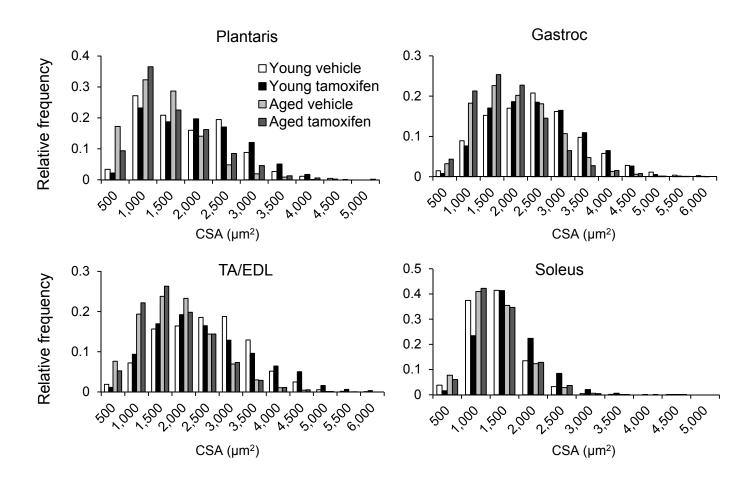
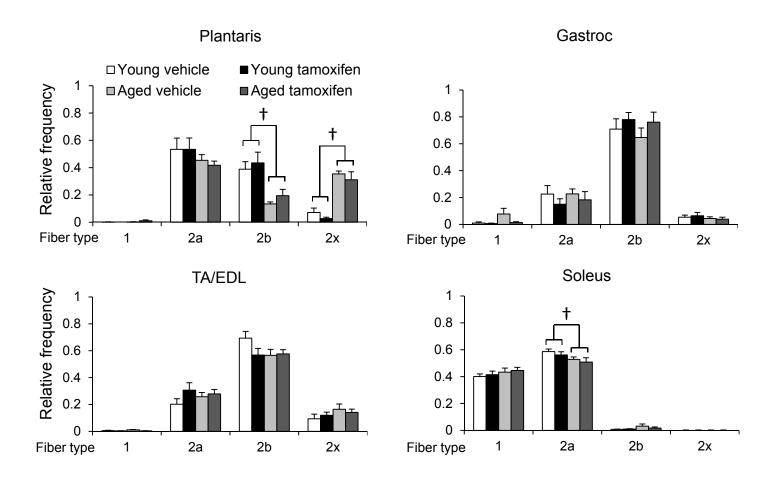




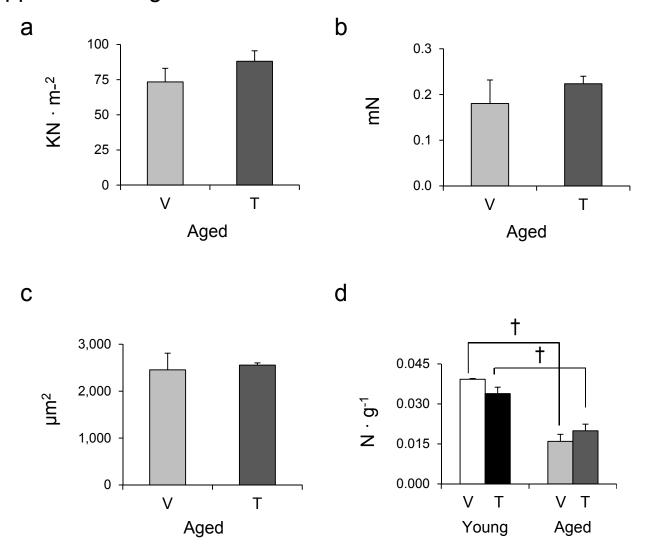
Figure 3



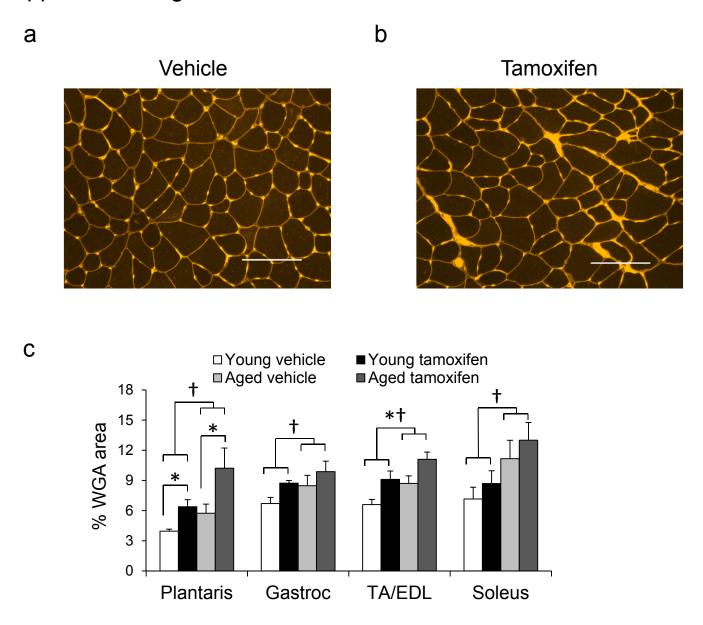
Title: Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity with no observable impact on sarcopenia


Authors: Christopher S. Fry, Jonah D. Lee, Jyothi Mula, Tyler J. Kirby, Janna R. Jackson, Fujun Liu, Lin Yang, Christopher L. Mendias, Esther E. Dupont-Versteegden, John J. McCarthy, Charlotte A. Peterson

Supplemental Figure 1


Supplemental Figure 1: Muscle fiber size is reduced with age. Binned distribution of fiber cross-sectional area (CSA) of plantaris, gastrocnemius, TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7^{CreER}-DTA young (5 month) and aged (24 month) mice shown in Fig. 3.

Supplemental Figure 2


Supplemental Figure 2: Muscle fiber type appears unaffected by reduced satellite cell content. Relative frequency of different fiber types in the plantaris, gastrocnemius, TA/EDL and soleus muscles of young (5 month) and aged (24 month) mice. Data are presented as mean relative fiber type frequency \pm SEM. \dagger Significant difference between Young and Aged, independent of treatment (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).

Supplemental Figure 3

Supplemental Figure 3. Specific force, absolute force and cross-sectional area (CSA) of permeabilized fibers from the EDL appear unaffected by reduced satellite cell content in aged mice; grip strength of the fore limb is reduced in aged mice but unaffected by reduced satellite cell content. (a) Specific force (KN · m-²), (b) absolute maximum isometric force (mN) or (c) fiber cross-sectional area (μ m²) of permeabilized single fibers from the EDL of vehicle (V)- and tamoxifen (T)-treated Pax7^{CreER}-DTA aged (24 months) mice. Data are presented as mean specific force \pm SEM and measured by a student's t-test (vehicle/tamoxifen). N = 3 vehicle, 5 tamoxifen, 8 fibers/mouse, 24–40 fibers/group. (d) Fore limb grip strength (N) in young and aged mice. Data are presented as mean grip strength per body weight \pm SEM. N = 3–5 mice/group. † Significant difference between Young and Aged in the same treatment group (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).

Supplemental Figure 4

Supplemental Figure 4. Increased extracellular matrix (ECM) accumulation with age in the soleus and gastrocnemius muscles and increased ECM accumulation with age and reduced satellite cell content in plantaris and TA/EDL muscles. Representative images of vehicle- (a) and tamoxifen-treated (b) plantaris muscle ECM assessed by wheat germ agglutinin (WGA) staining that binds glycosaminoglycans. Scale bar = $100\mu m$. (c) Quantification of WGA staining in vehicle- and tamoxifen-treated Pax7^{CreER}-DTA young (5 month) and aged (24 month) mice presented as a percentage of the total cross-sectional area. Data are presented as mean % area \pm SEM. \dagger Significant difference between Young and Aged, independent of treatment (p < 0.05); * Significant difference between vehicle and tamoxifen (P < 0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).