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One Sentence Summary: Satellite cell depletion does not affect sarcopenia 
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A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal 

muscle mass and strength1,2. Although the etiology of sarcopenia is unknown, the correlation 

between the loss of satellite cell activity and impaired regenerative capacity in aged muscle has 

led to the hypothesis that diminished activity of satellite cells, skeletal muscle stem cells, with 

age is a cause of sarcopenia3,4. We tested this hypothesis using a mouse model to deplete young 

adult muscle of satellite cells to a level sufficient to impair regeneration throughout the life of the 

animal. A detailed analysis of multiple muscles in sedentary male mice as they aged showed that 

they were of normal size and strength, despite reduced regenerative capacity,  suggesting that 

life-long reduction of satellite cells did not accelerate nor exacerbate sarcopenia. These data 

argue against satellite cell contribution to the maintenance of muscle size or fiber type 

composition during aging; however, an increase in extracellular matrix suggests that loss of 

satellite cells may contribute to fibrosis with age.   

Recent estimates indicate that up to one-third of the elderly suffer from frailty, 

characterized by a common set of symptoms including loss of muscle strength, increased 

fatigability, modest levels of physical activity and decreased body weight1.  The close 

relationship between frailty and the musculoskeletal system suggests sarcopenia is a critical 

factor contributing to the emergence of geriatric frailty, thus limiting the ability to perform 

activities of daily living and significantly increasing the risk of falling 5,6.  Numerous studies in 

humans and rodents report a strong correlation between the loss and dysfunction of satellite cells 

and sarcopenia 3,4.  Motivated by the idea that the restoration of satellite cell activity will provide 

a therapeutic basis for treating sarcopenia, a great deal of effort has gone into defining the 

environmental and cellular changes underlying the loss in satellite cell activity with age7-18. 

Despite the correlation between declining satellite cell-dependent regenerative capacity and age, 



no studies to date have tested this relationship directly to determine if the loss of satellite cell 

activity causes sarcopenia. We recently developed a genetic mouse model that allows for the 

specific, inducible depletion of satellite cells in adult skeletal muscle19-21.  The Pax7CreER/+; 

Rosa26DTA/+ strain, designated Pax7CreER-DTA, was generated by crossing Pax7CreER/CreER and 

Rosa26DTA/DTA strains. Treatment of the Pax7CreER-DTA mouse with tamoxifen activates Cre 

recombinase only in satellite cells driven by the Pax7 promoter, which activates the diphtheria 

toxin A gene, killing satellite cells21.  We took advantage of this mouse model to directly test the 

hypothesis that loss of satellite cells, which underlies the well-documented impairment in muscle 

regenerative capacity21-24, results in muscle wasting with advancing age.  If there is a causal 

relationship between the loss of satellite cell activity and sarcopenia, then we would predict 

accelerated and exacerbated sarcopenia in muscle with a significantly reduced complement of 

satellite cells.   

We administered vehicle or tamoxifen by IP injection to adult (4 months of age) male 

Pax7CreER -DTA mice for five consecutive days to effectively deplete satellite cells and then 

allowed the mice to age.  We analyzed a subset of mice after approximately one year, at 16–18 

months of age (middle age, MA), and showed that satellite cell numbers did not recover over 

time. Consistent with previous studies21,23, in muscles which remained significantly satellite cell-

depleted (>85%), muscle regeneration following BaCl2 injection was severely impaired (Fig. 

1a).  No loss of muscle mass was apparent in any hind limb muscle of vehicle- or tamoxifen-

treated middle aged mice except in the soleus muscle (MA, Fig.1b); however, significant atrophy 

was apparent by 24 months in both vehicle- and tamoxifen-treated mice (Aged, Fig. 1b).  

Decrements in hind limb muscle mass in the aged mice met criteria for sarcopenia in humans25;  

that is, appendicular muscle mass was two standard deviations below the young group. These 



data suggest that loss of satellite cell-dependent regenerative capacity throughout adulthood does 

not accelerate sarcopenia in aging mice. 

We next determined if in aged mice, features of sarcopenia were exacerbated due to a 

lifetime reduction of satellite cells.  Analysis of satellite cell abundance in vehicle-treated 5 

month old (1 month following injection, young, Fig. 2a) and 24 month old (20 months following 

injection, aged, Fig. 2a) mice showed a substantial age-associated reduction in satellite cells 

(Fig. 2b). Tamoxifen administration resulted in >94% reduction in satellite cells in multiple hind 

limb muscles 1 month following injection, with little recovery in satellite cells per myofiber 

occurring even after 20 months (Fig. 2b); on average, satellite cells remained 83% depleted in 

aged mice (range: 64-87%), well below the loss normally associated with aging.  Despite the 

reduction in satellite cell abundance to levels associated with severely impaired muscle 

regeneration, age-associated atrophy, as indicated both by muscle wet weight (Fig. 1b) and by 

mean myofiber cross-sectional area (CSA, Fig. 2c), occurred to the same extent in all hind limb 

muscles from both vehicle-treated and satellite cell-depleted mice.  Myofiber CSA analyzed by 

fiber type (Figs. 3a and b) showed age-related atrophy in all muscles except the soleus, which 

has a higher proportion of slow-twitch fibers (Fig. 3c).  In agreement with the well-characterized 

atrophy of the largest, fast-twitch glycolytic fibers with  age26, type 2b fibers showed the greatest 

degree of atrophy that appeared unaffected by satellite cell abundance (Fig. 3c). Moreover, fiber 

size distribution across hind limb muscles showed the characteristic leftward shift due to overall 

higher abundance of smaller fibers with age in both treatment groups (Supplemental Fig. 1).  

Satellite cell depletion also showed no significant effect on fiber type distribution 

(Supplemental Fig. 2); at 24 months, only the plantaris and soleus muscles showed an age-



dependent shift in the relative frequency of different fast-twitch (type 2) fibers that was 

independent of satellite cell abundance.   

In addition to atrophy of individual myofibers, sarcopenia is associated with a decline in 

the number of myofibers and a reduction in single fiber specific force generation (force per unit 

area)2.  We measured these characteristics in the plantaris muscle, as it showed little recovery of 

satellite cells with age and was therefore most severely depleted (see Fig. 2b). We did not 

observe a loss of myofibers at 24 months in either vehicle- or tamoxifen-treated mice (Fig. 4a).  

Analyses of isolated myofibers (Fig. 4b) showed that the number of myonuclei per 100 µm of 

myofiber length was not changed with age (Fig. 4c).  We performed myonuclear counts 

primarily on intermediate-sized myofibers (1000–2500 µm2), that make up greater than 80% of 

all myofibers, and our results are consistent with a recent study reporting no myonuclear loss 

with age in fibers in this size range27.  Moreover, myonuclear number appeared unaffected by 

satellite cell depletion (Fig. 4c), suggesting that the maintenance of myonuclei is not linked to 

satellite cell abundance. This conclusion was further supported by analysis of BrdU-labeled 

myonuclei (Fig. 4d).  We provided mice with BrdU via drinking water for two weeks prior to 

sacrifice, and quantified fusion of labeled nuclei into myofibers.  Although myonuclear addition 

was very infrequent during the two week labeling (approximately 0.1% of myofibers from 

vehicle-treated young and aged mice contained a labeled myonucleus), no labeled myonuclei 

were detected in plantaris muscle following tamoxifen treatment (Fig. 4d).  Finally, as shown in 

Fig. 4e, myofiber specific force was reduced 31% with age, comparable to the force decrement 

reported in isolated myofibers in adult humans aged 65–85 years, using a similar permeabilized 

fiber preparation28; however, the decrease in specific force did not appear to be affected by 

satellite cell abundance. We also functionally tested single fibers from the EDL muscle from 24 



month old tamoxifen- and vehicle-treated mice (Supplemental Fig. 3a–c).  As with the plantaris 

muscle, no differences in either specific or absolute force, or single fiber CSA, were apparent as 

a result of satellite cell depletion in the EDL.  Further, overall loss of function with age, as 

measured by grip strength, was not altered by satellite cell depletion (Supplemental Fig. 3d). 

The loss of 45–59% raw grip strength in the aged mice did not differ with treatment, and is 

consistent with loss reported in humans with age 29,30.   

Although age-related myofiber atrophy and weakness were not significantly altered by 

lifelong satellite cell reduction, we did observe a change in the muscle fiber environment. 

Extracellular matrix (ECM) surrounding myofibers, quantified by Sirius Red staining of 

collagens, was higher with age and reduced satellite cell content in the plantaris muscle 

(representative images, Fig. 4f and g, quantified in Fig. 4h).  We also assessed ECM 

accumulation via alpha-wheat germ agglutinin (WGA) staining of glycosaminoglycans, which 

showed that this component of the ECM was also more abundant with age and satellite cell 

depletion (representative images Supplemental Fig. 4a and b, quantified in Supplemental Fig. 

4c).  WGA staining of other hind limb muscles showed excess accumulation of ECM with age 

that was further exacerbated by a reduction in satellite cell content specifically in the plantaris 

and TA/EDL muscles (Supplemental Fig. 4c).  These observations support our recent findings 

that satellite cells regulate the myofiber environment by signaling to fibroblasts19. While our 

previous work illustrated an additive effect of satellite cell-depletion and functional overload on 

ECM deposition in young adult mice19, novel findings in the current study show that long term 

depletion of satellite cells in sedentary mice contributes to dysregulation of the ECM in old age.  

Moreover, the present work extends previous findings to suggest that satellite cells may limit 

fibrosis preferentially in fast muscles31.  



In summary, although our understanding of satellite cell function in muscle regeneration 

continues to be refined, results of the present study suggest that the loss of satellite cell-

dependent regenerative capacity neither accelerates nor exacerbates sarcopenia.  Moreover, our 

findings have broader implications for the study of tissue homeostasis by showing that skeletal 

muscle, much like the pancreas, kidney and liver, apparently employs cellular mechanisms that 

do not necessarily require stem cell participation for tissue maintenance32-35.  However, the loss 

of satellite cells may adversely affect overall muscle quality, potentially contributing to the 

increase in fibrosis observed in aged skeletal muscle12. One limitation of the current findings 

stems from the sedentary nature of the mice.  The satellite cell requirement for muscle 

maintenance in more physically active mice remains to be determined; however, the sedentary 

nature of the mice in the current study is reflective of low physical activity levels of older adults 

in the United States36.  The findings of the current study have clinical importance as they draw a 

clear distinction between therapeutic strategies that may effectively treat degenerative 

myopathies, such as dystrophies37 and cachexia38, versus sarcopenia. While degenerative 

conditions are expected to benefit from a satellite cell-based therapy, our results support the 

conclusion of  a recent study39, that treatment for sarcopenia should more appropriately focus on 

the myofiber and motor neuron.   
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Figure Legends 

Figure 1. Reduction in satellite cell content leads to impaired regenerative capacity but 

does not appear to accelerate or exacerbate sarcopenia.  (a) Tibialis anterior muscles of 

vehicle- and tamoxifen-treated Pax7CreER-DTA middle aged (MA, 16-18 month) mice following 

barium chloride (BaCl2) or PBS injection.  Hematoxylin and eosin stained cross-sections 7 days 

after injection. Scale bar = 100 µm.  (b) Hind limb muscle (plantaris, gastrocnemius (gastroc), 

tibialis anterior/extensor digitorum longus (TA/EDL), soleus) wet weights.  Data are presented as 

mean weight (mg) ± SEM.   n = 4–8 mice/group. † Significant difference between Aged and 

Young mice, independent of treatment (P < 0.05); ‡ Significant difference between Aged and 

MA mice, independent of treatment, (P < 0.05); # Significant difference between MA and Young 

mice, independent of treatment (P < 0.05) as measured by a two-factor ANOVA (factors: Age 

(young/MA/aged) and Treatment (vehicle/tamoxifen)). 

 

Figure 2. Reduction in satellite cell content throughout the lifespan does not appear to 

affect mean fiber cross-sectional area (CSA).  (a) Satellite cell quantification of plantaris, 

gastrocnemius, TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7CreER-DTA 

young (5 month) and aged (24 month) mice.  Representative images of Pax7+ cells (white 

arrowheads) co-stained with DAPI.  Scale bar = 100 µm. (b) Quantification of satellite cell 

content in hind limb muscles in vehicle- and tamoxifen-treated Pax7CreER-DTA young (5 month) 

and aged (24 month) mice.  Data are presented as mean number of satellite cells/fiber/cross-

section (CS) ± SEM.  * Significant difference between tamoxifen and vehicle treatment in 

animals of the same age (P < 0.05) as measured by a two-factor ANOVA (factors: Age 

(young/aged) and Treatment (vehicle/tamoxifen)). (c) Mean fiber CSA of the hind limb muscles.  



Data are presented as mean fiber CSA ± SEM.  N.S. – not significant (P = 0.06). n = 4–8 

mice/group. † Significant difference between Young and Aged, independent of treatment (P < 

0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment 

(vehicle/tamoxifen)).  

 

Figure 3. Age-associated fiber type-specific atrophy appears unaffected by reduction in 

satellite cell content.  Fiber-type specific cross-sectional area (CSA) of plantaris, gastrocnemius, 

TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7CreER-DTA young (5 month), 

middle aged (MA, 16–18 month) and aged (24 month) mice.  Representative images from 

plantaris (a) and soleus (b) showing myosin heavy chain type 1 (pink), 2a (green), 2b (orange) 

and 2x (unstained) fibers, in addition to dystrophin (white) ringing each fiber.  Scale bar = 100 

µm. (c) Quantification of mean CSA by fiber type in the hind limb muscles.  Mean fiber CSA is 

provided for fiber types which comprise ≥ 2% of total fibers in a given muscle (see Supplemental 

Figure 1b for fiber type frequencies).  Data are presented as mean fiber CSA ± SEM.  n = 3–8 

mice/group, † Significant difference between Aged and Young mice, independent of treatment 

(P < 0.05); ‡ Significant difference between Aged and MA mice, independent of treatment (P < 

0.05); # Significant difference between MA and Young mice, independent of treatment (P < 

0.05) as measured by a two-factor ANOVA (factors: Age (young/MA/aged) and Treatment 

(vehicle/tamoxifen)).  

 

Figure 4.  Reduced satellite cell content does not appear to affect plantaris fiber number, 

myonuclear number or single fiber force production during aging, but contributes to 

extracellular matrix (ECM) accumulation.  Plantaris muscles isolated from young (5 month) 



and aged (24 month) Pax7CReER-DTA vehicle- and tamoxifen-treated mice.  (a) Number of fibers 

in whole muscle cross-sections taken at mid-belly of the muscle.  Data are presented as mean 

fiber number ± SEM and analyzed by a two-factor ANOVA (factors: Age (young/aged) and 

Treatment (vehicle (V)/tamoxifen (T)).  n = 5–7 mice/group.  (b) Representative image of a 

single plantaris muscle fiber with nuclei visualized with DAPI.  (c) Myonuclear number 

normalized to fiber length. Data are presented as mean number of myonuclei per 100 µm ± SEM 

and analyzed by a two-factor ANOVA (factors: Age (young/aged) and Treatment 

(vehicle/tamoxifen)).  n = 40–60 fibers/group.  (d) Quantification of BrdU+/DAPI+ myonuclei 

residing within the dystrophin antibody-labeled sarcolemma of  muscle fibers.  All fibers were 

counted in a cross section taken at mid-belly of the plantaris.  Data are presented as % fibers 

BrdU+ ± SEM.  n = 5–8 mice/group.  ND = none detected. * Significant difference between 

tamoxifen and vehicle treatment, independent of age (P < 0.05) as measured by a two-factor 

ANOVA (factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). (e) Maximum 

isometric force normalized to fiber cross-sectional area (specific force, KN/m2) of permeabilized 

single fibers.  Data are presented as mean specific force ± SEM.  n = 5 Young vehicle, n = 7 

Young tamoxifen, n = 6 Aged vehicle and n = 8 Aged tamoxifen; eight fibers/mouse.  † 

Significant difference between Aged and Young mice of the same treatment group (P < 0.05) as 

measured by a two-factor ANOVA (factors: Age (young/aged) and Treatment 

(vehicle/tamoxifen)). Representative images of vehicle- (f) and tamoxifen-treated (g) muscle 

stained with Sirius Red which binds collagens in the ECM.  Scale bar = 100 µm. (h) 

Quantification of collagen content.  Data are presented as mean % of total area ± SEM for Young 

(Y) and Aged (A) Pax7CReER-DTA vehicle- and tamoxifen-treated mice.  n = 3–4 mice/group.  * 

Main effect of treatment (tamoxifen/vehicle, P < 0.05); † Significant difference between Aged 



and Young mice of the same treatment group (P < 0.05) as measured by a two-factor ANOVA 

(factors: Age (young/aged) and Treatment (vehicle/tamoxifen)).  
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Online Methods 
Mouse Model  The Pax7CreER-DTA genetic mouse model allows for the specific and 

inducible depletion of satellite cells upon tamoxifen treatment, through activation of the 

diphtheria toxin A gene only in Pax7-expressing cells 21.  The Pax7CreER strain was generated by 

placing an ires-CreERTM-FRT-Neo-FRT cassette into the ClaI site of the Pax7 gene 3’-UTR 

following the stop codon in exon 9 40.  Mice are on a mixed C57BL/6 – 129 background strain.  

All animal procedures were conducted in accordance with institutional guidelines approved by 

the Institutional Animal Care and Use Committee of the University of Kentucky.  Mice were 

housed in a temperature- and humidity-controlled room and maintained on a 14:10 h light: dark 

cycle with food and water ad libitum.  Mice were not housed in a barrier/pathogen-free facility, 

and were not screened for tumors.  Sample size was determined by a power analysis with an 

expected standard deviation of 0.001, power of 0.8 and alpha of 0.05.  Adult (4 months of age), 

male Pax7CreER-DTA mice were randomized and administered by intraperitoneal (IP) injection 

either vehicle (15% ethanol in sunflower seed oil) or tamoxifen (2.0 mg · d-1) for five 

consecutive days, two hours prior to lights out.  Following one month (5 month old, young), 12 

months (16–18 month old, middle aged (MA)) or 20 months (24 month old, aged), vehicle and 

tamoxifen-treated mice were sacrificed (n=4–8 mice/group).  Aged vehicle mice had a median 

lifespan of 23.9 months, and a maximum lifespan of 24.6 months; aged tamoxifen mice had a 

median lifespan of 22.6 months and a maximum lifespan of 24.4 months.  A subset of mice was 

provided with 5-bromo-2'-deoxyuridine (BrdU) at a concentration of 0.8 mg · ml-1 in their 

drinking water for two weeks prior to sacrifice.   

 



BaCl2-induced muscle injury MA mice were anesthetized with isoflurane and the tibialis 

anterior (TA) injected with either 50 µl of 1.2% BaCl2 solution or sterile PBS. After seven days, 

TA muscles were collected and processed for histochemistry.  

 

Histochemistry/Immunohistochemistry Muscles were mounted at resting length, covered in 

OCT compound and frozen in liquid nitrogen-cooled isopentane and stored at –80 ºC until 

cryosectioning (7µm).  For Pax7 (satellite cells) immunohistochemistry, muscle sections were 

fixed in 4% paraformaldehyde (PFA) followed by epitope retrieval using sodium citrate (10 mM, 

pH 6.5) at 92 °C for 20 min. Endogenous peroxidase activity was blocked with 3% hydrogen 

peroxide in phosphate-buffered saline followed by an additional blocking step with Mouse-on-

Mouse Blocking Reagent (Vector Laboratories, Burlingame, CA).  Incubation with Pax7 

antibody (1:100, Developmental Studies Hybridoma Bank, Iowa City, IA) was followed by 

incubation with the biotin-conjugated secondary antibody and streptavidin-HRP included within 

the Tyramide Signal Amplification kit (Cat#T20935, Invitrogen, Carlsbad, CA).  Sections were 

co-stained with DAPI (4', 6'-diamidino-2-henylindole, 10 nM, Invitrogen), and mounted with 

Vectashield fluorescent mounting media.  For fiber typing, unfixed sections were incubated in 

antibodies against myosin heavy chain (MyHC) types 1, 2a and 2b (1:100, Cat#BA.D5, SC.71 

and BF.F3, Developmental Studies Hybridoma Bank) in addition to dystrophin (1:50, 

Cat#VPD505, Vector).  MyHC type 2x expression was assumed from unstained fibers.  

Fluorescent-conjugated secondary antibodies against various mouse immunoglobulin subtypes 

were applied to visualize MyHC expression and dystrophin.  Sections were post-fixed in 4% 

PFA prior to mounting.  For extracellular matrix accumulation, muscle sections were fixed in 4% 

PFA, and then incubated with Texas-red conjugated WGA (wheat germ agglutinin, 



Cat#W21405, Invitrogen).  Basic muscle morphology and regeneration were assessed with 

hematoxylin and eosin staining, and collagen content was assessed with Sirius Red staining 

following standard protocols.  For BrdU detection, unfixed slides were incubated in an antibody 

against dystrophin followed by secondary antibody conjugated to Texas-Red (Cat#610-109-121, 

Rockland Immunochemicals Inc., Gilbertsville, PA).  Sections were then fixed in absolute 

methanol, treated with 2 N HCl to denature DNA and neutralized with 0.1 M borate buffer 

(BORAX, pH 8.5). BrdU antibody incubation was followed by biotin-conjugated goat anti-

mouse secondary antibody and streptavidin-FITC (Cat#SA-5001, Vector). Sections were post-

fixed in PFA and co-stained with DAPI. 

 

Image Quantification Images were captured at 10 and 20x with an upright microscope 

(AxioImager M1; Zeiss, Göttingen, Germany).  Fiber type-specific cross-sectional area was 

quantified using a newly developed, automated image segmentation algorithm 41,42, that 

identifies fiber types by MyHC isoform expression combined with fiber boundary detection 

using dystrophin immunohistochemistry.  All other images were quantified with Zeiss 

Axiovision rel. software (v4.8).  Satellite cell abundance was assessed using Pax7 staining and 

only those cells that were Pax7+ and DAPI+ were counted.  Fibers were classified as BrdU+ 

with a BrdU+/DAPI+ nucleus within the dystrophin border. WGA and Sirius Red staining were 

quantified using threshold intensity programs within the imaging software.  Investigators were 

blinded to treatment (vehicle/tamoxifen) but not age during image quantification and analysis.   

 

Single Myofiber Contractility Measurement of permeabilized muscle fiber contractility 

was performed as previously described 43. Muscles were removed from the animal and 



immediately placed in ice cold relaxing solution.  Bundles of fibers were dissected from whole 

muscles, placed in skinning solution for 30 min and then in storage solution for 16 h at 4 ºC and 

assayed immediately or stored at –80 ºC until use.   Individual myofibers (n=8 myofibers/mouse; 

3-8 mice/group; see figure legends for specific numbers) were pulled from bundles in relaxing 

solution and secured at one end to a force transducer (Aurora Scientific, Model 403, Ontario, 

Canada) and at the other end to a servomotor (Aurora Scientific).  The length of the whole fiber 

was adjusted to obtain a sarcomere length of 2.5µm using laser diffraction techniques. The 

average fiber cross-sectional area (CSA) was calculated assuming an elliptical cross-section, 

with diameters obtained at five different positions along the fiber from high-magnification 

images of the top and the side views. Maximum isometric force (Fo) of the fiber was elicited by 

immersing the fiber in a high-Ca2+ concentration solution. Specific force (sFo) was calculated by 

dividing Fo by CSA.  

 

Myonuclear Number  Plantaris muscles were fixed in situ at resting length in 4% PFA for 

48 h.  Single myofibers were isolated by 40% NaOH digestion, as previously described 21.  

Single myofibers were stained with DAPI and nuclei from 15–25 myofibers per animal (n = 4–8 

mice/group) within a given segment were counted by z-stack analysis using the AxioImager M1 

microscope.  AxioVision software was used to measure myonuclear number per myofiber 

segment. 

 

Grip Strength Mice were held at the base of the tail and were allowed to grab with fore 

limb paws the horizontal bar of the grip strength apparatus in a pronated manner (Columbus 

Instruments, Columbus, OH) while being held horizontally. The mice were then pulled back 



gently until the grip was released and the maximal force achieved by the animal was recorded (in 

N); hind limbs were kept free from the apparatus and the average of 3 trials was reported.  Data 

are presented as mean grip strength per body weight.  All mice were tested by the same person. 

 

Statistics All data were analyzed with SigmaPlot v12.0 software (Systat Software, San Jose, 

CA) via a two-factor ANOVA (factors: Treatment (vehicle/tamoxifen) x Age (young/MA/aged)) 

or simple two-tailed t-tests for each dependent variable under consideration.  Assumptions for 

statistical analyses were met (i.e. normal distribution, equal variance).  If a significant interaction 

was detected, an appropriate post-hoc analysis was employed to determine the source of the 

significance.  Statistical significance was accepted at P < 0.05.  Data are reported as mean ± 

standard error; brackets in figures were used to help visualize significant main effects.   
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Supplementary Figure 1 Muscle fiber size is reduced with age.   
Supplementary Figure 2 Muscle fiber type appears unaffected by reduced satellite cell 

content. 
Supplementary Figure 3 Specific force, absolute force and cross-sectional area (CSA) 

of permeabilized fibers from the EDL appear unaffected by 
reduced satellite cell content in aged mice; grip strength of the 
fore limb is reduced in aged mice but unaffected by reduced 
satellite cell content. 

Supplementary Figure 4 Increased extracellular matrix (ECM) accumulation with age 
in the soleus and gastrocnemius muscles and increased ECM 
accumulation with age and reduced satellite cell content in 
plantaris and TA/EDL muscles. 
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Supplemental Figure 1: Muscle fiber size is reduced with age.  Binned 
distribution of fiber cross-sectional area (CSA) of plantaris, gastrocnemius, 
TA/EDL and soleus muscles of vehicle- and tamoxifen-treated Pax7CreER-DTA 
young (5 month) and aged (24 month) mice shown in Fig. 3. 
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Supplemental Figure 2: Muscle fiber type appears unaffected by reduced 
satellite cell content. Relative frequency of different fiber types in the plantaris, 
gastrocnemius, TA/EDL and soleus muscles of young (5 month) and aged (24 
month) mice.  Data are presented as mean relative fiber type frequency ± SEM.  † 
Significant difference between Young and Aged, independent of treatment (P <
0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and 
Treatment (vehicle/tamoxifen)). 
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Supplemental Figure 3. Specific force, absolute force and cross-sectional 
area (CSA) of permeabilized fibers from the EDL appear unaffected by 
reduced satellite cell content in aged mice; grip strength of the fore limb is 
reduced in aged mice but unaffected by reduced satellite cell content. (a) 
Specific force (KN · m-2), (b) absolute maximum isometric force (mN) or (c) fiber 
cross-sectional area (µm2) of permeabilized single fibers from the EDL of vehicle 
(V)- and tamoxifen (T)-treated Pax7CreER-DTA aged (24 months) mice.  Data are 
presented as mean specific force ± SEM and measured by a student’s t-test 
(vehicle/tamoxifen).  N = 3 vehicle, 5 tamoxifen, 8 fibers/mouse, 24–40 
fibers/group.  (d) Fore limb grip strength (N) in young and aged mice. Data are 
presented as mean grip strength per body weight ± SEM.  N = 3–5 mice/group. † 
Significant difference between Young and Aged in the same treatment group (P < 
0.05) as measured by a two-factor ANOVA (factors: Age (young/aged) and 
Treatment (vehicle/tamoxifen)). 
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Supplemental Figure 4. Increased extracellular matrix (ECM) accumulation 
with age in the soleus and gastrocnemius muscles and increased ECM 
accumulation with age and reduced satellite cell content in plantaris and 
TA/EDL muscles. Representative images of vehicle- (a) and tamoxifen-treated 
(b) plantaris muscle ECM assessed by wheat germ agglutinin (WGA) staining that 
binds glycosaminoglycans.  Scale bar = 100µm. (c) Quantification of WGA 
staining in vehicle- and tamoxifen-treated Pax7CreER-DTA young (5 month) and 
aged (24 month) mice presented as a percentage of the total cross-sectional area.  
Data are presented as mean % area ± SEM. † Significant difference between 
Young and Aged, independent of treatment (p < 0.05); * Significant difference 
between vehicle and tamoxifen (P < 0.05) as measured by a two-factor ANOVA 
(factors: Age (young/aged) and Treatment (vehicle/tamoxifen)). 
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